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On a bounded bimodal two-sided distribution
fitted to the Old-Faithful Geyser Data

Donatella Vicaril and Johan Rene van Dorp?

Abstract — In this paper we shall develop a novel family of bimodal univariate
distributions (also allowing for unimodal shapes) and demonstrate its use using the well
known and almost classical data set involving durations and waiting times of eruptions of
the Old-Faithful Geyser in Yellowstone park. Specifically, we shall utilize the Old-Faithful
data set with 272 data points provided in Dekking et. al (2005). In the process, we develop
a bivariate distribution using a copula technique and compare its fit to a mixture of
bivariate normal distributions also fitted to the same bivariate data set. We believe the fit-
analysis and comparison is primarily illustrative from an educational perspective for
distribution theory modelers, since in the process a variety of statistical techniques are

demonstrated. We do not claim one model as preferred over the other.
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1. Introduction
The Old-Faithful data set has been a popular data set to demonstrate a variety of statistical
techniques in particular kernel density estimation (e.g. Silverman, 1986), time-series
analysis (e.g. Azzalini and Bowman, 1990), clustering (e.g. Atkinson and Riani, 2006),
Hidden Markov Models, and distribution theory (e.g. Eilers and Borgdorff, 2007), to name
a few. This paper falls in the latter category. Specifically, we shall illustrate a novel
univariate parametric family of distributions allowing for bimodal shapes by developing a
bivariate distribution for the Old-Faithful duration and waiting time data set provided in
Dekking et. al (2005) consisting of 272 data points (d;, w;), i = 1, ...,272. The bivariate
distribution shall be constructed using a copula technique involving diagonal band copulas
(see, Kotz and van Dorp, 2010).

Figures 1A and 1B presents an exploratory data analysis of the Old-Faithful Geyser data.
Figure 1A depicts a scatter plot of the duration and waiting time data. One observes a clear

clustering and a strong statistical dependence between the two random variables duration
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(D) and waiting time (W). Transforming the 272 durations d; using their empirical
cumulative distribution function
1 n

Fy(di) = =Y 1jaqy(dy), i=1,...,n,n =272

n j=1

and waiting times w;using their empirical distribution function
1 ,
Gn(wz) = 621[0711/*,;](11)]‘)7 1= 17 ey, N = 272
=1

yields a bivariate data set ( F},(d;), G, (w;) ) on the unit-square [0, 1]%. A scatter plot of this
bivariate data set is presented in Figure 1B.

Observe from Figure 1B that while univariate data sets F;(d;) and G, (w;) naturally
follow a uniform behavior on [0, 1], the bivariate data set ( F;(d;), G,(w;) ) does not follow

this behavior on the unit square [0, 1]%. Firstly, introducing the parameter ¢ and estimating

B(s) = # data points in Figure 1B € [0, §]*> U (8, 1]?
n

as a function of 6 € [0,1], we observe from Figure 1C that over 98.5% of the data points
(F,(d;), Gy(w;)) €10,6]* U (8,1]? for 6 € (0.355, 0.358). In fact, only 4 out of the 272 data
points do not fall within this area. Secondly, evaluating lower correlation of lower data

points
(Fy(di), Gy(wi)) € [0, 6]
we obtain a value of approximately 0.214. Evaluating correlation of upper data points

(Fy(di), Gylwi)) € [6,1]?

we obtain a value of approximately 0.278.

A challenge in modeling a bivariate copula distribution (Nelsen, 1999) for the data in
Figure 1B is the lack of observations in the [0,6] x [6,1]and [6,1] x [0,8] areas. One
possibility is to use a two-dimensional mixture technique reminiscent of the univariate
mixture technique of Two-sided distributions (Vicari et al, 2008) that define separate

generating densities for its two branches. Specifically we suggest the copula mixture

u v u—906 v—20 9
C(U7U|6)_6X 5(575)+(1_6)T(m7m)7 (U,U) € [071] 766 [07 1] (1)
where S( -, -)and T'( -, - ) are its generating copulas. It is not difficult to show that from

S(-,-)and T( -, - ) being copulas on [0, 1} it follows that C'(u, v|8) is a copula on [0, 1]%.
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Fig. 1. An exploratory analysis of the bivariate Old-Faithful data set (d;,w;)in
Dekking et. al (2005),7=1,...,n, n = 272. A: Scatter plot of (d;,w;);
B : Scatter plot of (F,(d;), G, (w;)), C : Graph of P{F,(d;), G,(w;) € [0, 6]
U (6,1)?}as a function of §; D: A copula model for (F,(D),G,(W));
E : Kernel density estimates for duration D; F: Kernel density estimates for

waiting time W.



Moreover, C'(u,v|6) has no probability mass in neither [0, §] x [, 1] nor [6, 1] x [0, §]. If we
now select for S( -, - ) a copula with correlation 0.214 (i.e. for the lower quadrant in Figure
1B) and for 7'( -, - ) a copula with correlation 0.278, we have defined a bivariate copula
that captures these characteristics of Figure 1B.

Given the analysis in Figure 1C, we shall set
6 = (0.355 + 0.358) /2 = 0.3565.
For S(-, -|as) and T(-, - |ar) in (1) we select generalized diagonal band copulas with

Two-Sided slope generating densities (see, Kotz and van Dorp, 2010). We have for the
density S (u, v|ay) :

oy — QEQS — 131), Ex,yg € Ay,
as — 2(as — 1)u, x,y) € Ag,

S@olo) =3 0" ot _ (1 —u). (rg) € Ay (2)
as —2(as — 1)(1 —v), (z,y) € Ay,

where 0 < ay < 2and

A ={(u,v) €[0,1*|0<u+v<1, —1<u—v<0},
Ay ={(u,v) €[0,1*|0<u+v<1, 0<u—v<l}
Ay ={(u,v) €[0,1P|l <u+v<2 —1<u—v<0},
Ay ={(u,v) € 0,11 <u+v<2, 0<u-—wv<l1}

The correlation for S(u, v|ay) follows as a linear relationship

plag) = — % + %as €[—0.4,0.4]. (3)

Thus setting p(a) = 0.214 yields directly a; = 1.535. Similarly, we obtain for 7'( -, - |ar)
that ap = 1.696. Advantages of copulas S(u,v|as), T'(u,v|ar) and C(u,v|d) given by (1)
are: (i) they have closed form probability density functions (pdf's) and cumulative
distribution functions (cdf's); (ii) the functional form of their pdf and cdf are defined by
linear and quadratic relationships, respectively; and (iii) the correlation (3) too follows a
straightforward linear form. Most importantly, however, S(u,v|a,) and T'(u, v|ar) were
shown to be approximately least informative in the entropy sense given their correlation
constraints (see, Kotz and van Dorp, 2010). Figure 1D plots the copula density (1) with
parameters

§ = 0.3565, ay = 1.535, ar = 1.696 (4)

to model the data set in Figure 1B.



Having modeled the statistical dependence between random variable D and W using
copula (1) all that remains is the modeling of the marginal distributions for the data in
Figure 1A. Naturally, one could follow the traditional approach of non-parametric density
estimation. Figures 1E and 1F demonstrate such fits utilizing kernel density estimation
(Silverman, 1986) using three separate kernels: the triweight, Epanechnikov and Gaussian
kernels. Observe that different kernels result in different density estimates. More
importantly, however, by using a non-parametric approach we lose the specific advantage
of the closed form copula expression for its pdf (1) utilizing expressions the like of (2).

In the remainder of this paper we set as our goal to develop a parametric model that
captures the univariate bimodal behavior of Figures 1E and 1F. To reach this goal we utilize
the flexible two-sided framework of univariate distribution introduced by Vicari et al.
(2008). This framework is summarized in Section 2. In Section 3 we develop an instance of
this framework allowing for bimodal shapes using elevated power distributions as their
generating densities (Garcia et al., 2011). In Section 4, an approximate maximum likelihood
procedure is presented to estimate the parameters of the distributional model in Section 3.
Finally, in Section 5 we integrate the copula density model (1) with parameter settings (4)
with MLE fitted using the data in Figures 1E and 1F and show an improvement of overall fit
as compared to a bivariate Gaussian mixture model (see, e.g., Titterington et. al, 1985) with
parameters estimated using the EM algorithm (see, e.g., Meng and Rubin, 1993).

2. A two-sided framework of univariate distributions
Vicari et al. (2008) introduced the following two-sided framework of distributions using

continuous cumulative distribution functions G( - |®) and H ( - |¥) with the support [0, 1]:

0, fory <0,
p{Ge)}, for 0 < y < 0,
PT(Y < y|@> = n (5)
1—{1—p(Q)}{1—H(g|\p)} , forf<y<1,
1, fory > 1.
where
on
Q) = :
p(@) (1—0)m + on (6)

The parameter vector © = (2, ®, V), where Q = (6,m,n) are the two-sided power
parameters, and ® and ¥ are the parameters of the two respective branch generating
distributions G( - |®)and H( - |¥), both potentially vector valued as well. The cdf (5) is



continuous at § with value Pr(Y < 6|0) = p(2) which does not depend on the structure of
either G( - |®) or H( - |¥).
By taking the derivative with respect to y in (5) one obtains for the corresponding

probability density function (pdf) :

m—1
s{cio)} for 0 < y < 6,
fr(yl®) = —— (7)
YW = 0T 0 m o h(i‘;:z){l—ﬂ(g%@w)} . ford<y<1,
0, elsewhere,

(where g( - |®)and A( - |¥) are the pdf's of the cdf's G( - |®)and H( - |¥), respectively).It
follows from (7) that

fr(0710) — fy(0710) = h(01¥) — g(1]2), (8)

and hence the pdf (7) is not necessarily continuous at 6. Moreover, fy(607]0)>0
[fy(67]©) > 0]if and only if g(1|®) > 0 [R(0]¥) > 0]. When h(0|¥) = g(1|®) the density
fr(y|®) (7) becomes continuous at 6 and strictly positive at 6 if and only if
g(11®), h(0]¥) > 0.

The quantile function F~!(z|©) of the cdf F(y||®) = Pr(Y < y|©)defined by (5)

follows as

0, for z <0,
y 9G—1(m ﬁ@), for 0 < z < p(%),
F~(2]0) = 1 : (9)
(1—0)H- (1— . ﬁgz)w)w, for p(Q) < z < 1,
1, for z > 1.

where G7!(-|®)and H !(-|¥) are the quantile functions of the branch generating
distributions G( - |®)and H(-|V) in (5). Thus sampling from (5) is straightforward and
direct when the branch quantile functions G~!(-|®)and H!(-|¥) are available in a
closed form.

Setting G (- |®)and H(-|¥)) to be the uniform cdf's on [0, 1], expressions (5) and (7)
reduce to those of a GTSP random variables presented in Herrerias-Velasco et. al (2009).
Vicari et al. (2008) originally considered slope distributions on [0, 1] as candidates for

G(-|®)and H( - |¥) leading to their two-sided generalized Topp and Leone distributions.



3. PDF and CDF of TS-EP distributions
We shall now provide an example of the density construction (7) above by letting H( - )

[G( - )] to be a [reflected] elevated power distribution on [0, 1] given by:

{ G(zla,¢) =1-9(1—z) - (1-9¢)(1-x)%,

where ¢, ¢ € [0, 1], a, 8 > 1 with the corresponding pdf's:

{g('ﬂaa ¢) = ¢ + (1 - ¢)C¥(1 - :L.)a—l, (11)
h(z|8,¢) = ¥+ (1 =) Bz,

Substituting (10) and (11) into (7) one obtains the density:

(10)

mn

{o+0-0)a(B) " Hi-o(5) - (1- qs)(%)“}m_l, for 0 < y < 6,
o -wp) o) +a-pE9)" fresy<,
0, elsewhere,
where as above © = (Q, ®, V), Q = (0, m,n),® = (o, ¢) and ¥ = ([, 1)) with the cdf
0, fory <0,
p()31— o (5Y) — (1—¢)(54)" for0 <y <0,
Fy(4]0) = tete) ) (13)

1= (1= p w0 + (1 - 9) ()"}, foro<y<1,
; fory > 1.

We have from (11) and (8) that
fr(071©) = fr(0710) = ¢ — ¢. (14)

Hence, the density (12) is continuous on [0, 1] provided i) = ¢. Moreover, fy(6|©) > 0,
when ¢y = ¢ > 0.

4. Maximum Likelihood Estimation
For a random sample X = (Xji,..., X;)of size s from the distribution (12), the log

likelihood function is, by definition,



mn
(1—-0)m+6n

ZLog{g L0)} —1) ZLog{G “Da,¢)} +

Log{L(X, ©)} = sLog{

H+ (15)

)}

where g( ' |(1/, Qb), G( ’ ’aa ¢)7 h( ’ ‘ﬁa ¢)a H( ' |ﬂ,1/)) are defined by (10) and (11)7
X(l) < X(Q) <... < X(S) (16)

Xy — 0
ZLog{h |ﬁ¢)}+ n—lZLog{l—H( 1”_9

i=r+1 i=r+1

are the order statistics of X, and r is a positive integer such that

Xy <0 < Xy, (17)

By convention X o) = — 00, X(411) = + o0.
We propose the following algorithm to maximize the log likelihood Log{L(X, ©)} (15)

to determine the ML estimates of the parameters O using a feasible starting point
@* — (Q*,Q*,‘II*), Q* — (m*,n*,g*),é* — (a*’ ¢*>, @* — (ﬁ*,w*)

and as its k-th iteration:

Step O: Setk =1, m =m*,n =n*0p =0% Q) = (m1,n1,91)

a1 = (1/*, le = Qb*, ¢, = (Oél, ¢1)! ﬁl = ﬁ*adjl = 77/}* s v, = (ﬂla¢1)
Step 1:  Determine 2, ;by maximizing Log{ L(X|Q2, ®;,¥)} over Q = (m,n,0).
Step 2:  Determine ¥, by maximizing Log{ L(X|Q1, P, ¥})} over ® = (a, ¢).
Step 3:  Determine ¥ ;by maximizing Log{ L(X|Q 1, Pri1,¥)} over ¥ = (5, ).
Step4:  If [Log{ L(X|Qs1, @1, Upr1)} — Log{L(X|Q, 1, T} < €

STOP
Else k£ = k + 1 and Goto Step 1.

Since, the log likelihood does not have to be concave and may posses local minima, there is
no guarantee the algorithm above converges to a global maximum. This stresses the
importance of specifying a reasonable starting ©* which can be obtained through some
exploratory analysis of log-likelihood profile functions. We shall demonstrate this
procedure in an illustrative example.

Step 1 in the algorithm above determines the optimal parameters of the general
framework (5) given branch parameters ®;,¥;. and uses (15) as its objective function. Step

2 (Step 3) determines the optimal left (right) branch parameters given 2;,,,9;



(Q%11, 1. 1) and only requires the second (third) line of log likelihood (15) in its objective
function. As usual, € in Step 4 may be chosen arbitrarily small.

To obtain an initial starting solution ©* in Step 0 one could, for example, select © to
visually match a plot of pdf (12) to that of an empirical pdf. To further aid in the selection

of 6 we have from (6)

On
Pr(Y < 0]0) = p(Q) = 1
(Y <010) = p() = it (15)
and with (18) it follows that
r on r+1
- < < . 1
s~ (1—=0m+6n — s (19)

Hence, given sample size s and values for m and n candidate search intervals (X, X(,,.H)]
for the threshold parameter # may be determined via (19).

Figures 2A and 2B provide starting point pdf's for the Old-Faithful data obtained in this
manner and compares them to the kernel density estimates in Figures 1E and 1F. We select
¢ = 1 to ensure continuity of the pdf (12). Figures 2C and 2D depict the log-likelihood
progression through 50 iterations of the algorithm. Finally, Figures 2E and 2F plots the
MLE fitted TS-EP densities fitted to the Old-Faithful data utilizing the MLE algorithm above.

Starting point parameters and MLE parameter estimates are provided in Table 1 below.

Table 1: Starting point and end results parameters from MLE Algorithm for Old-
Faithful duration (seconds) and waiting time (minutes) data.

Duration (seconds) Waiting Time (minutes)
Starting Point
TS framework m =12, n=10,60 =0.4 m=20,n=12,0=0.45
Left branch ¢ =0.01,«=4.5 ¢ =0.05, a =4.5
Right branch Pv=¢=0.01, =35 Yv=¢ =0.05,6=3

MLE estimates
TS framework  m = 27.23, n = 20.51, 0 = 0.4142 m = 14.89, n = 10.14, 0 = 0.4468
Left branch ¢ = 0.0085, a = 5.808 ¢ = 0.0526, a = 4.168
Right branch P =¢ =0.0085, 0 =4.184 Y= ¢ = 0.0526, § = 2.888

5. A comparison of the Joint TS-EP fit to a bivariate mixture model fit
In this section we shall compare the fit to the Old-Faithful data depicted in Figure 1 using
the parameter settings in Table 1 and copula construct (1) totaling 15 parameters to a more



0.012 0.05
0.045 ~ A
0.01 o\
0.04 /4% D\
\
\
0.008 0.035 \
0.03
0.006 0.025 AN 3
\ A
0.02 %, - .
0.004 0.015 y N / 3
/ Ny /
0.002 0.01 N
0.005 7
I’/
0 — 0
60 110 160 210 260 310 360 40 50 60 70 80 90 100
Duration (Seconds) Waiting Time (Minutes)
triweight ~ =eeeee- Epanechnikov triweight ~ —mme— Epanechnikov
A ---------- Gaussian e TS-EP B ---------- Gaussian e TS-EP
185 130
180 127.5
9 °
8 175 8 125
£ £
< g
z T
g 170 81225
4 A
165 120
160 117.5
C 0 10 20 30 40 50 D 0 10 20 30 40 50
Iteration Iteration
0.012 0.05
0.045
0.01 0.04
0.008 0.035
0.03
0.006 0.025
0.02
0.004 0.015
0.002 0.01
0.005
0 0 b
360 40 50 60 70 80 90 100
Duration (Seconds) Waiting Time (Minutes)
triweight 000000 eeeeee- Epanechnikov triweight ~ eeeeeee Epanechnikov
E ---------- Gaussian s TS-EP F —————————— Gaussian s TS-EP

Fig. 2: A-B: Starting points for MLE Algorithm A - Duration, B - Waiting Time.
C-D: Likelihood progression MLE Algorithm C - Duration, D - Waiting Time.

E-F: ML solutions MLE Algorithm E

- Duration, F - Waiting Time.

10




traditional technique in modeling bivariate multi modal distributions. Specifically, we shall
compare the fit to a two component mixture of bivariate normal distributions with

parameters estimated via the EM algorithm (see, e.g.,, Meng and Rubin, 1993), i.e. with pdf
f(.f, y) = )‘BVNl(:E7 y|ﬁ17 21) + (1 - )‘)BVNQ(xa y|/i27 22)7 (20)

where its 11 parameters are estimated at:

0.2785 0.6427
= U. = = 1
A =0.356, (0.2076>’ - (0.65802)’ (21)
6.90c —3 1.26e — 3 727¢ —3 2.67c—3
M= <1.26e —3 2.77e — 3)’ 2 = (2.67@ —3 6.78¢ — 3)' (22)

From X; we have a correlation of 0.28 (0.38) for the first (second) component. A two
component mixture with 11 parameters was favored over a three component one with 17
using the least squares criterion, hence we selected the two member one (20) with
parameter settings (21), (22) for comparison.

Firstly, Figures 3A-3D presents a visual comparison of resulting joint pdfs and contour
plots. Whereas in case of Figure 3D one recognizes the typical ellipsoid contours associated
with multivariate Gaussian distributions, the copula mixture technique (1) with separately
estimated TS-EP marginals does not posses ellipsoid contours. Figures 3E-3F provides a
visual comparison of the marginal distribution estimated utilizing both modeling
techniques. One observe larger differences between the two in case of the waiting time
plot 3F than the duration plot 3E.

In Tables 2 and 3 we provide a more formal comparison of the fitted marginal
distributions using the following criteria: x? p-value (evaluated using the equal-probability
method with 17 bins), Log-Likelihood, Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Kolmogorov-Smirnov (KS) and Sum of Squares (SS). Of these,
only the first four appropriately discount for the number of estimated parameters. Observe
from Table 2 that for the duration Old-Faithful data in all six criteria the TS-EP marginal
outperforms the Gaussian Mixture. Observe from Table 3 that the TS-EP marginal is
preferred in only three out of the six criteria. That being said, the p-value of 0.15 in Table 3
for the TS-EP model is certainly respectable, whereas the 4.13e — 3 value in Table 2 for the
Gaussian mixture model is not.

Finally, in Figure 4 we provide a visual and QQ-plot comparison of the joint TS-EP cdf
and joint Gaussian mixture. Not much can be concluded by visually comparing the cdf
graphs 4A-4C. From Figures 4D and 4E we visually observe that the TS-EP joint cdf

11
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Table 2: Fit analysis comparison for TS-EP and Gaussian mixture fitted marginal
distributions of the duration Old-Faithful data in Figure 1A.
A bold font indicates the preferred pdf using a particular criterion.

TS-EP pdf Normal mixture pdf

x? p-value 0.260 4.13¢ — 3
Log-Likelihood = 178.59 160.94
AIC — 345.19 — 311.88
BIC — 323.55 — 293.85
KS - criterion 0.037 0.045
SS - criterion 0.043 0.11

Table 3: Fit analysis comparison for TS-EP and Gaussian mixture fitted marginal
distributions of the waiting time Old-Faithful data in Figure 1A.

TS-EP pdf Normal mixture pdf

x? p-value 0.150 0.353
Log-Likelihood  125.81 122.39
AIC — 239.63 —234.78
BIC — 217.99 — 216.75
KS - criterion 0.037 0.044
SS - criterion 0.043 0.058

outperforms the joint Gaussian mixture cdf in the lower quantile ranges. This translates in
a better Kolmogorov-Smirnov (KS) and Sum-of-Squares (SS) criterion for the TS-EP joint
cdf in figure 4D than the joint Gaussian mixture cdf in Figure 4E. Truth be told however,
the joint Gaussian mixture cdf only uses 11 parameters, whereas the TS-EP joint cdf
estimates a total of 15 parameters.

Summarizing, whereas from a marginal perspective one could argue the TS-EP models
perform at least as well as the Gaussian Mixture model, such a conclusion cannot be made
in a joint sense due to the difference in number of estimated parameters. Preference of
either model may depend on the application context. For example, the closed form
expressions of the copula mixture model using TS-EP marginals allow for a straightforward
bivariate sampling algorithm. This is certainly more challenging in case of a mixture of

bivariate Gaussian distributions.

13



1
/ ///4 ‘t"“\'m“‘“
.““.‘. KS = 4.57%
i, 0g] SS=0.054 /
”,, /, Ilm."\\\\ -
:z:'««lz'o,",:'.;.‘\‘g; 08 & W 5
o Q Cd
06
22 osA
04 % ~ O.
360 02 = Z
A (@)
210 ’”'/’/”/"" 00 =
Duration 105 Q. 04 4
(Sec.) w
(%3]
A 35 Waiting Time (Min.) ~
0.2 1 y
1\
\\\\\\\‘\\‘\‘“ \ 0 T T T T
l .o'o oy “‘“ 0 0.2 0.4 0.6 0.8 1
KT “\\\‘ “\\ w .. .
A 08 g D Empirical Joint CDF
06 3
£
3
04 &
360 02 g 1
LS
0 KS = 5.03%
Duration =
e 0] SS=0.079 ;
.
o
()
B 35 Waiting Time (Min.) LL
Q
O
® 0.6 1
<
=
=
/ ,/ i k § 04 4
l// /// i
/«,,,%/0 \‘\?\‘\\‘\:\\‘\\‘\‘\ 08 <
A ‘.‘ ] 1)
06 g 02
3 . 1
04 S ‘.
S
360300 02 @
0 T T T T
Durati
(Secy. 0 02 04 06 08 1
C 35 49 Waiting Time (Min.) E Emplﬂcal Joint CDF

Fig. 4: A bivariate fit comparison of TS-EP joint cdf and bivariate Gaussian mixture
model. A: TS-EP joint cdf; B: Empirical CDF; C: BVN mixture cdf; D: QQ Plot TS-
EP joint cdf; E: QQ plot Gaussian Mixture CDF.

Concluding Remarks

In this paper we have presented a novel procedure for modeling the classical Old Faithful
data set. In particular two aspects deserve attention. The first one is the introduction of a
two-sided bivariate mixture technique given by (1) utilizing two copulas as its components
and the resulting mixture again being a copula. The second one is the introduction of a
novel univariate distribution for modeling bimodal distributions. Both aspects are
integrated in the distribution model for the Old Faithful Geyser data set outperforming the

tradition bivariate normal mixture approach. While tempting to compare the correlations

14



0.287 and 0.380 of the components of the bivariate normal mixture with the copula
component correlations 0.214 and 0.278, one needs to recognize that the former are

Pearson moment correlations, whereas the latter are Spearman rank correlations.
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