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Test and Evaluation Resource Allocation Using Uncertainty Reduction as a Measure of
Test Value
Abstract
Determining the optimum allocation of resources for tests of Department of Defense (DoD)
systems is challenging, primarily due to the lack of an accepted and easily obtained value for test
results. Past attempts to quantify test value have focused on prioritization schemes or estimates
of cost savings postulated to occur by finding and fixing problems as early as possible. These
methods have not gained traction, largely due to difficulties in obtaining cost estimates and
historical data. In addition, the use of a cost metric does not capture the true value of DoD
testing, which is to reduce technical uncertainty and programmatic risk. We propose a
methodology to determine test value by estimating the amount of uncertainty reduction a
particular test is expected to provide using Shannon’s Information Entropy as a basis for the
estimate. We apply the metl}qdology to a notional aircraft case study and simulated large test
portfolio to allocate resources using a portfolio of tests for a single decision maker involved in
the resource allocation. We conclude that using uncertainty reduction to measure test value is
easy to apply, produces results that are intuitively appealing, and produces portfolios that
outperform those selected using subjective processes.
Managerial Relevance Statement

Using uncertainty reduction as a measure of test value provides managers with a quantifiable and
defendable measure for comparing test options and allocating test resources. Using uncertainty
reduction as an explicit test objective also provideé an objective basis for test planners to use in

designing various test options. Finally, uncertainty reduction can be easily related to risk



management and information regarding the uncertainty of the resulting test data can be
incorporated into a decision analysis framework if desired.

1. INTRODUCTION
Developmental and operational test and evaluation (T&E) programs for complex DOD systems
typically include hundreds or even thousands of individual test points and can be very expensive.
Current DoD test planning processes typically allocate T&E resources using rules of thumb and
subject matter expert (SME) judgment informed by tests conducted on previous programs;
however, there is no evidence that these processes result in an optimum allocation of test
resources. Proposed methodologies for improving the resource allocation process have focused
on quantifying test value in terms of cost avoidance or early discovery of problems (for ex.ample,
see [ 1] and [2]) and have failed to gain traction within the DoD program management, systems
engineering, and test communities.

The resource allocation methods just mentioned suffer from difficulties in calculating -
cost estimates of reworking system problems postulated to exist and in obtaining historical data
to use as a baseline. In addition, the use of a cost metric does not really capture the true value of
DoD tesﬁng, which is to reduce uncertainty and “provide knowledge to assist in managing the
risks involved in developing . . . systems and capabilities” [3]. And test data must provide
information with high confidence: system operators need confidence in system capabilities and
limitations so they can employ the system properly, and program managers need confidence in
information used to make acquisition decisions [4]. Thus, test data may be used as an input to a
set of decisions made by a program manager and other DoD stakeholders, but test data are also

| used to provide information to system users so they may properly operate the system. We

obviously desire as much confidence as possible in the data collected, within typical program



constraints such as cost and schedule, but current planning techniques do not explicitly account
for data confidence or uncertainty during the planning and resource allocation processes.
Although some papers have discussed the value of a test relative to its ability to reduce
uncertainty [5], no technique has been found that develops a general methodology for
determining this value and using it to allocate test resources.

In this paper, we describe a methodology to determine the value of a test by estimating
the amount of uncertainty reduction a particular test can be expected to provide. The
methodology is intended to be used to allocate test resources in a way that optimizes the value of
a test portfolio to a single decision maker or multiple stakeholders and decision makers within a
resource constrained environment. Section 2 first provides additional background on the DoD
T&E resource allocation problem. Section 3 then presents the results of a literature review on
existing test planning techniques and technical uncertainty characterization. Section 4 presents
the overall methodology, describes a technical uncertainty framework derived from the literature
review and discusses the use of Shannon’s Information Entropy as the basis for our uncertainty
reduction measure. Section 5 applies the methodology to a test pertfolio consisting of five
distinct tests for a notional aircraft and a simulated large portfolio a comparison to SME-selected
portfolios is also made. Section 6 discusses results, conclusions and future work.

II. BACKGROUND ON DOD TEST AND EVALUATION RESOURCE ALLOCATION

As mentioned previously, the major purpose of T&E of DoD systems is to reduce risks.
Program managers and other stakeholders desire to collect the needed test data as efficiently as
possible, within the resource constraints that exist. A typical test portfolio for a major DoD
weapon system includes potentially dozens or even hundreds of individual tests that can include

hundreds or thousands of individual test points. Typical tests might include: (1) system



performance (for example, speed, range, weapons accuracy), (2) system effectiveness (for
example, the ability to conduct a specific type of mission in realistic conditions), (3) human
factors evaluations, and (4) reliability and maintainability. For each test, many different types of
data may be collected that are used to verify the system design and validate that the system can
be used as intended. For example, one test may measure various aspects of system performance
and compare those values to a specification. Another test may determine if the system can
operate in a specific environment without electromagnetic interference from another system. At
the end of each of these tests, the data collected will be used to determine if the system “passes™
or “fails” the test. Other tests are conducted simply to collect data to develop training and
operations manuals. For these tests, there is no “pass” or “fail” criteria but simply a need to
ensure enough data are collected to properly characterize the system. Regardless of test purpose,
there will always be some residual uncertainty after the test due to errors associated with the
instrumentation and the equations used to transform measurements into parameters of interest; in
addition, the phenomenon being measured may not result from a deterministic process.

We demonstrate some of the issues in allocating DoD T&E resources with a simple
- example. Assume that two tests must be performed to determine whether or not to buy a system
and one test must be performed to characterize the system performance so we can write the
operator’s manual; we denote these Ty, T2, and T5. Test planning personnel have proposed three
alternatives for each test with various sample sizes, measurement precision and accuracy, and
costs. These test options are summarized in Table 1. If we have $6.5M available, then there is
no issue; we can afford the most expensive option for each test. However, what if only $3.7M is

available? Is it better to do Ty, Tz,, and T3y or to do T, Ts, and Ts;?



Table 1. Notional DoD T&E Portfolio

Test Test Options Cost ($K)
T (decision) Ty, 500
T, 1000
T3 1500
| T {(decision) T 700
T2 1200
Ty 1800
T3 (characterize) Ty 2000
Tan 2400
Tas 3200

Decision analysis techniques may help with this situation, but most program decisions are
not based on a single piece of information; in many cases, several pieces of information are
assembled from multiple tests to determine whether or not to buy a system, and often the data
from one test are used to make multiple decisions regarding whether or not to fix something, or
to place a note in an operator manual and so forth. In addition, although possible, it is very
difficult to place dqllar values or military utilities on the potential outcomes of many tests. We
believe a better way to allocate test resources is to use a more direct measure of test value.

This research seeks to solve the problem of allocating resources for a test program in a
way that optimizes the value of the tests. This research is not about usiﬁg the data that have Been
collected to make decisions, but instead is about how to collect optimum sets of test data given
constrained resources (we consider cost as the only constraint). Given the purpose of DoD T&E,
we believe the optimum test is one that produces the maximum uncertainty reduction associated
with various measurements used to the characterize the system and make decisions.

1. REVIEW OF THE LITERATURE
A. Test and Evaluation Planning and Analysis Technigues
Many approaches are used to determine test strategies that optimize the data collected for an

individual DoD test. Statistical design of experiments (DOE) approaches and other traditional
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approaches (such as hypothesis testing) are common (for example, see [6]); however, these
approaches will not work in all situations. Most developmental tests are “analytic” studies
(based on a small number of pre-production units) versus the “enumerative” studies required by
traditional statistical approaches [7]. In many cases, no statistical DOE approach can be found
that results in an adequate statistical model of a system because many of the assumptions of
statistical DOE are not valid in engineering experiments [8]. Criticisms of null hypothesis
significance testing are abundant in the literature; see [9] for an excellent summary of these
criticisms. To overcome some of these problems, Bayesian approaches have been suggested
[10]. along with other non-traditional methodologies, such as integer programming [1].

| The concept of using uncertainty reduction as a measure of value has been applied to
product development activities [11]; however, with the exception of a prioritization scheme
proposed by Hess and Valerdi [5], none of the techniques described in the literature explicitly
account for reducing uncertainty as a test objective. Some techniques do take uncertainty into
account indirectly (for example, confidence and power calculations for a statistical DOE) but
none use uncertainty reduction as a direct measure of test quality or value. In addition, the focus
of most planning techniques is on optimizing individual tests without regard for other tests
competing for the same resources. Wong [12] proposed a decision analysis approach to
managing a test portfolio using a value structure that allocated test resources based on subsystem
performance uncertainty and sensitivity, but this does not solve the problem of testing the system
as a coherent whole. Thomke and Bell [13] developed a model for the optimum number of
sequential tests during product development, but the formulation seems best suited for software
development and small systems that can be designed, assembled, and reworked quickly when

design flaws are found versus complex systems such as modern combat aircraft.



Various portfolio optimization techniques and value measures have been applied to
research and development or investment problems other than testing. For example, Joshi and
Lambert [14] used an entropy measure (among others) to ensure equitable (instead of just
efficient} allocation of transportation projects within a geographical region. They also
introduced the idea of using a network to depict project allocation; this idea could be useful in
test planning, since the system being tested can normally be depicted in a schematic diagram that
resembles a network. Although the concept of equitable allocation of tests has merit in a multi-
stakeholder environment, the concept is best applied with a baseline value measure. Greiner, et
al. [15] used an Analytic Hierarchy Process (AHP) to provide weights for optimizing an
investment portfolio; an advantage to AHP is that it can incorporate both subjective and
objective value measures. Although these frameworks and concepts developed for optimizing
portfolios of projects may be extended to test portfolios, none of the techniques found in the
literature can be applied directly due to the difference in the optimization problem (the need to
conduct all tests) and the lack of an explicit value measure for tests.

B. Characterization of Technical Uncertainty

Although there are many types of uncertainty associated with a large DoD acquisition program
(technical, stakeholder, political, operational, event, safety, cost, and schedule) the focus of our
research is on technical uncertainty, since that is the primafy type of uncertainty reduced by a
test. Uncertainty as used by the DoD T&E community 1s generally described by the statistics
and measurement standards literature as consisting of aleatory, epistemic, and ambiguity
components (for example, see [16], [17], and [18]. Aleatory uncertainty is the unknowable
uncertainty that will always exist (hence, the other terms for it, random or precision) while

epistemic uncertainty is knowable uncertainty that can be reduced by learning more about a



system (hence, the other terms for it, systematic or bias). Although ambiguity is often discussed
in the literature as a separate form of uncertainty, it is in fact really epistemic uncertainty —
uncertainty related to lack of knowledge. Therefore, we consider ambiguity as epistemic
uncertainty instead of treating it as a third component.

If the uncertainty reduction of a test is to be estimated, the sources of the uncertainty
related to the test must be understood. Technical uncertainty arises primarily from two closely
related sources: information and measurement; for example, measurements may be used directly,
or more commonly, measurements may be transformed through models and other processes into
information [17]. Speciftc sources of technical uncertainty include input and output
variables| 19]; measurement processes {17}; and uncertainties related to modeling, such as model
parameter estimates and model structure selection when more than one model is available [207].

Once technical uncertainty sources are understood, there must be a means to estimate the
uncertainty. A wide variety of both statistical and subjective techniques for characterizing and
estimating uncertainty are available (for example, see [16], [17], and [21]) indicating that there is
no single “best” approach to characterizing uncertainty. As an example, although variance
reduction may be a useful measure of uncertainty reduction for some tests, variance reduction is
not the purpose of all testing. Some tests are conducted specifically to canse system failure;
other tests are conducted to fneasure a specific parameter and compare the estimated value to a-

| spectfication or the value produced by another system; and so on.

Information theory may provide a consistent measure of uncertainty based on an
important information uncertainty measure known as Shannon’s Information Entropy [22].
Although information theory originally studied the theoretical aspects of communication

applications, such as data compression, information theory techniques and the use of entropy as a



metric now have wider application (for example, see {231, [24] [25], [26] and [27]). Information
theory is not generally concerned with how a measurement is made, but instead with
characterizing the quantity and quality of the information obtained. Shannon’s Information
Entropy depends only on the underlying probability distribution function of the information
(which can be estimated prior to a test or from the test data after the test).
C. Literature Review Summary
Although the primary purpose of DoD test and evaluation is to reduce uncertainty and risk,
uncertainty quantification and uncertainty reduction are not currently explicitly included in test
planning processes. Most test planning processes also focus only on optimizing individual tests
versus allocating test resources to optimize the value of a portfolio of tests. Past attempts at
using resource allocation techniques have failed due to the lack of a common and easily obtained
measure of the value of a test. Our research seeks to overcome these problems by defining the
value of a test as its ability to reduce the uncertainty of the data obtained, regardless of how the
data will be used. Shannon’s Inforrﬁation Entropy is proposed as the basis for the value
measurement since it can be applied to uncertainty reduction across a broad spectrum of tests.
IV. EVALUATING UNCERTAINTY REDUCTION FOR DOD T&E PROGRAMS

The next two sub-sections present a planning methodology and technical uncertainty

framework for resource allocation based on estimated uncertainty reduction. The final sub-
_section describes our selection of Shannon’s Information Entropy as the value measure basis.

A. Planning Framework
The planning framework used for this research was adapted from [28]. The first step is to define
test objectives for each test within the required portfolio of test points. Step 2 is to identify 2-3

alternative test options for each test. More than three options may be developed, but the effort to



do so must be weighed against the benefit. Three test options will usually be sufficient - a
“high-end” option expected to maximize uncertainty reduction, a “low-end” option expected to
provide minimal uncertainty reduction, and a “mid-range” option.

During Step 3, the problem is further decomposed and the portfolio cost (or other)
constraint 1s determined. The heart of the planning then lies in estimating the technical
uncertainty reduction for each test option in the portfolio (discussed further in Sub-Sections 3.2
and 3.3). At the end of Step 3, the problem is ready for resource allocation. All tests must be
conducted, so the technique used must select one test option for each test; i.e., unlike a portfolio
of stocks, an entire test cannot be eliminated simply because it does not provide as much value as
others. The test portfolio optimal resource allocation is a “multiple-choice knapsack problem”
for a single constraint [29] or a “multiple-choice multidimensional knapsack problem™ [30} if

there is more than one constraint. The general multiple-choice knapsack problem is [29]:

m
m&nz Z vk_kaj

k=1 jeNy (1)
T
Z Z ij Tk}‘v =h
k=1 JeNy (2)

Z Tk}:]. .25::}_,...}7?1
Jely, (3)

Tyj = 0,integer  jelNpk=1,.,m ()
where the multiple-choice classes N, (the test options) are mutually exclusive, vi; > 0, ¢y > 0,
JeNe k=1,...,m, and 5> 0. In the context of the test portfolio problem, 'Tkj represents the
™ option for the k™ test, ¥ks represents the value of the i option for the k" test, Ces represents

the cost of the j™ option for the k™ test, and b is the cost constraint. Due to constraint (4), we will
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assume none of the tests overlaps with another (i.e., no test points are conducted simultaneously;
this is a reasonable assumption for many tests). In addition, equation (1) will be maximized
instead of minimized (to maximize test value) and the constraint in equation (2) will be less than
or equal to (instead of greater than or equal to} the cost constraint b of the total portfolio.

In Step 4, resource allocation is conducted; this can be done either by enumerating all
possible portfolios if the number of options is small or by using an optimization algorithm, such
as that provided by [29], if the portfolio is large. Sensitivity analysis is conducted in step 5 if
desired and then further analysis is conducted in step 6 if needed.

B. Technical Uncertainty Framework

The framework used to describe the technical uncertainty for each test option was derived from
the literature review and is depicted in Table 2. The framework provides a common reference
point for discussing technical uncertainty within the context of a T&E program.

Table 2. Technical Uncertainty Framework Used for Research

Unknowable Uncertainty Knowable Uncertainty

(Ambiguity)
Essential Elements of Uncertainty:
Components of Uncertainty | Aleatory | Epistemic
Sources of Uncertainty Measurement(input/output), model structure, model

selection, prediction error, inference uncertainty
Application to Test and Evaluation:

Test Goal Reduce Uncertainty Characterize and Reduce
Uncertainty

Type of Model Available Physics-based None or limited
Empirical

Characterization of Uncertainty:

Uncertainty Reduction Model Updating and Using: | Model Building:
Using test data to reduce or | Using data to butld model
estimate uncertainty and and estimate uncertainty
validate/update model

Uncertainty Depiction Probability Distribution/Summary Statistics

(not an exhaustive list) Conhidence, Prediction or Tolerance Intervals

Credible Interval (Bayesian)
Akaike Information Criterion

11



Deviance Information Criterion
Test Value/Uncertainty Measures based on Shannon’s Information Entropy
Estimation

Starting from the top of the table, test planners should first determine the nature and
sources of the uncertainty that exist for each test in the portfolio. The dominant category of
uncertainty surrounding a particular system aspect, the expected sources of uncertainty, and the
type of model(s) available, will drive test goals which in turn provide the linkage to how
uncertainty will be characterized, estimated, and reduced. When the uncertainty is mostly
aleatory, usually a model is already available and the primary purpose of the test is to use test
data and one or more models to reduce uncertainty; in other words, we are “model using” [18].
The model is used to make test predictions, establish initial uncertainty, and plan the test; the
model is then updated with test data and used to make inferences. However, when the
uncertainty is predominantly epistemic, there often is no model, so the test purpose is to both
characterize and reduce uncertainty; in other words, the data are used for both “model building”
[18] and “model using.” In this case, a subjective estimate of uncertainty may be established
prior to the test, test data will be collected to build one or more models, and inferences are then
derived from the model(s). Finally, the uncertainty of test results must be depicted. The choice
of technique should be based on test objectives, the analysis techniques used, and decision maker
preferences; Table 1 suggests some possibilities. We now turn to the last part of the framework,
using Shannon’s Information Entropy as a basis for estimating uncertainties.

C. Shannon’s Information Uncertainty as a Basis for Measuring Test Value
We selected Shannon’s Information Entropy to estimate uncertainty and uncertainty reduction
for several reasons. First, as seen from the literature review, there is some precedent for doing

so. Second, entropy is easy to calculate for a given probability distribution, can achieve both
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posttive and negative values [25], and provides values for different probability distributions in a
common set of units. Finally, Shannon’s Information Entropy meets the desirable properties for
an uncertainty measurement {concavity and attaining global maximum at the uniform

distribution) [27]. Figure 1 illustrates these properties for a Bernoulli random variable.

0:35 v T

‘0.3 ¢

D25t
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Figure 1. Shannon’s Information Entropy for a Bernoulli Random Variable (adapted from Cover
and Thomas (2006))

Shannon’s Information Entropy is defined for the case of a discrete random variable as:

HO = — ) podlogp(x) o

and for the case of a continuous random variable as:

B = — fg FEIogf(x) dx ©

The entropy has a closed form solution for many probability distributions [31]; for the

case of a normal distribution, the closed form is:

= %Eug (2:11352) )

Another easily calculated entropy is for the Bernoulli variable depicted in Figure 2:
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HG) = —p-logpd— {1 —p) - logli —p) (8)
We found that equations (5), (7), and (8) are useful for computing uncertainties for a wide
variety of test applications, Sb there is usually no need for complicated calculations. In all cases,
the units of the entropy are defined by the base of the logarithm used; a base of 2 results in units
of bits (used commonly for communication theory) and a base of ¢ results in units of nats [26].
Base ¢ (nats) will be used for this research for consistency, but the choice of units is entirely
érbitrary as long as all uncertainty estimates in the portfolio use the same base.

V. CASE STUDY: THE U-100 UPGRADE PROGRAM

We now apply the proposed methodology to a notional but realistic aircraft (the U-100) upgrade
program. Although the U-100 is notional, the data sets are actual military aircraft flight test data
sets obtained from the literature or from technical reports in the public domain ({321, [10], [33],
[34], and [35]). We also extend the results to a simulated large test portfolio and compare the
results of both portfolios to portfolios selected using subject matter experts.
A. Overall Scenario
Several modifications were made to the U-100 that must be tested: upgraded brakes, installation
of a radar warning receiver (RWR), upgraded fire control radar, and the addition of an air-to-
ground munitions capability. In addition, the operators desire better data on aircraft performance
during a condition known as an aerodynamic stall to use to develop a new training syllabus.
B. Application of Planning Process and Technical Uncertainty Framework
Five individual tests in the portfolio are required. The full methodology for one test (the brakes
upgrade) is. provided in detail here; specific test objectives, uncertainty characterization, and test
alternatives for the others can be found in [36].

U-100 Brake Upgrade
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The U-100 brakes were upgraded to reduce the landing roll so the aircraft can be operated on
shorter runways. The landing roll consists of the phase from touchdown on the runway until the
aircraft comes to a complete stop {with brakes applied). Two physics-based models were used to
develop initial landing roll distance estimates (see the Appendix for model details).

The overall test objective is to obtain quantitative landing roll daté so new landing
prediction charts can be incorporated into the U-100 flight manual. Two sub-objectives include:
(1) determining the best braking technique (moderate, heavy, or maximum), and (2} determining
the maximum landing distance using the best braking technique with a confidence level of (.99.
In updating the physics-based models, the engineers are primarily interested in updating the
estimated values for the braking coefficients since they have the highest uncertainty (compared
to other parameters such as thrust and drag) and cannot be measured directly during testing; they
must be estimated using the physics-based models.

Baseline Uncertainty Estimate

The uncertainty for this test consists of both aleatory and epistemic components. Aleatory
uncertainty arises from variability in the landing and braking process and in the precision of the
instrumentation available to measure touchdown airspeed, aircraft weight, and roll-out distances.
Epistemic uncertainty arises from the use of the two different models since it cannot be
determined prior to the test which model will make the better predictions.

A Monte Carlo simulation (9 different test configurations at 10,000 runs each) was used
to estimate the baseline uncertainty by using the models to predict landing roll distances under
various test conditions (see the Appendix for details). Errors in the landing roll-out data were
assumed to be normally distributed, so the entropy was computed using equation (7). Table 3

summarizes the Monte-Carlo simulation results for each model (pooled estimates only). Since
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Model 2 has significantly more uncertainty associated with it, the Model 1 uncertainty will be
used as the baseline since it will result in a more conservative estimate of uncertainty reduction.

Table 3. Initial U-100 Janding uncertainty estimate using Monte-Carlo simulation

Model 1 Model 1 Model 2 Model 2
o (feet) entropy, h o (feet) entropy, h
(nats) (nats)
644.2 7.85 924.2 8.21

Initial Test Options
Four test options were initially proposed: Option 1 was a subject matter expert (SME)-designed
test (18 test points) using handheld instrumentation to measure the landing roll with a standard
deviation of +/- 200 feet; Option 2 was the same test using precise instrumentation with a
standard deviation of +/- 50 feet; Option 3 was a full-factorial test (81 points) using handheld
instrumentation, and Option 4 was the same full-factorial test using the more precise
instrumentation. See Montgomery (2007) for information on full-factorial and other test designs.
Additional Monte Carlo simulations were used to evaluate the desired and expected
uncertainty reduction from the tests. First, to establish the desired uncertainty reduction, a
Monte Carlo analysis examined the landing distance uncertainty as a function of the possible
uncertainty in the braking coefficients. To simplify the analysis, only the full-flap landing
condition was evaluated. The average standard deviations from both models (estimated using
10000 simulation runs for each braking coefficient uncertainty) are depicted in Figure 2. At +/-
10 percent braking uncertainty, the heavy and maximum braking landing roll uncertainty is about
300 feet; this is about half the initial uncertainty, so a 10 percent braking uncertainty appears to

be a reasonable uncertainty goal for the proposed tests.
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Pre-Test Landing Roll Uncertainty Predictions
{Monte-Carlo Resulis)

— Mod Braking
---- Heavy Braking
........ pax Braking

Landing Roll Predicted Standard Deviation ()
200 400
| |

Braking Coefficient Uncertainty (Percent)

Figure 2. Results of pre-test Monte-Carlo analysis based on braking coefficient uncertainty

The next Monte-Carlo analyses evaluated the ability of each test option to achieve the 10
percent uncertainty desired in the braking coefficients. In addition to the 50 foot and 200 foot
test option measurement uncertainties, and the 650 foot baseline uncertainty, a 400 foot landing
distance uncertainty was used to capture potential non-linearities. Postulated test results were
varied from 90 to 120 percent of the baseline predictions (average predictions from both models)
in 5 percent increments. For each landing distance measurement uncertainty, 200 sets of
postulated test data were randomly generated and then a maximum likelihood estimation (MLE)
technique was used to generate estimated braking coefficients and associated standard errors;
model results were averaged for simplicity of depiction.

Test results for moderate and heavy braking, smoothed as contour plots, are shown in
Figure 3, with the SME test on the left and the full-factorial test on the right (maximum braking
results were similar to heavy so are not included). The x-axis depicts the expected landing

distance measurement standard deviation. The y-axis depicts the postulated test results (90-120
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Figure 3. Monte-Carlo results comparing SME and full-factorial test designs
percent). The contours depict the predicted standard deviation of the braking coefficient as a
percent of the initial braking coefficient; black or near black test results predict braking
coefficient uncertainties of about 5 percent or less, gray results predict about 10 percent (the
desired uncertainty reduction), and white results predict 20 percent or greater. Overall, the
darker the plot, the better the test (the ideal test would have no uncertainty and the entire plot
would be black). The SME test, with fewer test points, predicts similar braking coefficient
uncertainties compared to the full-factorial test. This is likely due to the non-linear physical
models and the MLE technique used. Since the simulation results indicate there is little value in

accomplishing the additional full-factonial test points, we eliminate it from further consideration.
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Final Test Options

Based on the stmulation results in Figure 3, the 200 foot instrumentation will achieve a worst-
case braking coefficient uncertainty of 12 percent, which translates to a landing distance
uncertainty of about 350 feet (Figure 2, heavy braking), and the 50 foot instrumentation will
achieve a worst-case braking coefficient uncertainty of 5 percent, which translates to a landing
distance uncertainty of about 200 feet (Figure 2, heavy braking). The uncertainty reduction
predictions and estimated cost for each landing test are summarized in Table 4.

Table 4. Summary of initial and predicted uncertainties for landing test options

Predicted Predicted
Estimated | Estimated | uncertainty - relative
std dev entropy reduction uncertainty Cost
Test (ft) (nats) {nats) reduction Estimate
Initial 650 7.91 N/A N/A 0
Option 1 (T1y) 350 7.28 0.63 0.0796 $18,000
Option 2 (T12) 200 6.72 1.19 0.1504 $28,000

Test Portfolio Optimal Resource Allocation

The test portfolio resulting from the five individual tests is summarized in Table 5. The measure
used for test value is the uncertainty reduction relative to the initial uncertainty for each test.
While the absolute uncertainty could be used, the relative reduction makes it easier to compare
the uncertainty reduction across tests as well as within tests.

To simplify the analysis, we demonstrate the methodology with one resource allocation
decision maker with one objective, so the test value was used directly. It is straightforward to
extend the case study to multiple decision makers and objectives using techniques such as multi-
attribute utility theory or AHP. Using full enumeration, the value and cost of each test
~ combination were computed, and the test combination that generated the highest value was

selected for a given cost constraint.
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Table 5, U-100 Test Portfotio

Test Value:
Estimated Estimated Uncertainty
Initial Uncertainty Reduction Cost
Uncertainty Test Reduction Relative to Estimate
Test Uncertainty Basis {nats) Option (nats) Initial ($K)
Brakes Reducing variance of 7.01 Ty 0.63 0.0796 18.0
. landing roll T)a 1.19 0.1504 28.0
Radar Warning | Subject matter expert 16.735 Ts 8.303 0.496 10.0
Receiver (SME) estimate from Ts 8.880 0.531 18.0
test confidence and T 14.627 0.874 50.0
power
Fire Control SME estimate based 0.693 Ts 0.318 0.459 26.0
Radar on p(correct test Tss 0.402 0.580 36.0
result) based on Ty 0.422 0.609 48.0
predicted pass rates
Stall Reducing variance in 2.335 Ts; 0.511 0219 432
Performance measured stall angle Ty 1.609 0.689 71.6
of attack
Munitions Reducing variance in 6.14 T3 1.03 0.168 16.0
Performance | 95% confidence Ts, 1.24 0.202 240
interval of circular Tss 1.38 0.225 32.0
error 90 (CE90) '

Figu.re 4 shows a plot of overall portfolio value versus cost for all 108 test combinations.
As expected, portfolios that cost more generally have more test value; however, for any given
cost, there is often a wide range in the portfolio value provided by the test combinations at or
near that cost. For example, at a cost of 160, test values range from around 1.65 to about 2.05.
Table 6 presents a summary of the optimum (highest value) test combinations selected for cost
constraints ranging from $150K to $230K in increments of $10K. To make the table easier to
read, the uncertainty reduction listed in the table is a SME judgment of the overall uncertainty
reduc;[ion provided by the test with respect to operational impact, based on the relative
uncertainty reduction, with L=low, M=medium, H=high, and VH=very high. For example, the
lower cost landing test option is judged to provide a medium amount of uncertainty reduction
because the landing ro}l distance will likely be known within 350 feet at the end of the test,
which is operationally acceptable; however, the higher cost test option is judged to have a high

amount of uncertainty reduction (distance known to about 200 feet), which is even better from an
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operational perspective. Although the more expensive tests provide the highest overall
uncertainty reduction, several mid-priced options also provide good results. For example, with a

cost constraint of $180K, the uncertainty reduction is high for three tests (brakes, radar, and stall)

and medium for two tests (RWR and Munitions).

Test Combination Value
20 22 24

18

Test Portfolio Optimization Results
Using Uncertainty Reduction as Measure of Test Value

T T T T
120 340 160 186 200 220

Tes! Combiration Cost (3K)

Figure 4. Test Value Versus Cost for All Possible Test Combinations

Table 6. Notional Portfolio Technical Uncertainty Reduction Summary

Brakes

Constraint | Actual Test RWR | Radar | Stall | Munitions
($K) Cost | Portfolio | (Ty) | (T2) | (T3) | (Ty) (Ts)
Value
150 149.6 1.627 M M M H L
160 159.6 2.048 M M H H L
170 169.6 2.118 H M H H L
180 177.6 2.152 H M H H M
190 189.6 2.304 M H M H M
200 199.6 2.425 M H H H M
210 209.6 2.495 H H H H M
220 217.6 2.518 H H H H H
230 229.6 2.547 H H VH H H

Key: L/M/H/VH represent uncertainty expected from test option selected; L=low, M=medium,

H=high, VH=very high
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Amnother way of looking at the uncertainty reduction is to consider the slope of the cost
versus uncertainty reduction (see Figure 5). Although the slope of the line varies somewhat,
there are two significant “jumps” that occur around $170K and $210K. These regions of high or
vertical slope indicate that little or no test value is gained for addiﬁonal investment. So even if
the full $230K is available for testing, the decision maker may want to select the $210K test
combination and use the resources saved for risk reduction in other areas.

Test Portfolio Optimization Results
Optimum Test Combination for Cost Constraint

/

i

S
e

/

Cost Congtraint ($K)
200 220
| |

180
13

180
!

T ¥ ¥ T T F
20 21 22 23 24 25

Optimum Test Combinalion Value

Figure 5. Optimum Test Combination Value Versus Cost Constraint
Scalability
Because large DoD test programs can include dozens or even hundreds of individual
tests, this section now demonstrates that the method described above can scale to a large
portfolio. Since it was not possible to develop a large test portfolio using a real test program,
ﬁve iarge test portfolios .with 50 tests each were randomly generated using test values between
0.5 and 0.95 and test costs between $5K and $100K (both with uniform distributions); three test |

options were generated for 22 of the tests and two test options were generated for 28 of the tests.
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Figure 6 depicts the results of optimizing the five large portfolios. Each portfolio/
constraint combination took less than one second to optimize using a branch-and-bound
optimization technique implemented in commercial software. In addition, a global solution was
produced in all cases. The optimization methodology was also very efficient in the use of all

available resources; the average slack (unused resources) across all five portfolios was 3.1K.

-1 — Ponfio
- Porifolio 2
------- Porifolio 3
""" Porifolio 4
~== Paoiffolip 3

40

35

30

Total Porifolio Value
25

20

15

T T T T T i
1500 2000 2500 3600 3500 400¢

Total Portfelio Cost
Figure 6. Efficient frontiers for large portfolios
Comparison to Portfolios Selected by Subject Matter Experts (SMEs)

We also compared the results of the 0ptimiz¢d portfolios to portfolios that might have
reasonably been generated by SMEs (current DoD planning process). Since it was not possible
to have actual SMESs select tests, the results were simulated. For the small U-100 case, the SME
selected portfolio was simulated by simply using the tests that were actually conducted in the
Iiterature. Since the radar test was not actually conducted; three sets of results were examined,
one for each potential radar test. Another issue was that the actual stall test conducted had twice

as many points as the highest cost test that was in our analysis. This was handled by adjusting
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the test cost for the highest cost test to $93.2K to account for the additional test points; the
uncertainty reduction value was left the same, since it was based on the use of the on-board
instrumentation, not the number of test points. SME selection results are shown in Tables 7 and
8. Table 7 shows the value and cost of the three SME portfolios given the different radar tests.
Table 8 compares the SME results to the optimized portfolio that would have been sclected at the
same cost of the corresponding SME-selected portfolio. The value of the optimized portfolio
ranges from 4.3 to 8.4% higher than the SME-selected portfolio for the same cost. Although this
is a.small difference, the percentage difference is highest for the lower-valued portfolio,
suggesting that optimization is more important in a resourced constrained environment (unless

the resources are so low that only the lowest valued tests will be chosen).

Table 7 SME U 100 portfoho selecnons

©iFest | Cost Sl Nalae | Cost ol Value
Brakes 0.080 18.0 0.080
RWR 0.874 50.0 0.874
Radar 0.580 48.0 0.609
Stall . . 0.689 93.2 0.689
Munitions 0.168 16.0 0.168 16.0 0.168
Total 2.270 213.2 2.391 225.2 2.420
Table 8. Companson of SME and 0pt1m1zed U-100 portfolios
[ S R _;Radar Med = " Radar: -

TR . Loy - SR :-'-.'ngh

Cost 203.2 213.2 225.2

Optimized Value 2.461 2.495 2.524

SME Value 2.270 2.391 2.420

% Difference Optimized to +8.4% +4.3% +4.3%

SME Value

The SME-selected tests for one large portfolio (portfolio 1) used two methods: (1)

randomly selecting test options for the 50 tests using a uniform distribution (so expensive, high-
value tests were as likely to be selected as inexpensive, low-value tests); and (2) allocating
resources to sub-portfolios and then optimizing the individual sub-portfolios. The first method
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was not intended to imply that SMEs randomly select tests, but given that they are normally
trying to trade off higher priority tests for lower priority tests, in a large portfolio the result is
likely to resemble that derived by a random process when completed. The second method
resembles the way tests are often allocated in the primary author’s experience: a sub-portfolio of
tests in each discipline is allocated resources based on past experience and then SMEs try to
optimize each sub-portfolio. Since SMEs are more likely to get closer to the true optimum test in
a small portfolio, for this method each sub-portfolio was optimized as a knapsack problem.

Two portfolio selections were run for the first method, and a single portfolio was run for
the sub-portfolio approach. $2500K was allocated across 10 sub-portfolios with 5 tests each.
The sub-portfolio allocation was close to the mean cost for test options within that sub-portfolio.

The results of the SME-selected portfolios are summarized in Table 9. For the portfolios
selected using Method 1, the cost constraint was assumed to be $2486K, since that was the mean
value between the lowest-cost portfolio ($1493.4) and the highest-cost portfolio ($3477.7) so
was a reasonable “constraint” for the simulated SMEs to obtain. The results show that the
optimized portfolios outperform the simulated SME portfolios. For Method 1, the optimized
portfolio has about 20% more value than the SME-selected portfolios. In addition, the SME
porifolios are inefficient in resource allocation, both with slack values around $50K. SME
Method 2 fares somewhat better, due to the sub-portfolios being optimized separately. However,
the overall optimized portfolio is still nearly 7 percent higher in value; in addition, the slack in
the SME portfolio is quite high, over $100K.

Weightéd Portfolio
It is straightforward to extend the case study to multiple decision makers and objectives

using utility theory. For demonstration purposes, rather than develop a set of utility functions for
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postulated decision makers, a simple set of weights was used to simulate a utility function. For
the simulation, it was assumed that the landing and RWR tests are more important than the other

Table 9. Comparison of SME and optlmlzed large portfolios
- Optimized Portfolio -

SME Method 1A Cost 2435.7 2484 .9
- Slack | FEma

Value 24.80 30.41
GO DI )G
SME Method 1B Cost .
SoSlack | 5590
Value
% D1ff R B
SME Method 2 Cost
S Slack 1
Value
'ff:o---lef i o
Note: % Diff' is % difference of optlmlzed portfoho value relatlve to SME value

tests, since they are related to the safety of the aircraft. Therefore, these two tests were each
given a weighting twice that of the other tests. The results are presented in Table 10 for a cost
constraint of $180K. Note that portfolio value has been replaced with portfolio utility, which is
somewhat higher than the baseline value since two of the values are now multiplied by 2.

Table 10 Small portfolio results with weighted values, $180K constramt

' | Actual. | Portfolio: | Brakes RWR | Radar | Sta fions.
Portfoho CCost | Utility | (T1) | (To) | (Ta)

Baseline | 177.6 2.152 H M H

Weighted | 173.2 3.015 H H H

Key: L/IM/H/VH represent uncertainty expected from test option selected; L—iow M=medium,

H=high, VH=very high

At $180K, weighting does not change the brake test option selected because the high
option was also selected for the baseline. On the other hand, weighting the RWR test by a factor
of two selects the highest test option. As expected, the weighting comes at a cost to two of the
remaining tests, which have lower-valued test options selected. However, the weights ensure

that stakeholder preferences are addressed, which may be missed if only the raw values are used.
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VI. DISCUSSION AND CONCLUSIONS
Uncertainty reduction, measured using Shannon’s Information Entropy, appears to provide a
robust measure of test value. In particular, the technique proposed is each to apply and the
optimized portfolios can produce between 5 and 20% more total value than SME-selected
portfolios. Although this work is very preliminary, it clearly demonstrates the usefulness of
uncertainty reduction in a wide variety of test planning situations.

First, as demonstrated in the brake test, using uncertainty reduction as an explicit test
objective makes the value of the test options clear so less valuable test options can be eliminated.
Eliminating options early in the planning process allows additional resources to be devoted to
improving remaining options or in evaluating other options. In addition, the uncertainty contour
- charts are intuitive and make it clear to even a non-technical decision maker which tests are more
valuable than others (or if they are about the same, as in the case study). In any case, decisions
to include or eliminate particular test design options from the test portfolio can be defended
when uncertainty reduction is used as a basis for comparison.

Second, using uncertainty reduction to measure test value is just the starting point for
other potential analyses. We used raw values, but these values can easily be weighted, used as
an input to one or more utility functions for use in a decision analysis framework, or used as
inputs to other processes. In particular, the network and equity concepts proposed by Joshi aﬁd
Lambert [14] and the use of a hybrid AHP and portfolio optimization process suggested by
Creiner, et al. [15] should be examined as potential extensions to the research.

Third, the uncertainty reduction value can be applied to other activities (such as
simulation or laboratory testing) prior to live testing to determine the resources that should be

devoted to those activities. The uncertainty reduction value can be used to look for natural
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“break points” and determine when additiohal investment in simulation or laboratory testing has
diminishing returns compared to live testing.

Some questions arise in using uncertainty reduction to measure test vatue. First, how
much effort should be invested in computiﬁg uncertainty? Not all test programs will have the
time, funding, or expertise to conduct a robust uncertainty analysis. However, we suggest that
even simple SME estimates to provide a comparative measure of uncertainty reduction across
tests can be useful to a decision maker, whether or not those estimates are used to optimize
resource allocations. Another issue is what to do if uncertainty goes up at the end of a test? If
this occurs, it is likely because of a poor initial uncertainty estimate or improperly conducted
test. In either case, an increase in uncertainty at the end of a test should cause a re-examination
of all assumptions and prior test results, If the test is correct, then the decision maker must
determine if another test is needed, using the test results as the new uncertainty baseline.

Considerable research is still needed. Although the technique was useful for the
portfolios examined, additional research is needed to apply the technique to other types of tests
and test domains (for example, land, sea, space, and cyber systems). Additional research is also
needed regarding the processes used to develop utility functions for the wide variety of
stakeholders on a typical DoD) acquisition program.

APPENDIX

The first model used in the analysis of braking is described as:

5,6 = —((WV td"20g(T — D — (W — L)y

bl

9)

where
Sg = landing ground roll distance, in ft

W = aircraft weight at touchdown, in pounds (10,800 1bs maximum)
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Vi = touchdown airspeed, in ft/sec
g = gravity constant = 32.17405 ft/sec’

T = idle thrust = 100 lbs, from prior testing

1
2 VR
D = drag, in pounds = 2° VeaSCo

p = sea level density = 23.77 x 10 slug/ft*
S = reference wing area = 170 ft?

Cp = coefficient of drag, dimensionless, depends on flap setting (see Table 8)

1
L = lift, in pounds = 2

PVaSCy

CL = coefficient of lift, dimensionless, depends on flap setting (see Table 8)

1 = braking friction coefficient, dimensionless, depends on braking level, to be
determined from test (see Table 9 for initial estimates)

Assumptions: dry runway, no slope runway, no wind, data corrected to sea level

The second model uses the same parameters and assumptions as (9) and is described as:

_ W il T — uW
gpSECp —pCy) 1T — yW - 2pV2,S(Cp — puCy) :,

Sa

(10)

Table 9. U-100 lift and drag coefficients (determined from previous testing)

Flap Setting {percent) CL Cp
45 0.2840 0.0600
60 0.2844 0.0725
100 0.2848 0.097

Table 10. Initial estimates for braking coefficients

Braking no
Moderate 0.14
Heavy _ 0.20
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| Maximum | 0.22 |

All uncertainties used normal distributions with mean zero. Touchdown speed standard

deviation was 5 ft/sec. All other standard deviations were based on percentages of the baseline

parameter values: 1% for weight, lift, and drag; 10% for thrust; and 20% for braking coefficients.
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