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Abstract

This report is on the analysis of the SWORrD (Swept Wavelength Opti-
cal Resonant Raman Detection) data. The goal of the analysis is to deter-
mine which chemicals are present in an unknown substance, by analyzing its
Raman spectrum. In this report we present three approaches, all of which
give excellent results, and can correctly determine the chemcials that make
up the unknown substance.
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1 Introduction

The Raman spectrum is used to identify what chemical substances or biological agents

are present in a substance. A sample of the substance is illuminated with a speci�c

laser wavelength and this generates a resonance Raman spectrum, illustrated in Figure

1.

λ220nm

Wavenumber
(cm­1)

Amplitude

λ220nm

Wavenumber
(cm­1)

Amplitude

λ220nm

Wavenumber
(cm­1)

Amplitude

Figure 1: Raman Spectrum

The resulting spectrum constitutes a unique signature of the illuminated substance

for this speci�c laser wavelength. The process is then repeated for di¤erent laser

wavelengths, and the subsequent set of resonance Raman signatures, one at each laser

wavelength, forms a single two-dimensional signature of the substance. One axis of

the two-dimensional signature is the input laser wavelength and the other axis is the

wavenumber of the Raman spectrum. Figure 2 shows an example Raman spectrum for

a sample of Ammonium Nitrate.
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Figure 2: Example Spectrum of Ammonium Nitrate

The purpose of the Raman spectrum is to identify what chemicals or biological

agents are present in the illuminated substance. The NRL has a library of chemical

substances, say c1; : : : ; ck, where k is about 15-20. They can use this library to predict

what is in a sample using a linear combination of the ci�s. So for example, sample s

might be identi�ed as

s � �c1 + (1� �)c2; 0 < � < 1;

meaning that s consists of two chemical substances: c1 and c2, with proportions � and

(1� �), respectively. In general, we write substance s =
P
�ici, with �i � 0, for all i,

and
P
�i = 1; so if �i > 0, then ci is present in the substance.

1.1 The Data

The NRL have provided us with data, consisting of the Raman spectrums of several

combinations of chemical substances. There are �ve chemical substances in the data

set: Water, Ethanol, Methanol, Acetonitrile, and Ethylene Glycole. We have several

runs of the Raman spectrum for each of these �ve chemicals (each run of a particular

chemical gives very similar results but, naturally, there is some di¤erence). We also
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have several runs of all of the possible combinations of these �ve chemicals, i.e. the 10

two-chemical combinations, the 10 three-chemical combinations, the 5 four-chemical

combinations, and the mixture of all �ve chemicals. Our goal is to develop a method

which can correctly predict what is in each of these substances. Note that all the

combinations of chemicals in the data set consists of equal amounts of the chemicals

in it, so for example, the mixture of water and ethanol contains 50% each of the two

chemicals, and the mixture of all �ve chemicals consists of 20% of each. Unfortunately

we do not have data on di¤eret proportions for the mixtures, but nevertheless, we have

come up with a method to predict the proportions of chemicals in each substance.

In this report we outline three methods: in Section 3 we will use a method in which

we do not know what chemicals are in the substance, but we do know that it consists

of equal parts of whichever chemicals are in it, and in Sections 4 and 5 we outline

two methods for the more realistic scenario in which we have no idea what is in the

substance, and nor do we know the proportions of the chemicals involved. The method

of Section 4 involves taking a least squares approach, and the Section 5 details a

Bayesian method. We will next discuss, in Section 2, the Raman spectrums of the �ve

chemicals to help better understand the data.

4



2 The Raman Spectrums of the Five Chemicals

We will begin by simply showing the Raman spectrum for water at a wavelength of

220nm. Figure 3 shows the Raman spectrums for six di¤erent runs, indicated by the

dotted lines, as well as the average of these six runs, indicated by the solid line. It is

this average that we will be using as the Raman spectrum for water.
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Figure 3: Raman spectrum for water at 220 nm

We also have the Raman spectrums for water taken at other wavelengths, in fact we

have the spectrum for every even number wavelength from 220-260nm (21 di¤erent

wavelengths in total). When we look at the spectrum for water at other wavelengths,

it has the same shape as that shown in Figure 3 for 220nm, but the altitude is di¤erent,

and in fact decreases as the wavenumber increases, as shown in Figure 4.
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Figure 4: Raman spectrum of water for di¤erent wavelengths

As for the other four chemicals, they also have the same pattern over di¤erent wave-

lengths, and they all seem to have the greatest altitude at the 220nm wavelength. Thus,

for the rest of this report, we will focus only on the Raman spectrums at 220nm. Now,

other substances outside of the �ve that we are considering might have a very small

Raman spectrum at 220nm compared to other wavelengths, in which case considering

just the 220nm in not appropriate. In cases such as these we will show that we can

simply extend our method to consider all wavelengths; the mathematics will be the

same, but there�ll just be more data.

Figure 5 shows the Raman spectrum for all �ve chemicals at the 220nm wavelengths.

Note that these curves represent the average of all the runs for the respective chemical.
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Figure 5: Raman spectrum of the �ve chemicals at the 220nm wavelength

In Figure 6, we show the Raman spectrum from the mixture of water and ethanol;

note that this is the average of the runs for this mixture. This mixture is 50% water

and 50% ethanol and, as we can see from Figure 6, its spectrum has peaks at the same

place as water and ethanol, only now those peaks are halved. So a Raman spectrum

of a mixture of chemicals is simply a linear combination of those Raman spectrum of

the chemicals of which the mixture is composed. The challenge is to determine which

of these �ve chemicals are in an unknown substance.
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Figure 6: Raman spectrum of water and ethanol combined

In Section 3 we will outline a method for determining which chemicals are present,

assuming that the chemicals present are of the same proportion (as is the case with

our data). Then in Sections 4 and 5 we outline methods for when we do not assume

that the unknown substance is divided up equally among its composition chemicals.
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3 Method 1: Assuming Equal Proportions of Chem-
icals

In this section we assume that any unknown substance is made up of k di¤erent chemi-

cals equally, so each of these chemicals account for 1=k of the substance. Our goal is to

determine what these k chemicals are. We know that an unknown substance consists

of one or more of the �ve chemicals, which we will denote: c1 = Water, c2 = Ethanol,

c3 = Methanol, c4 = Acetonitrile, and c5 = Ethylene Glycole. This means that there

are only 31 possible combinations of the �ve chemicals: �ve when k = 1 or 4, ten when

k = 2 or 3, and one when k = 5. Also, let zij be the amplitude of the Raman spectrum

of chemical i at wavenumber j, and let zj be the amplitude of the Raman spectrum of

the unknown substance at wavenumber j.

The problem now is simply an optimization problem, in which we want to pick the

�best�of the 31 combinations. To determine which combination is the best, i.e. the

most likely to be the unknown compound, we will de�ne this as the one whose linear

combination of Raman spectrums has the smallest sum of squared errors from the actual

Raman spectrum observed from the unknown substance. For example, the expected

Raman spectrum of water and ethanol would be (z1j + z2j)=2 for every wavenumber j,

and so the sum of squared errors would be

4500X
j=1

[zj � (z1j + z2j)=2]2 :

So we can simple calculate the sum of squared errors for each of the 31 possible com-

binations, and then choose the one with the smallest value.

As an example, let�s suppose that we do not know which substance forms the Raman

spectrum given in Figure 6. Calculating the 31 sets of sum of squared errors leads to

the results given in Table 1.
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211.9517c1 & c2 & c3 & c4 & c5

555.0006c2 & c3 & c4 & c5

207.974c1 & c3 & c4 & c5

151.2625c1 & c2 & c4 & c5

264.0076c1 & c2 & c3 & c5

191.6002c1 & c2 & c3 & c4

515.93c3 & c4 & c5

562.0905c2 & c4 & c5

921.477c2 & c3 & c5

517.8165c2 & c3 & c4

165.6093c1 & c4 & c5

205.7911c1 & c3 & c5

377.7902c1 & c3 & c4

200.4013c1 & c2 & c5

153.6294c1 & c2 & c4

152.777c1 & c2 & c3

465.9163c4 & c5

913.9646c3 & c5

682.3562c3 & c4

1232.545c2 & c5

508.7014c2 & c4

864.4228c2 & c3

118.2748c1 & c5

689.6659c1 & c4

327.1768c1 & c3

37.5336c1 & c2

1334.234c5

1145.372c4

1125.972c3

1290.228c2

1125.338c1

SSECombination

211.9517c1 & c2 & c3 & c4 & c5

555.0006c2 & c3 & c4 & c5

207.974c1 & c3 & c4 & c5

151.2625c1 & c2 & c4 & c5

264.0076c1 & c2 & c3 & c5

191.6002c1 & c2 & c3 & c4

515.93c3 & c4 & c5

562.0905c2 & c4 & c5

921.477c2 & c3 & c5

517.8165c2 & c3 & c4

165.6093c1 & c4 & c5

205.7911c1 & c3 & c5

377.7902c1 & c3 & c4

200.4013c1 & c2 & c5

153.6294c1 & c2 & c4

152.777c1 & c2 & c3

465.9163c4 & c5

913.9646c3 & c5

682.3562c3 & c4

1232.545c2 & c5

508.7014c2 & c4

864.4228c2 & c3

118.2748c1 & c5

689.6659c1 & c4

327.1768c1 & c3

37.5336c1 & c2

1334.234c5

1145.372c4

1125.972c3

1290.228c2

1125.338c1

SSECombination

Table 1: Sum of Squared Errors for the 31 possible combinations when estimating

water and ethanol

As Table 1 shows, the smallest sum of squares is 37.53 which occurs when using the

combination of water and ethanol, so we were able to correctly identify the substance.

Similarly, Table 2 shows that the method works when considering the mixture of all �ve

chemicals, with the smallest sum of squared errors (52.98) occuring for the last model.

Indeed, this method works for every substance we were given, so we were always able

to correctly identify its component chemicals.
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52.98253c1 & c2 & c3 & c4 & c5

159.158c2 & c3 & c4 & c5

89.23594c1 & c3 & c4 & c5

80.71044c1 & c2 & c4 & c5

165.6554c1 & c2 & c3 & c5

80.23951c1 & c2 & c3 & c4

94.77103c3 & c4 & c5

205.1795c2 & c4 & c5

527.4992c2 & c3 & c5

106.494c2 & c3 & c4

178.1709c1 & c4 & c5

181.2859c1 & c3 & c5

335.9404c1 & c3 & c4

240.144c1 & c2 & c5

176.0276c1 & c2 & c4

138.1084c1 & c2 & c3

90.49652c4 & c5

482.9446c3 & c5

225.3192c3 & c4

897.8964c2 & c5

148.0364c2 & c4

448.1575c2 & c3

337.8357c1 & c5

883.2098c1 & c4

465.1204c1 & c3

271.8492c1 & c2

984.8309c5

743.9356c4

613.3352c3

970.335c2

1913.863c1

SSECombination

52.98253c1 & c2 & c3 & c4 & c5

159.158c2 & c3 & c4 & c5

89.23594c1 & c3 & c4 & c5

80.71044c1 & c2 & c4 & c5

165.6554c1 & c2 & c3 & c5

80.23951c1 & c2 & c3 & c4

94.77103c3 & c4 & c5

205.1795c2 & c4 & c5

527.4992c2 & c3 & c5

106.494c2 & c3 & c4

178.1709c1 & c4 & c5

181.2859c1 & c3 & c5

335.9404c1 & c3 & c4

240.144c1 & c2 & c5

176.0276c1 & c2 & c4

138.1084c1 & c2 & c3

90.49652c4 & c5

482.9446c3 & c5

225.3192c3 & c4

897.8964c2 & c5

148.0364c2 & c4

448.1575c2 & c3

337.8357c1 & c5

883.2098c1 & c4

465.1204c1 & c3

271.8492c1 & c2

984.8309c5

743.9356c4

613.3352c3

970.335c2

1913.863c1

SSECombination

Table 2: Sum of Squared Errors for the 31 possible combinations when estimating the

combination of all �ve chemicals

11



4 Method 2: Unknown Proportion of Chemicals �
Least Squares Approach

In this section we outline a method for the more realistic scenario in which we do not

assume that the unknown substance consists of equal proportions of its component

chemcals. Let the unknown substance consist of proportion �i of chemical ci, so s =P
�ici; our goal is to estimate the �i�s. To do this, and using the same notation as the

previous section, we want to minimize the sum of squared errors between the estimated

Raman spectrum, given by
P
�izij; and the actual Raman spectrum observed from

our unknown substance. So we want to minimize:

4500X
j=1

[zj � (�1z1j + �2z2j + �3z3j + �4z4j + �5z5j)=2]2 ;

where the constraints are that
P
�i = 1 and �i � 0, for i = 1; : : : ; 5: So this boils

down to a non-linear regression of the form

zj = �1z1j + �2z2j + �3z3j + �4z4j + (1� (�1 + �2 + �3 + �4))z5j:

This cannot be solved explicitly, so we will need to do this numerically. We shall

use the Gauss-Newton numerical procedure [cf. Deu�hard (2005)], to calculate the

least squares estimates of �1; : : : ; �4, and thus �5. To use this method we specify

initial values for the four parameters, �1; : : : ; �4, and then linearlizes zj near these

initial values. The new esimates of the parameters are then the linear least squares

solution, using the linearized zj. This process is then repeated until convergence. As

an example, when trying to estimate components of the mixture of water and ethanol,

with the Raman spectrum given in Figure 6, we obtain the estimates given in Table

3. Any initial values of the four parameters can be used in the interval (0; 1) and the

solution given in Table 3 will always be reached.
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0.0299Ethylene Glycol

0.0106Acetonitrile

0.0367Methanol

0.4539Ethanol

0.4687Water

Parameter
Estimate

Chemical

0.0299Ethylene Glycol

0.0106Acetonitrile

0.0367Methanol

0.4539Ethanol

0.4687Water

Parameter
Estimate

Chemical

Table 3: Estimates of the �i�s when predicting the components of a mixture of water

and ethanol

These results are very close to the true values of (0:5; 0:5; 0; 0; 0). The very small

proportions for methanol, acetonitrile and ethylene glycol correctly indicate that it�s

unlikely that they are present in the substance. As another example, Table 4 shows

the results from this method when analyzing the Raman spectrum of a mixture of all

�ve chemicals.

0.2211Ethylene Glycol

0.3365Acetonitrile

0.1679Methanol

0.1458Ethanol

0.1287Water

Parameter
Estimate

Chemical

0.2211Ethylene Glycol

0.3365Acetonitrile

0.1679Methanol

0.1458Ethanol

0.1287Water

Parameter
Estimate

Chemical

Table 4: Estimates of the �i�s when predicting the components of a mixture of all �ve

chemicals

These results correctly indicate that all �ve chemicals are present in the substance. We

are assuming that the actual proportions are all 0.2, but we do not know this for sure.
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Indeed the results of Table 4 suggest that perhaps there is slightly more acetonitrile

present in the substance that the other chemicals.

5 Method 3: Unknown Proportion of Chemicals �
Bayesian Approach

In this section we outline our Bayesian approach. Using the same notation as the

previous sections, we will use the following model:

zj = �1z1j + �2z2j + �3z3j + �4z4j + (1� (�1 + �2 + �3 + �4))z5j + �j

where �j � N(0; �2). De�ne f(�; z) = �1z1j + �2z2j + �3z3j + �4z4j + (1� (�1 + �2 +

�3 + �4))z5j, so now we have

zj � N(f(�; z); �2):

In Section 4 we calculated the least squares estimates of the �i�s, so now for our

Bayesian approach we �rst need to write our likelihood, which is:

L / 1

�n
exp

"
� 1

2�2

4500X
i=1

(zj � f(�; z))2
#
:

We have 5 parameters �1, �2; �3; �4 and �2, and we now need to specify prior distrib-

utions for them. For the �i�s the conjugate priors would be normal, but normal priors

would be inappropriate for these parameters as they are all in the interval (0; 1), so

instead we shall use truncated beta priors, with point masses at 0 and 1. So let the

prior distribution of �i be

�(�i) /

8<:
mi0; �i = 0

�ai�1i (1� �i)bi�1; 0 < �i < 1
mi1; �i = 1

:

For the prior distribution of �2 we will use the conjugate prior, which is an inverse

gamma distribution, which gives (with parameters as and bs):

�(�2) / 1

(�2)1+as
exp

�
� bs
�2

�
:
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Now we can write out the full posterior conditional distributions:

�(�ij�j 6=i; �) / exp
"
� 1

2�2

4500X
i=1

(zj � f(�; z))2
#
aai�1i (1� �i)bi�1

and

�(�j�i) / IG
 
as + n; bs +

1

2

4500X
i=1

(zj � f(�; z))2
!
:

We can then draw a posterior sample from the joint distribution of �1, �2; �3; �4 and

�2 by iteratively drawing from the given full conditional posterior distributions.

As an example, we will once again use the Raman spectrum of water and ethanol,

shown in Figure 6. Figures 7-10 show the posterior distributions of �1, �2; �3;and �4,

after 1,000 simulations. The results are very good as it�s clear from these �gures that

the unknown substance contains just water and ethanol, with about 50% of each.

. . . . .. . . . .. . . . .

Figure 7: Posterior distribution of �1
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. . . . .. . . . .. . . . .

Figure 8: Posterior distribution of �2

. . . . .. . . . .. . . . .

Figure 9: Posterior distribution of �3
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. . . . .. . . . .. . . . .

Figure 10: Posterior distribution of �4

Figures 11-14 show the posterior distributions for �1, �2; �3;and �4 when the un-

known substance is the mixture of all �ve chemicals. The results are similat to those

obtained in Section 4.
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. . . . .. . . . .. . . . .

Figure 11: Posterior distribution of �1

. . . . .. . . . .. . . . .

Figure 12: Posterior distribution of �2
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. . . . .. . . . .. . . . .

Figure 13: Posterior distribution of �3

. . . . .. . . . .. . . . .

Figure 14: Posterior distribution of �4

19



6 Conclusions and Future Work

All three methods given in this report proved to be very accurate at predicting the

chemicals that make up an unknown substance. Of course, the methods of Sections

4 and 5 should be used when analyzing a real life unknown substance as we cannot

realistically assume equal proportions of chemicals in the substance. This report only

focused on the 220nmwavelength of the Raman spectrum, but the method can of course

be easily extended to minimizing the sum of squared errors over all wavelengths.

Whilst our method gave very good results when predicting the chemicals present in

an uknown substance, the real test will come when applied to an unknown substance

made up of biological agents. Biological agents tend to have very similar Raman spec-

trums that have peaks at the same wavenumbers, making them harder to distinguish.

We feel con�dent, however, that the methods outlined in this report can o¤er decent

predictions for these types of substances, and we hope to test this when we are given

this data.
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