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Abstract
Model-based systems engincering (MBSE) approaches are based on a paradigm shift from
document-centric engineering to model-based engineering. Although MBSE methods are
intended to apply across the entire system life cycle, one area that has not received much
attention to date is the role of test and evaluation. Test and evaluation activities provide
information that reduces the uncertainty about system performance, effectiveness, and suitability.
This uncertainty reduction becomes particularly important within the context of defense systems,
which can cost billions of dollars. This paper describes a methodology that uses an MBSE
framework and Monte Carlo simulation to define uncertainty reduction goals for test planners to
use in developing test strategies and detailed test designs for evaluating technical performance
parameters. As tests are completed, physical models can be updated with test data and additional
analyses conducted with combat models to determine if the system meets user requirements.
The methodology 1s demonstrated through a simple case study involving a series of tests to
predict the landing performance of an aircraft.
1. Introduction
Similar to the way computer-aided design and manufacturing (CAD/CAM) techniques have

revolutionized the design and manufacturing of complex components, model-based systems



engineering (MBSE) approaches have the potential to vastly improve the systems engineering of
modern, complex systems characterized by the integration of hardware, software, and human
interaction. MBSE is “the formalized application of modeling to support systems requirements,
design, analysis, verification and validation activities beginning in the conceptual design phase
and continuing throughout development and later life cycle phases” [Crisp, 2007:15]. In
particular, MBSE uses digital models to describe and represent all aspects of a system; the digital
models largely replace current documents such as system specifications and drawings. Potential
benefits from using MBSE approaches include enhanced communication among developers and
stakeholders; reduced development risk due to continuous evaluation of requirements and design
verification; improved system quality due to rigorous requirements traceability and testability;
mcreased productivity due to the ability to quickly evaluate the impact of changing requirements;
and enhanced knowledge transfer due to the standardization of design information [Friedenthal,
et al.,, 2009]. These benefits are similar to the benefits realized by CAD/CAM techniques. For
- example, CAD techniques alone are capable of producing higher-quality draWings than hand-
produced drawings, but unless coupled with CAM techniques, those drawings still must be
interpreted by the technicians who build the final product. Producing a digital model of a part
using a standard language allows automated setup and manufacturing that is less error-prone and
more precise. Similarly, one can produce drawings of a system model, but the digital model
produced by MBSE will be less error-prone and more precise.

In general, MBSE can improve test processes in several ways. First, enhanced
communication can help test planners to better understand the system they are testing. Second,
improved requirements definition and enhanced requirements traceability and testability can help

test planners by providing clear test objectives with measurable outcomes. Clear test objectives



make it easier to design tests that provide the right information that can be related directly back
to the original system requirements. Finally, MBSE can help to define an optimum test program
by determining the information that is needed in each step of the design and test processes.

This research proposes that MBSE approaéhes can also help determine desired
uncertainty goals for information to be gained from testing and to track that information and
uncertainty reduction as testing proceeds. Uncertainty reduction can then become an explicit test
objective and can be used as a measure of test merit for decision makers to compare test options
during test planning. Appropriate test options can be selected based on the estimated level of
uncertainty reduction and the available resources (e.g., funding and schedule) instead of relying
on subjective test planning techniques.

Section 2 provides a brief review of the existing literature regarding MBSE, current test
planning processes used by the US Department of Defense (DoD)), and technical uncertainty
quantification. Section 3 discusses how testing and uncertainty reduction relates to the MBSE
paradigm. Section 4 describes the proposed methodology for using technical performance
measures and Monte Carlo simulation to determine uncertainty reduction goals for a test or series
of tests. Section 5 applies the methodology to a case study to evaluate the landing performance
for a notional aircraft. Section 6 provides conclusions and suggestions for futﬁre research.

2. Literature Review

2.1 Model-Based Systems Engineering

A model is “a physical, mathematical, or otherwise logical representation of a system, entity,
phenomenon, or process” [DoD, 2010:187]. Although models have been used by engineers and
scientists for hundreds of years, the concept of model-based systems engineering was first

formalized by Wymore [1993]. This text provides a rigorous mathematical and formal treatment



of MBSE and introduces the concept of testable system and component representations; these
representations are models tested throughout the design process until the real system is available
for testing. Ultimately the system test requirements must be applied to the real system.
However, the text provides no practical guidanée as to how to actually develop the system test
requirements during the design process and how to relate them to actual testing.

With MBSE, the output of the systems engineering design process is not a set of
documents but instead a system model, and the focus of subsequent systems engineering
activities is on updating and refining the model as the system design matures [Friedenthal, et al.,
2009]. The system model is a coherent set of models that together include all the information
required to build, test, and maintain the system; it can also be integrated with more detailed
engincering-level models and simulations to analyze and evaluate dynamic system performance
[Friedenthal, et al., 2009]. Model-based metrics are used throughout the development process to
monitor all aspects of the system design; in particular, various properties such as perfonh'ance
and reliability can be evaluated at any point in the process [Friedenthal, et al., 2009]. Figure 1,
adapted from Friedenthal, et al. [2009] depicts the overall MBSE concept, with the system
engineering model in the center. Karban, et al. [2008] point out that the current SysML
parametric diagrams depicted in Figure 1 cannot be evaluated directly and must be augmented
with other models for such activities as developing error budgets and evaluating the system.

In general, using model based approaches to design systems tends to move verification
and validation activities (including test and evaluation) to an earlier point in the systems
engineering process than occurs with traditional approaches [Piaszczyk, 2011]. MBSE can also
be used with DoD) Architecture Framework (DoDAF) products to generate requirements,

beginning with top-level operational views and ending with detailed physical requirements



[Piaszczyk, 2011]. Although Piaszczyk [2011] mentions that DoDAF views can support testing
and verification activities, no details are provided on how this might be done.

Kraft [2010] discusses a proposed framework for developing a “campaign of tests” based
on MBSE concepts; the framework integrates modeling, simulation, ground testing, and flight
testing with the goal to reduce late discovery of defects. Although he discusses a “variance
reduction strategy” as tests progress from wind tunnels to flight testing, his focus is on reducing
late defect discovery versus uncertainty reduction traced back to user requirements.

Ramos, et al. [2012] provide a good overview of MBSE and summarize various MBSE
approaches in use today by describing the development approach {e.g., Vee or spiral), the flow of
major tasks, the modeling language used (e.g., SysML or UML), and the software tools used.
Although this is a good description of MBSE concepts, the focus is primarily on the left side of
the “Vee” with no discussion of verification and validation activities; however, they do discuss
the need to identify MBSE best practices, which could presumably include those activities.

Table I summarizes the MBSE-related concepts found in the literature review, along with
a comparison to the CAD/CAM analogy. In general, MBSE requires a method for executing the
systems engineering process, a set of system views, a language for developing the views, and
tools that are compatible with the process, views and language used. This table is not intended to
be exhaustive, but to provide some examples of how the various MBSE concepts can be
implemented in practice. For example, a US designer of a defense system might choose to use
the traditional Vee process and build the various models using SysML to create whatever
DoDAF views are needed to fully document the system using the Enterprise Architect tool. A

designer in the UK might do the same thing, but use MoDAF views and the CATIA. tool.



Despite the fact that MBSE approaches are intended to apply to the entire life cycle of a
system, a search of recent MBSE literature found that most applications currently focus on
developing unambiguous requirements, consistent and coherent system designs, requirements
traceability, and initial system analysis, with little focus on evaluation of the “as built” system.
For example, Foster [2011] discussed the application of MBSE to a heavy lift launch vehicle
system and fouﬁd the MBSE approach improved communication among the geographically
distributed design team and provided “unbroken traceability” through increasing levels of
detailed designs; however, there was no explicit mention of test or validation activities.
Although Bernard [2012] briefly mentions using MBSE models to verify and assess architectures
for complex avionics systems, the focus of the paper is on fully integrating requirements
engineering into an MBSE approach by transforming ambiguous natural language requirements
into "well-formed" requirements. Lopes, et al. [2011] applied MBSE methodologies to the
design of a "Smart Grid" energy enterprise; their focus was on understanding the Smart Grid
{from a system of systems perspective, with no discussion on verification, validation and testing.
Van Ruijven [2012] develops information models for the process, physical, and work breakdown
aspects of complex capital facilities such as ships and infrastructure; additional models can be
further developed for all systems engineering domains (-e.g., verification and test) but are not
illustrated. Nottage and Corns {2012] briefly mention incorporating verification and test
documentation into the model of a satellite, but do not elaborate further on how such
documentation is developed or used during the system life cycle. Russell [2012] discusses using
different MBSE views to depict requirements traceability and assist with making decisions
regarding design options during the design process; although he mentions using test cases to

trace and verify requirements, he does not discuss post-design validation and test activities.



Cornford, et al. [2006] bring together management aspects of a system (such as cost and
schedule) and the system design using an MBSE fra‘mework to make cost, schedule, and
performance trades. Although they discuss how desired capabilities and standards (e.g.,
components and processes) can influence design and programmatic decisions (e.g., how much
testing to do), their focus is on initial tradespace decisions versus detailed test planning. Soyler
and Sala-Diakanda [2010] used MBSE to document complex and interconnected disaster
management system designs to evaluate them for emergent behaviors due to interactions, but
there is no mention of testing actual sy:";tems. Spangelo, et al. [2012] describe using an MBSE
approach to develop models of a nanosateliite that can be used by design teams to optimize
nanosatellite designs and evaluate them within a mission context using external models.
Measures of effectiveness are included in the system model, but there is no discussion on using
these measures for test planning. Karban, et al. [2008] discuss using SysML to define
dependencies between requirements and tests, and they demonstrate the use of test cases for
requirements traceability, but do not discuss using this information for detailed test planning,.
Two instances were found where MBSE approaches were used to develop systems and
infrastructure used to support testing. Song, et al. [2007] describe using MBSE to develop an
information management system for tracking the performance tests of an express train system,
and McVittie, et al. [2012] used an MBSE approach to design the systems of systems
infrastructure to be used for testing a space vehicle. However, neither of these approaches was
mtegrated with an MBSE approach used for designing the system itself. |
2.2 Current US DoD Test Planning Processes
There are two general approaches to planning the testing of systems. The first approach assumes

that models of the system attributes of interest are available, and that we are conducting the test



primarily to collect additional information to validate or improve those models and use them to
make predictions about the overall system performance. In this case, according to Schrader, et
al. [1993], we are “model using”. This type of test is often used for those aspects of a system
which have well-defined physical processes; e.g., aircraft and missile performance testing
typically rely heavily on this sort of testing. In the second approach, no detailed model is
available for the desired system attributes, and the purpose of the test is to collect data that can
be used to build some sort of empirical model. In this case, we are “model building” [Schrader,
etal., 1993]. This type of test is common during operational testing, and is also useful when
phenomenon are not well understood; e.g., integrated mission systems testing may use “model
building” since it is difficult to develop a detailed model of all possible system interactions.
‘Regardless of whether a test planner is “model using” or “model building”, many current
US DoD test planning processes rely on subject matter experts who use judgment and experience
from .testing similar systems. Explieit statements of uncertainty and statistical technigues are not
routinely used for test planning or for estimating system performance [Cohen, et al., 1998].
However, in the last two decades, statistical approaches have been increasingly advocated for
providing additional test discipline [Gilmore, 2010]. As a result, statistical design of
experiments (DOE) and other traditional approaches, such as hypothesis testing, are now
common [Kidman, et al., 2011]. However, these techniques will not work for all types of testing
[Deaconu and Coleman, 2000]. To overcome some of these problems, many non-traditional
approaches have been tried, including Bayesian techniques [Dezfuli, et al., 2009] and Monte
Carlo simulation [Hurwitz, et al., 2011], as well as a variety of operations research techniques
[Clarke and Gardner, 1995]. However, these techniques are applied primé.rily to increase test

efficiency, with uncertainty reduction being a secondary goal, if it is a goal at all.



2.3 Uncertainty Quantification

There are many types of uncertainty associated with large defense acquisition programs; e.g.,
technical (performance, effectiveness, and suitability related to user needs), stakeholder,
political, operational, event, safety, cost, and schedule. The focus of our research is on technical
uncertainty, since that is the primary type of uncertainty directly reduced by a test (although test
results can of course indirectly reduce other types of uncertainty).

A good overview on uncertainty is available in Morgan and Henrion [1990]. Although
primarily written for policy analysis, this book discusses general‘ sources of uncertainty (e.g.,
statistical variation, linguistic imprecision, and approximations), methods for dealing with
experts to elicit subjective judgments, and an excellent compendium of ways to represent
uncertainty using probability distributions and graphical techniques. Morgan and Henrion
[1990] also provide three reasons for discussing the uncertainty surrounding an issue: (1) an
explicit uncertainty discussion forces planners to think more carefully about their issue, (2)
forcing experts to estimate their own uncertainty helps to- determine how much uncertainty really
exists, and (3) understanding the uncertainty associated with a previous analysis helps us to
decide whether or not we should use that analysis as a starting point for our own problem.

The literature on uncertainty quantification describes three general categories of
uncertainty: aleatory uncertainty, epistemic uncertainty [Parry, 1996], and ambiguity [Schrader,
at al., 1993]. However, since engineers usually use the terms random error or precision for
aleatory unce.rtainty and systematic error or bias for epistemic uncertainty [Coleman and Steele,
2009; BIPM, 2008b], we will use the terms random and systematic. Random uncertainty is the
uncertainty that always exists with a specific system or phenomenon and can often be reduced,

but never eliminated completely. For example, in firing a weapon at a target, it is never possible



to hit the-exact center of the target repeatedly due to minor variations in the overall aiming and
firing process. This random uncertainty will manifest itself by target holes that are randomly
spaced around the target; the spacing of these target holes can be modeled using a probability
distribution. On the other hand, systematic uncertainty is uncertainty that can in theory be
eliminated by learning more about a system or phenomenon. In our weapon firing example, if
the sight of our weapon is misaligned, our holes will tend to appear more in one part of the target
than the other (still randomly distributed due to the random uncertainty); this additional bias
error 1s not usually modeled using a probability distribution. In theory, we can eliminate this
systematic uncertainty by realigning the stght or aiming our weapon to account for it; however,
in practice, we are likely to always have some systematic uncertainty remain. Ambiguity is often
treated as a separate form of uncertainty in the literature; however, since ambiguity is also related
to lack of system knowledge, we will treat it as systematic uncertainty for this research.

If the uncertainty of a test is to be estimated, the sources of that uncertainty must be
understood and techniques must exist for quantifying the uncertainty. Sources of technical
uncertainfy include input and output variables [Wendelberger, 2010] and uncertainties related to
modeling, such as model parameter estimates and model structure selection when more than one
model is available [Burnham and Anderson, 2004]. A wide variety of statistical and subjective
techniques for characterizing and estimating uncertainty are available [BIPM, 2008a; Burnham
and Anderson, 2004; Coleman and Steele, 2009; Parry, 1996]. The wide variety of techniques
found in the literature indicates there is not a single “best” technique for characterizing and

quantifying uncertainty; the approach selected must be the best one for the problem at hand.
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2.4 Literature Review Summary
Most of the current MBSE literature is focused on describing the overall vision for MBSE and
shortfalls that must be overcome to make MBSE a reality. Although there is some literature on
MBSE applications, it is primarily focused on the front end of the design process; to date, there
has been little insight on integrating verification, validation, and test processes into the MBSE
framework. Current test planning processes focus primarily on test efficiency at the expense of
recognizing the need for an effectiveness-based metric for test planning. Uncertainty
quantification and reduction, which can be conducted throughout the system life cycle using the
MBSE framework, is proposed as a metric for verification, validation, and test activities.
3. Using Test Results to Enhance MBSE Paradigm
3.1 Relationship Between MBSE and Test and Evaluation

The use of modeling and simulation during test and evaluation is, of course, nothing new.
The concept of “model-test-model” has existed for decades, but in practice has been executed
unevenly across most large defense programs. Even on programs with robust simulation and test
activities, there is often very little feedback between the two activities. For example, simulation
products producéd early in the acquisition process are often discarded once a new acquisiﬁon
phase begins. In addition., many simulations are viewed as simply risk-reduction activities prior
' to testing and are not subsequently updated with test data. One of the major reasons for this is
that there is no coherent framework that ties simulation and testing together. The MBSE
approach could be the framework needed. In particular, we believe that MBSE can bé used to
improve the definition of test requirements, develop better test plans, streamline the test results
feedback loop, and even help to define optimum test strategies for programs with significant

concurrence. Each of these is discussed below.
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MBSE can help define test requirements early in the design process, and to refine those
test requirements as increasing levels of detail are added to a system design. For example,
DoDAF uses a series of views to describe different system aspects. The Operational View (OV)
depicts top-level activities and interactions among the major nodes in the overall system. In the
MBSE paradigm, the OV is developed first and is then used to derive operational requirements.
Three layers of Systems Views (§Vs) are then derived from the OV: functional, system, and
physical. The SVs are then used to derive the requirements for each system layer. Once the
functional views are built, functional performance requirements can be derived for each function
in the system. These functional performanc.e requirements begin to provide the basis for a test
program to verify that those requirements have been met. Although it may not be possible to
specify exactly how something will be tested at this point, initial uncertainty analysis can begin
to take place. An overall uncertainty budget can be allocated to each individual functional
performance requirement based on how variation in each functional requirement impacts the
overall system performance and effectiveness. Although this type of analysis could be
conducted without an MBSE approach, in the MBSE approach the uncertainty measure can more
casily become an additional performance requirement and tracked as such. These functional
performance uncertainty requirements can then be used as a starting poiﬁt for deriving
uncertainty requirements for the detailed system level; the system level uncertainty requirements |
then become the starting point for the physical level uncertainty requirements. Test planners can
often begin to establish test requirements basAed on the functional requiremeﬁts. For example, if
a functional requirement must be tested to a particular level of uncertainty, higher fidelity
instrumentation may be needed. Thué, test planners can begin development or procurement

activities to meet those requirements. Once the physical implementation of the system is known
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in detail, detailed test requirements and procedures can be developed based on the uncertainty
requirements associated with the technical performance measures (physical and system level
parameters for developmental testing and the functional level parameters for operational testing).
Technical performance measures will be discussed in more detail in Section 3.2.1.

Another test activity that could benefit from MBSE is the development of detailed test
plans. The current test planning process relies heavily on technical experts who interpret
operational requirements documents and higher-level test planning documents to develop
detailed test objectives that are then translated into detailed test designs. In addition to being
error-prone, the process also requires the test planners to have the most current versions of the
documents. An MBSE approach would ensure that test requirements and their associated
uncertainty reduction goals would be maintained in the digital system model that all personnel
would have easy access to. In addition, this model can be easily updated once actual test results
are available so that test planners always have the most recent test results available to them.

MBSE also holds the promise of streamlining the test results feedback loop and
improving the chances that the right system was built by feeding back test results into
operational analysis models as early as possible to ensure that the system is meeting user
requirements in addition to complying with specifications. Data collected from both
developmental and operational tests can be used to update detailed engineering models and
higher level system models; additional analysis with combat models can then be conducted to
ensure that the correct system has, in fact, been built. The verification and validation process
then becomes model-driven, instead of focusing primarily on interpretation of test results.

Finally, since many defense programs have significant concurrency associated with them

(i.e., developmental testing often begins before the system is completely designed and built) the
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ideas on uncertainty and concurrent development presented by Loch and Terwiesch [1998] may
have some application. An MBSE approach could be used to determine the ideal rate of
uncertainty reduction and test programs could be designed to achieve that uncertainty reduction
rate. Of course, it may also be discovered that the required rate of uncertainty reduction is not
achievable with available test resources; decision makers could then use that information to
determine whether to accept the risk, enhance the test program, or to reduce the concurrency.
Of course, all of the activities described in the previous paragraphs can be conducted
without using an MBSE approach. The difference in the MBSE approach is that the system
description and the various requirements (including the uncertainty requirements) become part of
a system model that is captured using a standard modeling language, such as SysML or UML.
As noted from the literature review, this system model is then no longer a document, but is a
living digital model that can be more easily maintained and updated when a design changes or
new information becomes available. For example, if the test planners determine that it is not
possible with existing technology to economically measure a parameter within the desired level
of uncertainty, a program manager might have three choices. One choice would be to invest in
technology to improve the ability of the test to reach the desired level of uncertainty. Another
choice would be to relax the uncertainty requirement for that parameter. However, before that
could be done, it might be necessary to tighten the uncertainty requirement for another
parameter. A third choice might be to increase the 'required parameter perfofmance so the
uncertainty has less impact. The MBSE approach makes it easy to conduct these tradeoff
decisions and update the system model to maintain requirements consistency. This also means
test planners will always be confident that they are conducting their detailed test planning based

on the most current test requirements that include uncertainty as an explicit test parameter.
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3.2 Using MBSE as an Uncertainty Reduction Framework for Test and Evaluation

As discussed, we believe MBSE approaches can use a system model, along with operational
combat analysis models, to establish uncertainty budgets for various system measures. These
uhcertainty budgets can then be used to establish uncertainty goals for one or more test events.
3.2.1 Technical Performance Measures

Technical performance measurement is described as "the set of measurement activities used to
provide the supplier and/or acquirer insight into progress in the definition and development of
the technical solution, ongoing assessment of the associated risks and issues, and the likelihood
of meeting the critical objectives of the acquirer” [Roedler and Jones, 2005:6]. From this
description, we see that technical performance measures (TPMs): (1) have a time element
associated with them (“progress” and “ongoing assessment™), (2) are focused on technical risk
impacts on meeting critical objectives, and (3) have a probability (“likelihood™) associated with
them. These concepts are illustrated in Figure 2. Figure 2a is adapted from Roedler and Jones
[2005] and is the typical way TPMs are depicted. A threshold value based on the TPM mean is
given, along with a planned profile to reach (and possibly exceed) the threshold value; tolerance
bands that decrease with time are also depicted. Howe\.rer, in reality, these tolerance bands do
not decrease in a continuous fashion as shown in Figure 2a; instead, they usually decrease in
discontinuous jumps as various uncertainty-reducing activities are applied, as depicted in Figure
2b. Figure Zb shows three notional uncertainty-reducing activities: the final design selected from
the design process, a lab test, and a flight test. Eaéh of these activities results in a discontinuous
narrowing of the tolerance bands; uncertainty is not reduced further until the next uncertainty-

reducing activity. Although the continuous tolerance bands in Figure 2a may be useful as a

15



starting point, we believe that the discontinuous bands depicted in Figure 2b provide more
information regarding the expected outcomes of uncertainty-reduction activities.

However, even Figure 2b can be improved. The tolerance bands as drawn do not include
any explicit depiction of probability (likelihood) associated with them. As depicted in Figure 2,
all outcomes on either side of the planned profiles within the tolerance baﬁds are equally likely (a
uniform probability distribution) when this may not be the case. Streit, et al. [2008] define a
hierarchy of visualization approaches that can apply here. The first layer is an absolute value or
an estimate that is presented with no uncertainty; the second layer is an esﬁmate that 1s presented
with bounds that have no probability attached to them; and the third layer is an estimate that is
depicted with” bounds” (versus bands) that have a probability, membership, or belief associated
with them [Streit, et al., 2008]. In Figures 2a and 2b, the first layer is represented by the planned
profile line with no associated tolerances and the second layer is represented by the tolerance
bands. Figure 3 suggests a way of incorporating the third layer, by making the probabilities
associated with the tolerance bounds explicit. In this notional example, the uncertainty is
represented as a uniform distribution through the lab test, and then becoming a normal
distribution, so the likeliest values are closer to the planned profile.

One last éuggestion we make regarding TPMs is that the threshold value should not
always be based on the mean parameter value. Many times, an upper or lower percentile value
may be more appropriate. For example, in evaluating small, high-precision air-to-surface
weapons, the 90™ percentile value of the impact error is often more important than the mean
value. The small weapon reduces the damage incurred outside the immediate target area, but the
Weapon. can still cause unintended damage if it misses the target. The 90" percentile value is the

radius at which 90% of the weapons are expected to impact, so it provides a more conservative
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estimate (much larger potential damage radius) than the mean when the consequences of
unintended damage are high (e.g., when targeting a building near a school or place of worship).
3.2.2 Linking TPM Uncertainty to MBSE

The overall MBSE process to develop explicit uncertainty reduction goals for various test events
1s depicted in Figure 4, which is derived from Figure 1 (some elements have been deleted for
clarity). First, in the upper left corner of Figure 4, requirements and derived requirements should
be stated in terms of uncertainties whenever possible to facilitate determining if a requirement
has been met. If a requirement is stated in absolute terms, even one failure or shortfall during a
test can mean that the requirement has not been met; this is usually not what the system user had
in mind {Shaikh and Moore, 1997]. Using a statistical definition of a requirement helps define
the test for determining if the requirement has been met (e.g., by allowing an appropriate sample
size to be calculated) [Shaikh and Moore, 1997].

Second, analytic models and simulations (upper right in Figure 4), with input from
postulated system designs, should be used to allocate initial uncertainty budgets for technical
performance measures to meet overall requirements (lower left in Figure 4). An uncertainty
budget is defined as a "statement of a measurement uncertainty, of the components of that
measurement uncertainty, and of their calculation and contribution" [BIPM, 2008¢:27]. Once the
individual uncertainty budget components are understood, the design engineers can work with
the test engineers to establish reasonable uncertainty reduction goals for specific test events
(TPM chart in the middle of Figure 4); These uncertainty reduction goals, along with the
parameter requirements, then form the basis for determining sample sizes, required
instrumentation accuracy, test point placement, test conditions, and other planning considerations

(Test Methods and Models box in Figure 4).
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Once a test is conducted, a new estimate of a technical parameter will be available, along
with a new estimate of the uncertainty bounds (including the probability distribution). This
information can be used to update the overall system model, conduct additional analytic studies
if required, and notify decision makers if there are potential risks.

4. Methodology for Estimating and Using Uncertainty Reduction Goals

4.1 Estimating Uncertainties

The process for estimating uncertainty reduction goals uses procedures described in the Guide to
the Expression of Uncertainty Measurement (GUM) [BIPM, 2008b] and a supplement on Monte
Carlo simulation [BIPM, 2008c]. The procedures are not repeated in detail here, but involve
using either a Taylor series expansion of the measurement model (equation) or a Monte Carlo
simulation of the measurement model to examine the sensitivity that individual compenents of
the measurement have on the resulting measurement. The discussion here is focused on the
random uncertainty associated with a particular model form; however, the techniques to
incorporate systematic uncertainties are easily accomplished and documented in the references.

Although some measurements are taken directly, it is more common for a measurement Y
to be derived through a relationship to several input variables (the measurement model):

Y =y, Xz X0 (H

The estimated standard deviation of Y can be found by estimating the standard deviation
of each of the inputs ; and combining them. For the case of independent, uncorrelated inputs,
the equation for combining the individual uncertainties is:

uE () = Z(3f ) wi ;)

i=1 X

@
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The GUM includes additional equations for combining uncertainties in the case of correlated
inputs. The Taylor series expansion method (also called the GUF, for GUM Framev&ork) works
well when the measurement model is relatively simple, but for more complicated models, the
Monte Carlo method (MCM) may be more easily applied. One caution in using the MCM
method 1s that it may result in poor estimates of individual uncertainty components in the
presence of non-linearities; however, this is easily detected by determining if the root sum square
of the individual component uncertainty contributions is equal to the square root of the
uncertainty when all components are varied together [Solaguren-Beascoa Fernandez, 2011].

4.2 Using Uncertainty Reduction Goals for Test Planning
4.2.1 Using MCM to Estimate Uncertainties

Our methodology uses MCM analysis to estimate the initial uncertainty of a particular
'TPM based on the uncertainties associated with the components of the TPM measurement
model. MCM is a simple and intuitive technique for analyzing the impact of the uncertainty of a
parameter on a system-level performance, effectiveness, or suitability measure; however, any
suitable uncertainty estimation technique could be used.

We assume that MBSE methods have already been applied to the requirements analysis
and system decomposition depicted in Figure 4 and that the goal TPM uncertainty has been
determined as part of these processes. Using this goal uncertainty, a series of test events can be
planned for reducing the various uncertainty components that will result in the goal uncertainty.
The steps are summarized as follows:

Step 1. Define the measuremeﬁt model(s) (e.g., determine a physics-based model that

relates the input variables to the TPM).
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Step 2. Determine the initial uncertainties associated with each input variable (this will
be discussed further below).

Step 3. Conduct a MCM using the initial uncertainties determined from step 2 using: (a)
the individual uncertainties alone to determine the impact of each individual uncertainty on the
TPM and (b) all uncertainties together to determine the combined impact of each individual
uncertainty on the TPM. If the root sum square from (a) is not close to the square root of (b),
then investigate for potential non-linear interactions to take into account during test planning.

Step 4. Determine appropriate activities to reduce uncertainty from the initial uncertainty
to the desired uncertainty; for example, simulations, laboratory tests, or flight tests, as
appropriate. Based on available instrumentation, environmental factors, and analysis techniques,
determine appropriate uncertainty reduction géals for each uncertainty reduction activity.

Step 5. Use uncertainty reduction goals for detailed test planning.

Step 6. After each test is completed, determine new TPM estimates and adjust future test
activities if necessary to meet uncertainty reduction goals.

Step 7. When final tests are completed, use the final TPM estimate (including
uncertainty) to update operations analysis models and determine if the system is operationally
effective and suitable, as appropriate.

4.2.2 Estimating Initial Uncertainti.es

| Initial uncertainties can be estimated in many ways; for example, subject matter experts or
previbus test data. We believe the uncertainties associated with many TPMs can be represented
using either uniform or normal probability distributions, although any probability distribution
can be used (e.g., triangular). Given the state of knowledge associated with most variables early

in the design process, the uniform distribution may provide the best uncertainty estimate, as it
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results in a higher level of uncertainty than other distributions for approximately the same range
of values. Once more information is available in the form of actual test data, it may be
reasonable in some cases to assurne that the uncertainty takes on a normal (or other) distribution;
however, this will not always be the case. For example, conservative or risk-averse estimates
may want (0 always use uniform distributions.

Figure 5 depicts a normal random variable with mean 0 and standard deviation of 1
compared to a uniform distribution from -3 to 3 with mean 0 (standard deviation of 1.732).
Nearly 99.9% of the normal distribution is captured from -3 to 3, so the two distributions contain
nearly the same set of possible values for the vartable. However, the normal distribution is much
more concentrated about the mean.

We also note that Figure 5 is not meant to imply that all uncertainties should be
represented as two-sided or with equal sides if two sides are used. Many uncertainties may have
restricted values (e.g., for variables that cannot go below a certain range) or may have
uncertainties that are much greater on one side of the mean than the other. Fortunately, with.
modern statistical and simulation packages, unequal or one-sided uncertainties are easy to model.
5. Landing Roll Distance Case Study
We now present a case study that applies the proposed methodology to a single TPM, an aircraft
landing roll distance. This TPM was selected for several reasons: it is usually an important
aircraft performance measure, it demonstrates all of the concepts previously discussed regarding
TPMS, and open-source data regarding landing distance were available in the literature. For this
case study; we assume that a military aircraft is being developed that must operate from a set of
runways in remote locations around the world. The takeoff and landing distances are critical to

the operation of the aircraft, as the runways in remote locations may be relatively short. The
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landing roll consists of the phase from runway touchdown until the aircraft comes to a complete
stop (with brakes applied). The landing roll distance is used, along with expected takeoff
distance, to determine the runway length required for safe aircraft operations.
5.1 Overall MBSE Approach
The overall MBSE approach involves using a tool to capture an aircraft system-level model that
is then further decomposed to reach the analysis of the landing roll distance. The models
depicted here are simplifications of the models that would be used in a real application, but they
are representative of the type of information that would be captured in the overall system model.
In addition, since the focus of our research is test and evaluation, this example assumes that the
up-front work on overall system requirements and initial design has been completed.

Figure 6 depicts the overall aircraft requirements, with the runway length requirement of
8000 feet (for clarity, this 1s the only requirement shown). Figure 7 shows the air vehicle
domain, broken down into the air vehicle, the physical environment, one or two pilots, and the
baggage to be carried. Several requirements are captured here. The maximum weight of the
aircraft (the design goal) is 10800 lbs, along with the current uncertainty (+15%, since design
weights tend to increase instead of decrease). The current estimate of the aircraft reference area
(S)is also showﬁ (170 ft). And finally, the total distance (SgTotal) allocated to the takeoff roll
and landing roll together is depicted (7000 ft). We assume the operations analysis has
determined that the landing roll distance (sea level, no wind, no slope runway conditions) should
have 2 99" percentile value of less than 4000 feet. This allows the aircraft to accelerate to
takeoff speed (assumed 3000 feet allocated for takeoft), abort the takeoff, and stop within the
4000 feet allocated for the landing roll, leaving 1000 feet as an additional margin for error.

Other blocks capture runway and atmosphere information that impact the landing distance.
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Figure 8 depicts the top-level hierarchy of the air vehicle structure. For our purposes, we
will focus on the aerodynamic characteristics of the airffame, the engine thrust, and the braking
capability of the main landing gear.

5.1 Using MCM to Estimate Uncertainties

Step 1 — Measurement Model

The landing roll distance is a function of the runway elevation, runway slope, air temperature,
aircraft touchdown speed, weight, flap configuration (which impacts the lift and drag), thrust,
and the braking friction coefficient. To simplify the calculations, we will also only examine one

braking level (heavy) and one flap setting (100 percent, or full flaps). The model used is:

w [ T—uW

- In
gpSp - 1) T —uyw -1pvz,S(Cp - uCy)

Se=
G)

where
W = aircraft weight at touchdown, in pounds

Vg = touchdown airspeed, in ft/sec

g = gravity constant = 32.17405 ft/sec’

T = idle thrust = 100 Ibs, from prior testing

p = sea level density = 23.77 x 10™ slug/ft’

S = reference wing area = 170 ft°

Cp = coefficient of drag, dimensionless, depends upon flap setting

Cy = coefficient of lift, dimensionless, depends upon flap setting

v = braking friction coefficient, diménsionless, depends upon braking level
- Step 2 -~ Initial Uncertainty Estimates

Table II summarizes the distributions used in the uncertainty analysis (random uncertainty only).
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Step 3 -- Uncertainty Contributions to Total Uncertainty

Table IIT presents the results of the Monte Carlo simulation (500000 runs). The square root of
the sum of the squares of the uncertainties of the individual components is very close (within
about 2 percent) to the square root of the overzﬂl uncertainty, so no further initial analysis is
needed.

Step 4 -- Uncertainty Reduction Event Planning

From the Monte Carlo simulation runs, the initial 99" percentile landing distance is 4821 feet,
which is well above the desired value of 4000 feet. From Table 11, the two largest contributors to
uncertainty arc the touchdown speed and the braking coefficient; the drag coefficient also has
somewhat of an impact. Touchdown speed variability is an inherent part of the landing proceéss,
so uncertainty reduction events should focus on reducing the uncertainty estimates surrounding
the braking and drag coefficients. The designers aﬁd test planners note that wind tunnel testing
is already planned to better estimate the coefficients of lift and drag; these estimates are expected
to be very accurate, with a normal distribution having a standard deviation within 1% of the
mean. Since this testing is already scheduled, it becomes the first uncertainty reduction event.

- The design engineers believe that a laboratory test can be conducted on the brakes which will
reduce the standard deviation of the braking coefficient to about 20% of the mean value (still
with a uniform distribution). Based on existing instrumentation, the test planners believe the best
uncertainty reduction they can obtain for the braking coefficients after live ianding tests is a
standard deviation of about 7% of the mean values (normal distribution). Figure 9 captures the
analysis information, including current parameters, initial uncertainties, and goal uncertainties. -

The resulis of Monte Carlo simulation (500000 runs) of each uncertainty reduction event

are summarized in Figure 10 and Table IV. These values are also used to develop the TPM chart
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in Figure 11. Of particular note is that the 99" percentile value after the landing test, at 4167
feet, is somewhat above the goal of 4000 feet. These values are updated in the parametrics part
of the systems engiﬁeering model and used by the operations analysts to determine the impact on
overall system effectiveness. The results of the analysis indicate that the aircraft should still be
able to operate from about 97% of the required airfields. At this point, the program manager and
the user could decide to make design modifications; however, for the purposes of our use case
we will assume they decide to instead closely monitor subsequent test results.
Stebs 5-7 -- Actual Test Results

The estimates for each parameter and associated uncertainties after the actual tests are
shown in Table V, and the results of Monte Carlo simulations after each test with the updated
parameter/uncertainty estimates are shown in Table VI. Of particular note is that after the wind
tunnel test the uncertainty has actually increased! What happened? Inspection of Table V shows
that the drag coefficient mean decreased significantly, from 0.12 to 0.097, accounting for the
uncertainty increase. The original analysis did not include systematic uncertainties, so there was
no accounting for this bias error found in the test. This result points out the need for planners to
consider both random and systematic errors during uncertainty analysis, but also shows that tests
do not always result in a decrease in uncertainty. This can be due to a poorly executed test, poor
initial assumptions, or an incomplete uncertainty model, among other things. If uncertainty goes
up after a test, the test must be carefully examined to determine if there was a problem with the
test; if a problem is found, the test should be conducted again if feasible. If the test team can
determine that the test was designed and executed properly, then the most recent test results can

simply be used to establish a new uncertainty baseline. This may also require adjusting other
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uncertainty reduction activities. The new parameter and uncertainty values can be fed back into
the MBSE framework to examine the impact of the new information.

In our simple example, we assume as a result of additional analysis, a new uncertainty
goal of 5% is now set for the landing tests. The program manager agrees to a cost increase to
install better instrumentation to achievé the new uncertainty goal. After the lab test the
uncertainty and 99" percentile values decrease, and the landing test (with an actual uncertainty of
5%) confirms that the 99" percentile value is well within the desired 4000 feet.

6. Discussion and Future Work

Although MBSE approaches have mﬁch promise for improving existing systems engineering
processes, to date not much attention has been paid regarding the role of test and evaluation. We
presented a methodology that uses a coherent set of MBSE models to define TPM requirements
in terms of probabilities and to establ.ish uncertainty reduction goals for the test process when
possible. As test events conclude, models are updated and used to make new predictions and
possibly revise the uncertainty reduction goals. Test planners and program managers can use the
uncertainty reduction goals to make test design decisions regarding instrumentation, number of
test points, and so on to achieve the desired uncertainty reduction goals.

The modified TPM _tracking charts we p.resent provide a more realistic visual
representation of the actual uncertainty reduction process versus traditional TPM charts. The use
of Monte Carlo simulations makes the uncertainty predictions (means and probability
distributions) easy 1o obtain and visualize. We also emphasize the need to use the appropriate
~ statistical value for the TPM; many times the mean is not the appropriate threshold value.

The research here also demonstrates the need to better account for systematic

uncertainties in the uncertainty budgeting and test planning processes. As we saw, the
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coefficient of drag did not have a large impact on the overall landing distance uncertainty when
only the random uncertainty was considered; however, the systematic error discovered during the
notional wind tunnel test led to an unexpected increase in uncertainty.

Additional work is needed to determine how well the concepts proposed here extend to
other types of testing. We considered only uncertainty reduction as it pertains to TPM variance
reduction, but variance reduction is not always the goal of a test. Sometimes we are simply
trying to characterize a system, or to determine if one system has an impact on another, and so
on. Additional work is also needed to evaluate the scalability of the concepts. The technique
was relatively easy to apply to one TPM for one test, but it may become cost prohibitive to apply
the technique io dozens of parameters and dozens of test events across a complex program.

As a last note, The Object Management Group recently released the “UML Testing
Profile,” a “test modeling language” extension to the UML [OMG, 2012]. Although primarily
intended for software testing, the profile includes concepts such as Test Architecture, Test
Behavior, Test Data, and Time Concepts that could be extended to the testing any type of
system. Future research should also consider incorporating and extending the UML testing
profile into MBSE fnethods and tools.
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Table I. Summary of MBSE Concepts

. Paradigm  Vie ‘Language - Example Tool :
MBSE to create | Vee DoDAF UML Enterprise Architect
system model | OOSEM MoDAF SysML CORE
FEAF FFBD CATIA
IDEFO
Creation of Hand-drawn | Plan & Drafting Drafting kit
manufacturing | CAD/CAM elevation standards CATIA
drawings Isometric | CAD
3-D fanguages
Table II. Initial Uncertainties of Components
T Component .l o Tl ard b e
- {Parameter) - - _Initial Value | - Deviation | Initial Distribution
C. 0.30 (mean) +/-10% of mean Uniform
Cp 0.12 (mean) +/-20% of mean Uniform
Mheavy 0.20 {mean) +/-30% of mean Uniform
w 10800 tbs (minimum) +15% of minimum Uniform
Vig 128 knots {mean) 5 knots Normal
T 100 Ibs 10 Ibs Normal
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Table III. Component Uncertainty Contributions to Total Uncertainty (Monte Carlo Simulation

Results)

‘Contribution {ft)-

" Component

(1) -

Weight (W)

8.9

Thrust (F)

14.5

Co

87.2

G

21.7

th

233.3

Mheavy

500.6

All

573.0

2
2.1

559.8

Table IV. Pre-Test Predictions of Uncertainty Reductions

B ‘Tésfz-Ev';én_fs' 2

Landing Distance |
. Standard = .|

1" Percentile -
. landing -

. Deviation (ft) | Distance (ft) ;:535:51: ._ﬁ':j tance

;99‘;'33f?e_i‘ﬁéériii'ie" ;

Initial

573.0

2457

Wind Tunnel

564.4

2466

Lab

407.4

2615

Landing

309.7

2721

Table V. Component Uncertainties After Test Events

| Post-Wind Tunnel
~ | MeanValue,
Component | Standard Devi
~(Parameter} |

d Deviation,

. and Distribution” |

. Post-Lab Test Mean

" Distribution

| value, Standard |
- Deviation, and - | Stal

G

0.2828, 1%, N

0.2828, 1%, N

Co

0.097, 1%, N

0.097,1%, N

0.097, 1%, N

Hheavy

0.20, +/-30%, U

0.20, +/-20%, U

0.222,5%, N

W

10800 Ibs, +15%, U

10800 |bs, +15%, U

10800 ibs, +15%, U

Vid

128 knots, 5 knots, N

128 knots, 5 knots, N

128 knots, 5 knots, N

T

100 Ibs, 10 ibs, N

100 lbs, 10 lbs, N

100 Ibs, 10 1bs, N

Key to Distributions: N = Normal, U = Uniform
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Table VI. Post-Test Predictions of Landing Roll

T T Percentie | 99" percentie |

A R “landing | “landing | Meal
. Test Events .- Distance {ft) | Distance (ft) | . Distar

Initial 573.0 | 2457 4821

Wind Tunnel 607.2 25259 5004

Lab 438.2 2685 4575

| Landing 248.7 2643 3798
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