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Abstract

In this article we present an overview the state of the art in software reliability. We present some

of the traditional software reliability models as well as recent advances in modeling. In so doing, we

discuss use of hidden Markov models, as well as nonparametric models including mixtures of Dirichlet

processes. Furthermore, we review decision problems in software reliability such as testing strategies

and optimal stopping rules. We discuss computational issues associated with use of the models, their

statistical analyses and development of optimal strategies.

1 Introduction and Overview

Since the publication of the software reliability model of Jelinski and Moranda (1972), software reliability

has gained much attention in the operations research (OR), statistics and computer science communities.

Availability of software reliability data sets by Musa (1979) tremendously helped involving researchers from

OR and statistics in software reliability modeling and analysis.

In this overview, we will focus on two issues that are of interest to statisticians, applied probabilists

and operations researchers in general. These are: (i) how to model and how to describe the changes in

the performance of the software as a result of the modifications made to it during testing; (ii) how to

decide when to terminate the testing/modification process and to release the software. The former involves

stochastic modeling and statistical analysis and is referred to as software reliability modeling whereas the

latter involves decision analysis and optimization and is referred to as optimal stopping problem; see Barlow

and Singpurwalla (1985). As will be discussed in the sequel, the two issues are related and they both require

use of computational methods. There are other issues and problems that are relevant to the above, but they

will not be a part of our coverage. Books by Musa, Iannino and Okumoto (1987) and Singpurwalla and

Wilson (1999) are good references on these for the interested reader.

Our coverage will start with some overview of software reliability where we introduce concepts and

definitions and describe the software failure mechanism. Once this is done we next focus on software reliability
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modeling where we present different classes models such as parametric and nonparametric models. Our review

will include traditional models such as Jelinski and Moranda (1972) model as well as more recent advances

in modeling such as hidden Markov models, mixtures of Dirichlet processes and nonparametric point process

models. One of these recent models will be highlighted in our presentation. In so doing, computational

issues in statistical inference and stochastic modeling will be discussed.

The last part of our review will address the optimal stopping (or optimal release) problem where we

discuss both the earlier approaches as well as more recent advances which are based on decision-theoretic

approaches and Bayesian viewpoint. Computational difficulties that arise in the solution of the decision

problems will be pointed out. Details of one decision model will also be highlighted in our coverage in this

part.

2 Concepts and Definitions

Software reliability is a measure of the quality of a piece of software and is defined as the “probability of

failure-free operation of a computer program in a specified environment for a specified period of time”; see

for example Musa and Okumoto (1984). The specified environment is usually referred to as the operational

profile [Musa (1993)] and the specified time is called the the mission time.

Although they have similar definitions, the causes of software failure are different from those of hardware.

As noted by Singpurwalla and Soyer (1996), whereas hardware reliability tends to decrease with mission time,

software reliability can, in principle, be 100% reliable for any mission time. Failure of software is due to errors

referred to as bugs which are caused by human error in the logic of a software code. This is unlike hardware

failures which are typically caused by material defects, and/or wear, and aging. Singpurwalla and Soyer

(1996) point out that, although every software failure is caused by a bug, not every bug in the program will

lead to a software failure. Thus, as suggested by Jelinski and Moranda (1972) it is important to distinguish

between software bugs and software failures. Such a distinction has motivated models for software failures

rather than software bugs in the literature.

As noted by Singpurwalla and Soyer (1996) in modeling software failures “it is the uncertainty about the

presence, the location and the encounter with a bug that induces randomness.” The most commonly used

random variable used for modeling software reliability pertains to the times between software failures. It is

motivated by the notion that the arrival times, to the software, of the different input types are random. Such

inputs which traverse through their designated paths in the software will produce desired outputs; but those

which do not, due to bugs in the software will produce erroneous outputs. For assessing software reliability,

one observes T1, T2, . . ., Ti, where Ti is the time between the (i − 1)st and the ithsoftware failure. With

this conceptualization, even though the failure of software is not generated stochastically, the detection of

errors is stochastic, and the end result is that there is an underlying random process that governs the failure
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characteristics of software.

Most of the well-known models for assessing software reliability are centered around the interfailure times

T1, T2, . . ., or the point processes that they generate; see Singpurwalla and Wilson (1994). In addition to

being used in reliability monitoring, these models can also be used in determining optimal release time for

software during the development phase; see for example, Singpurwalla (1991), Daid and Wilson (2001) and

Morali and Soyer (2003). As noted by Singpurwalla and Wilson (1994), the software reliability models can

be classified into two categories: those that model the times between successive software failures (Type I

models) and those that model the number of software failures up to a given time (Type II models). In all

these models, time is typically taken to be CPU time.

In the Type I category modeling of Ti’s is often accomplished via a specification of the failure rate of the

Ti’s. More specifically, the failure rate λTi
(t) is specified for all i and this yields different probability models

for Ti’s. These failure rates may be thought of as the rate at which errors are detected in the software.

During the development phase, after each failure, the software is debugged with the hope of discovering

and correcting the bugs. Thus, it is expected that the successive failure rates decrease over time and this

process is referred to as reliability growth; see Sinpurwalla and Soyer (1985) and Erkanli, Mazzuchi and

Soyer (1998). The models that descibe this notion are known as perfect debugging models. Majority of the

earlier models in the literature were based on this assumption. However, it is possible that an attempt to

debug the software may result in introduction of new bugs and therefore may deteriorate the reliability of

the software. Models reflecting this scenario are known as imperfect debugging models; see Ruggeri and

Soyer (2008). The Type II models are point processes generated by the interfailure times and they descibe

the number of failures during a specified time period. More specifically, N(t), number of software failures

during [0, t), is described by a Poisson process with mean value (or cumulative intensity) function Λ(t).

3 Parametric Software Reliability Models

We give an overview of the more traditional Type I and II software reliability models next. It is important

to note that these are parametric models. Nonparametric software reliability models will be discussed in a

later section.

3.1 Modeling Times between Successive Failures

Although the first software reliability model was introduced by Hudson (1967) [see Musa, Iannino and

Okumoto (1987)], the model proposed by Jelinski and Moranda (1972) was the first widely known and used

software model in the literature. The Jelinski and Moranda (JM) model is a bug counting Type I model.

The model assumes that the software initially contains an unknown number of bugs, say N , and after each
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failure one bug is discovered and corrected. The failure rate during the ith stage of testing, that is, failure

rate of Ti is assumed to be constant and proportional to (N − i + 1), number of bugs remaining in the

program. Thus, the JM model is a perfect debugging model where time between failures are conditionally

independent exponentially distributed random variables, that is,

fTi
(t|N, φ) = φ(N − i + 1)e−φ(N−i+1)t (1)

where parameter φ denotes the common contribution of each bug to the failure rate. We denote the

exponential model (1) as (Ti|N,φ) ∼ Exp(φ(N − i + 1)). An alternative shock model interpretation of

the JM model is given by Langberg and Singpurwalla (1985). As shown by Forman and Singpurwalla

(1977), statistical analysis of the JM model via maximum likelihood methods may provide misleading results.

Bayesian analyses of the JM model were considered by Meinhold and Singpurwalla (1983a) and Kuo and

Tang (1995). An extension of the JM model was considered in Goel and Okumoto (1978) who modified the

model as (Ti|N, φ, q) ∼ Exp[φ(N−q(i−1))] where q denotes the probability of fixing a bug. Thus, the model

is capable of reflecting the imperfect debugging scenario where the case of q = 1 represents the JM model.

Other extensions of the JM model include the nonconstant failure rate model of Schick and Wolverton

(1978) where Ti’s were assumed to have a Rayleigh distribution.

Littlewood and Verrall (1973) directly modeled times between software failures by allowing the failure

rate of the software to vary from one stage to another. In so doing, they imposed a stochastically decreasing

ordering on the failure rates of successive stages, citing the fact that it is always the programmer’s intent to

improve the software when correcting an error. More specifically, they assumed that given the failure rate

λi at stage i, Ti is an exponentially distributed random variable, that is,

fTi(t) = λie
−λit, (2)

where λi’s are stochastically decreasing. This was achieved by assuming that λi’s are conditionally indepen-

dent gamma random variables with shape parameter α and scale Ψ(i), where Ψ is a monotonically increasing

function of i. In other words, we have

p(λi| α, Ψ(i)) ∝ λα−1
i e−Ψ(i)λi (3)

implying that E[λi|α, Ψ(i)] = α/Ψ(i) is decreasing in i. We will denote the gamma model (3) as (λi|
α, Ψ(i)) ∼ Gam( α, Ψ(i)). It follows from the above that in the Littlewood-Verrall (LV) model, the reliability

function for Ti is given by the Pareto distribution
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RTi(t|α, Ψ(i)) =

[
Ψ(i)

Ψ(i) + t

]α

. (4)

Littlewood and Verrall (1973) considered the case where Ψ(i) is unknown and use of goodness-of-fit tests

to determine the form of Ψ(i). The authors considered specific cases for Ψ(i) such as Ψ(i) = β0 + β1i and

developed estimates of unknown parameters of Ψ(i) and α.

Mazzuchi and Soyer (1988) introduced a hierarchical Bayes extension of the LV model by pointing out

that the LV model leads us to an empirical Bayes setup in the sense of Morris (1983). They presented a

fully Bayes analysis of the LV model in the sense of the Deely and Lindley (1981) by using a Bayes empirical

Bayes (EB) setup. The hierarchical Bayes setup of Mazzuchi and Soyer (1988) assumes exchangeability of

the failure rates λi’s over the stages. The exchangeability of λi’s was motivated via the argument that it was

often “not possible to assign a pattern to the λi’s.” Thus, the authors considered the λi’s as being generated

from some distribution, more specifically, a gamma density

p(λi| α, β) ∝ λα−1
i e−βλi (5)

with unknown parameters shape α and scale β, that is, (λi| α, β) ∼ Gam(α, β). As noted by Mazzuchi

and Soyer (1988), the assumption that λi’s over all stages constitute a random sample from the gamma

distribution in (5) yields an EB setup. The hierarchical Bayes or the Bayes empirical Bayes setup is obtained

by assuming a distribution, say p(α, β), for describing uncertainty about α and β. Mazzuchi and Soyer (1988)

also considered a hierarchical Bayes (HB) setup of the LV model by assuming a specific form Ψ(i) = β0 +β1i

for the scale parameter of the gamma density in (3) and specifying a joint prior distribution for the unknown

parameters α, β0 and β1. Bayesian analysis of the HB exchangeable model and HB version of the LV

model were developed by using posterior approximation methods proposed by Lindley (1980) and Tierney

and Kadane (1986). Extensions of the hierarchical model was considered by Kuo and Yang (1995) who

assumed a kth order polynomial for Ψ(i) and used Gibbs sampling [see Gelfand and Smith (1990)] for

Bayesian computations.

Another class of Type I models includes Markovian models where the Markov dependence was assumed

either for the Ti’s as in Singpurwalla and Soyer (1985, 1992) or on the λi’s as in Chen and Singpurwalla (1994)

and Basu and Ebrahimi (2003). The former approach proposed by Singpurwalla and Soyer (1985) involves

a multiplicative dynamic autoregressive process for Ti’s which were assumed to be lognormally distributed.

The model implies that logTi’s are normally distributed given a dynamic autoregressive coefficient θi and

previous failure time, that is,

logTi|Ti−1, θi ∼ N(θilogTi−1, σ
2
1). (6)
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The model in (6) is capable of reflecting both reliability improvement and reliability deterioration from

one testing stage to another. For example, assuming that Ti’s are scaled so that Ti ≥ 1 for all stages, values of

θi > 1 implies a growth in reliability from stage (i−1) to i. However, a value of θi < 1 implies a deterioration

from (i− 1) to i. Two alternative dependence structures for θi’s were considered in Singpurwalla and Soyer

(1985). In the first model, it was assumed that θi’s constitute an exchangeable sequence. This was achieved

by assuming that given an unknown mean λ, θi’s are conditionally independent random quantities denoted

as (θi|λ) ∼ N(λ, σ2
2) where λ itself was coming from a normal distribution with known parameters µλ and

σ2
λ, that is, λ ∼ N(µλ, σ2

λ). Alternatively, θi’s can be assumed to follow a Markovian structure as

θi|θi−1 ∼ N(θi−1, σ
2
2) (7)

implying a steady model in the sense of West and Harrison (1997). Bayesian analysis of the both models

can be developed using a Kalman filter setup [see Meinhold and Singpurwalla (1983b)] by using (6) as an

observation equation and using either (7) or its exchangeable version as the state equation. Details of the

Bayesian analysis of the model and an adaptive Kalman filter extension of it can be found in Singpurwalla

and Soyer (1992).

A non-Gaussian Kalman filter model was proposed by Chen and Singpurwalla (1994) where the obser-

vation model was specified as Ti|α, λi ∼ Gam(α, λi) with a dynamic scale parameter. The scale parameter

λi has a Markovian evolution given by

λi =
λi−1

γ
εi (8)

where εi|Di−1 has a beta distribution, Di−1 = (Di−2, Ti−1), and 0 < γ < 1 is a discount parameter. The

model is a member of the conjugate class of distributions considered by Bather (1965). The above implies a

random walk type of evolution, that is,

E[λi|λi−1, Di−1] = λi−1 (9)

and provides a stochastic ordering of λi’s. More specifically, the evolution equation (8) implies that

λi < (λi−1/γ). Therefore, the model can capture both reliability growth and decay scenarios. Other

prior properties of the model and posterior updating results conditional on γ are given in Miller and Smith

(1986). A special case of the above where α = 1 was considered by Morali and Soyer (2003) who developed

optimal software testing strategies.

An alternative Markovian structure was considered in Basu and Ebrahimi (2003) who proposed a mar-

tingale process [see also Koch and Spreij (1983)] for the failure rates λi. Given λi’s, Ti’s, time between

software failures, were assumed to be conditionally independent exponential random variables as in (2). In

order to capture both reliability growth and decay, the authors specified the prior model for (λ1, λ2, . . .) as
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a martingale by assuming

λ1|α, β ∼ Gam(α, β)

λi|α, λi−1 ∼ Gam(α,
α

λi−1
), i > 0. (10)

The prior conditional mean is

E[λi|λi−1] = λi−1 (11)

which gives the martingale property. The Bayesian analysis of the model was developed using Markov chain

Monte Carlo (MCMC) methods such as the Gibbs and Metropolis sampling; see Chib and Greenberg (1995).

Another class of models for time between software failures is the hidden Markov models (HMM); see Soyer

(2011) for a general review of HMMs in reliability analysis. The HMMs have gained much attention recently

in the software reliability literature. An earlier use of these models is due to Durand and Gaudoin (2005)

who considered exponentially distributed Ti’s whose failure rates is governed by a discrete time Markov

chain (MC). Since the states of the MC is latent the underlying model is referred to as a HMM. Durand

and Gaudoin (2005) analyzed the HMM using a non-Bayesian approach based on EM algorithm to obtain

maximum likelihood estimates.

More recently, Pievatolo, Ruggeri and Soyer (2010) introduced a Bayesian HMM motivated by potential

introduction of new bugs to the software during the software debugging process. As noted by the authors,

the model takes into account the possibility of not knowing if a new bug has been added at each stage and

allows for inference about introduction of new bugs at different stages of testing. More specifically, Pievatolo,

Ruggeri and Soyer (2010) assume that during the testing stages, the failure rate of the software is governed

by a latent process Y. If Yi denotes the state of the latent process at stage i, then given the state at time i,

Ti is assumed to follow a exponential model given by

Ti|Yi ∼ Exp[λ(Yi)]. (12)

In the above, the failure rate of the software depends on the latent random variable. The authors point

out that the states of the latent process reflect the effectiveness of the changes made to the software at each

stage of testing. It is assumed that the latent process Y is a discrete time MC with some transition matrix

P on a discrete state space E. Given the latent process Ti’s are conditionally independent. A Bayesian

analysis of the model was developed using a Gibbs sampler similar to the one proposed by Robert, Celeux

and Diebolt (1993) for a given dimension of the state space E of the hidden chain. A new approach using

marginal likelihoods was proposed to infer the unknown dimension of the hidden chain. The computation of
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the marginal likelihoods was based on the method of Chib (1995). The attractive feature of Chib’s method

is its allowing for use of posterior samples generated by the Gibbs sampler in computing the marginal. Once

marginal likelihoods are obtained for a given dimension, they can also be used to obtain Bayes factors; see

Kass and Raftery (1995).

3.2 Modeling Number of Software Failures

As previously discussed, the Type II models describe the number of software failures during a specified time

period. This class of models are basically point processes generated by the interfailure times Ti’s. Typically,

the point process models used for this purpose are Poisson processes and its extensions.

One of the earlier point process models is that of Goel and Okumoto (1979) which is known as the time-

dependent error detection model. Most other Type II models are extensions of the Goel and Okumoto model.

As pointed out by Singpurwalla and Wilson (1994), the model assumes that expected number of software

failures to time t is given by the mean value function Λ(t). The function Λ(t), which is non-decreasing and

bounded above, is given by

Λ(t) = a(1− e−bt) (13)

In (13), a denotes the total number of faults (that is, bugs) in the software and b is considered to be the

fault detection rate. The mean value function Λ(t) defines the nonhomogeneous Poisson process (NHPP),

N(t) describing the number of software failures during [0, t). Thus, we can write

Pr[N(t) = n] =
[Λ(t)]n

n!
e−Λ(t) (14)

where the intensity function of the process is

λ(t) =
d

dt
Λ(t) = abe−bt. (15)

We note that, unlike the JM model, in the above the total number of errors is a random variable with

mean a. Also, unlike the JM model, the above model implies that the times between successive software

failures are dependent.

Langberg and Singpurwalla (1985) pointed out the relationship between the JM and the Goel-Okumoto

model using a Bayesian perspective. More specifically, if φ and N are unkown in the failure rate of the JM

model, that is, in φ(N − i + 1) then the JM model can be obtained by assuming degenerate priors on φ and

N . Similarly, the Goel-Okumoto model is obtained by assuming a degenerate prior on φ and a Poisson prior

on N with mean θ.

Statistical analysis of the model via maximum likelihood methods was discussed in Goel and Okumoto
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(1979). Bayesian analysis of the model using MCMC methods was discussed in Kuo and Yang (1996). As

pointed out by Singpurwalla and Wilson (1984), other NHPP models have been proposed based on different

assumptions on the fault detection rate of the Goel-Okumoto model. Yamada (1991) gives an overview of

such models.

Another NHPP model is the logarithmic Poisson execution time model of Musa and Okumoto (1984)

which is based on the relationship between the intensity function and the mean value (cumulative intensity)

function of a NHPP. The authors assume that the intensity function is given by

λ(t) = λ0e
−θΛ(t) (16)

where λ0 > 0 and θ > 0. Note that λ(t) = d
dtΛ(t) and using Λ(0) = 0, the differential equation (16) yields

λ(t) =
λ0

λ0θt + 1
and Λ(t) =

ln(λ0θt + 1)
θ

. (17)

A classical statistical analysis of the model is given in Musa and Okumoto (1984). Campodónico and

Singpurwalla (1994) present a Bayesian analysis of the model using expert opinion and software failure data.

A more general approach for incorporating expert opinion in the analysis of NHPPs was considered in

Campodónico and Singpurwalla (1995).

A unification of the NHPP models used in software reliability is given in Kuo and Yang (1996). This

was achieved by modeling software failure times using the general order statistics (GOS) and record value

statistics (RVS) models. The authors showed that in the GOS models, the mean value function of the NHPP

N(t) can be written as

Λ(t) = θF (t) (18)

where F (t) is the cumulative distribution function for the failure times and θ is the mean of N , unknown

number of bugs in the software. Under GOS model N is assumed to be a Poisson random variable. For

example, if F (t) is exponential, that is, F (t) = 1− e−bt then (18) yields the Goel-Okumoto model. This was

referred to as the exponential order statistics model by Miller (1986). Other GOS models such as Pareto,

Weibull and extreme value statistics models can be obtained by specifying F (t) accordingly in (18). Kuo and

Yang (1996) discussed Bayesian inference for these NHPP models using Gibbs sampler sometimes together

with data augmentation [see Tanner and Wong (1987)] and with Metropolis algorithms.

Alternatively, most of the Type I and Type II models above can be considered as special cases of self-

exciting point processes which provide another unification framework for the software reliability models; see

Chen and Singpurwalla (1997).

As pointed out by Singpurwalla and Wilson (1989), incorporation of covariate information into software
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reliability modeling has not been very common. However, such information can be helpful in reliability

assessments. More recently, Ray, Liu and Ravishanker (2006) considered use of software metrics in estimating

intensity functions of NHPP models and developed Bayesian analysis of this class of models using MCMC

methods.

Hidden Markov type models have also been considered in the context of point processes in software

reliability. Ozekici and Soyer (2003) introduced the idea of operational process motivated by the concept of

operational profile of Musa (1993, 1996). As pointed out by Ozekici and Soyer (2003), an operational profile

simply consists of the set of all operations that a software system is designed to perform and their probabilities

of occurrence. The authors introduce E representing the set of all operations and Yt as operation performed

by the software at time t. The continuous time process Y = {Yt; t ≥ 0} is defined as operational process

with state space E as the operational space. If the process Y is ergodic with some limiting distribution π,

then the pair (E, π) defines the operational profile of the software. The operational process Y was assumed

to be a Markov process in Ozekici and Soyer (2003).

The authors defined Nt as the number of faults remaining in the software at time t and the process

N = {Nt; t ≥ 0}describing the evolution of number of faults over time. Defining the counting process

M = {Mt; t ≥ 0} as the number of failures observed by time t and assuming perfect debugging we have

Mt = N0 − Nt where N0 is the initial number of faults in the software. The authors point out that the

counting process M is modulated by the bivariate process Z = (Y,N) where the intensity function of the M

process is given by

λ̂(t) = Ntλ(Yt). (19)

The above is a generalization of Markov modulated Poisson processes (MMPPs) where the modulating

process is the Y process implying λ̂(t) = λ(Yt) in (19). In other words, the MMPP model is the special case

of the model where there is no debugging, that is, Nt = N0 for all t ≥ 0. A survey of MMPPs can be found

in Fischer and Meier-Hellstern (1992). The MMPP is also a special case of the doubly stochastic Poisson

process of Kingman (1964) where the intensity of the process is given by λ̂(t) = λ(Yt). A Markovian analysis

of the model was presented in Ozekici and Soyer (2003) using the bivariate Markov process Z = (Y,N)

and a Bayesian analysis of the model was developed. Ozekici and Soyer (2006) discuss probabilistic and

statistical issues related to these processes in a rather general setting and consider their extensions to include

semiMarkov modulated Poisson processes.

More recently an MMPP model was considered by Landon, Özekici, Soyer (2009) to describe software

failures and a Bayesian analysis of the model was developed using the exact Gibbs sampler given in Fearn-

head and Sherlock (2006). Inference about the dimension of the Markov process was made by adopting

the marginal likelihood method of Chib (1995). A discrete time latent Markov process was considered in
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Ravishanker, Liu and Ray (2008) to describe the evolution of the parameters of NHPP.

4 Nonparametric Software Reliability Models

Our review of software reliability models in the previous sections focused on parametric models. It is

often desirable to relax some of the parametric assumptions to achieve robustness and therefore to consider

semiparametric or nonparametric models. Nonparametric models have found limited use in the software

reliability literature.

Earlier attempts in nonparametric software reliability modeling include Miller and Sofer (1986) who used

monotone regression estimates of failure rates and Miller and Sofer (1991) developed long-range reliability

predictions based on the monotonic regression model. Barghout, Abdel-Ghaly and Littlewood (1998) present

a nonparametric treatment of general order statistics models such as that of Miller (1986). Their proposed

approach is based on kernel density estimation methods.

One of the first nonparametric Bayesian approaches to software reliability modeling was introduced in

El-Aroui and Soler (1996) where the authors assumed exponentially distributed conditionally independent

times between failures. In other words, given the failure rates λi’s , they assume Ti|λi ∼ Exp(λi) for i ≥ 1

where Ti’s are independent. It was assumed that the failure rates {λi} follow a Markovian evolution specified

by prior distributions p(λi|λi−1) for all i ≥ 1. The authors referred to their setup as the Bayes exponential

Markov assupmtion. The form of the priors are specified using a maximum entropy (ME) based method; see

Ebrahimi, Soofi and Soyer (2010) for the ME method. Bayesian analysis of the corresponding model was

developed using MCMC methods.

Wilson and Samaniego (2007) introduced a nonparametric Bayesian approach for analysis of the order

statistic models of discussed in the above. In so doing, the authors modeled F (t), the cumulative distribution

function for the failure times nonparametrically and assumed a uniform prior for N , initial number of faults

in the software. A Dirichlet process (DP) prior [see Ferguson (1973)] was used for F and MCMC methods

were implemented for posterior analysis.

Nonparametric versions of NHPP models were considered in Kuo and Ghosh (2001) who developed

Bayesian analysis of such models. Their approach involved use of gamma process [Singpurwalla (1997)] and

beta process [Hjort (1990)] priors for cumulative intensity functions and extended gamma process [Dykstra

and Laud (1981)] priors for intensity functions of the NHPPs. Posterior analysis of the models were developed

using MCMC methods.

More recently, Soyer (2010) proposed a nonparametric Bayesian model for times between software failures.

The model assumes exponential times between failures, but relaxes the parametric assumptions used for the

priors in Type I models. Thus, it can be considered as a semiparametric model.
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4.1 A Semiparametric Model for Times between Successive Failures

A generalization of the LV model and the HB model of Mazzuchi and Soyer (1988), can be obtained by

relaxing the parametric assumptions on the prior distributions.

A common view in software reliability modeling is that, unlike hardware, software does not exhibit any

aging [Morali and Soyer (2003)] and this lack of aging motivates the exponential model (2) for the times

between successive failures. Thus, we assume that Ti|λi ∼ Exp(λi) and Ti’s are conditionally independent.

The LV and HB models, that we have previously discussed, are both based on this assumption but they

differ in prior models describing the evolution of λi’s over testing stages. Also, both models have parametric

prior distributions for λi’s.

A fully parametric prior model may not be adequate in capturing the changes in the failure rates. As

pointed out by Gelfand (1999), in cases where parametric assumptions are too restrictive, a semi-parametric

model can be used by a non-parametric specification of the some components of the model. In view of the

above, Soyer (2010), presented a semi-parametric model by treating the prior distribution for λi’s nonpara-

metrically and in so doing used a Dirichlet process (DP) prior [see Ferguson (1973)] to model the unknown

distributions.

Consider the HB model setup of Mazzuchi and Soyer (1988) and treat the distribution of λi, say G, as

unknown. Uncertainty about G can be explained by a DP prior. We denote this as

G|G0,M ∼ DP (G0, M), (20)

where G0 is the baseline prior representing the best guess about G and M is the strentgh of belief in the

best guess. In Soyer (2010) the baseline prior G0 is assumed to be a gamma density with parameters α and

β, that is, G0 = Gam(α, β). If α and β are assumed to be unknown, then we can specify a joint prior, say,

p(α, β). Thus, the semi-parametric setup of Soyer (2010) can be summarized as follows:





[Ti|λi] ∼ Exp(λi)

[λi|G] ∼ G

[G|G0, M ] ∼ DP (G0,M)

[G0|α, β] = Gam(α, β)

[α, β] ∼ p(α, β)

(21)

In the above setup, the mixing distribution G is assumed to be unknown and the prior distribution

assumed for the mixing distribution is a Dirichlet process. Therefore, the above class of models are termed

as “Dirichlet process mixed models”; see Mukhopadhyay and Gelfand (1997).

We note that if the form of G is specified in (21), then we are back to the the hierarchical Bayes setup

12



of Mazzuchi and Soyer (1988). Thus, the hierarchical model is obtained as M → ∞ in (21). It is possible

to put a prior on M and to learn about it from data. For example, following Escobar and West (1995), one

can specify a gamma prior for M . As discussed in Escobar and West (1995), by learning about M one can

learn about the distinct number of λi’s. More specifically, Escobar and West defined K to be the number

of unique values of λi’s, also referred to as the number of cliques by MacEachern (1998). Using results of

Antoniak (1974), it can be shown that, conditioned on K, M is independent of all other parameters. This

result can be used in developing a Gibbs sampler for analysis of the model.

Bayesian analysis of the semi-parametric model (21) requires additional steps in the Gibbs sampler when

we draw samples from the λi’s. An algorithm has been proposed by Escobar and West (1995) that enables

us to draw samples from the full conditional distribution of λi’s without sampling from the distribution of

G. If the belief parameter M is treated as unknown and M has a gamma prior, then it can be shown that

full conditional posterior distribution of M can be obtained as a mixture of two gamma densities using a

data augmentation step at each Gibbs iteration. This allows one to obtain the distribution of K. The details

are given in Escobar and West (1995).

Soyer (2010) used the semiparametric model (21) by assuming a gamma prior onM and implemented

the Escobar and West algorithm to analyze the System 40 data of Musa (1979). The data which has been

previously analyzed by Singpurwalla and Soyer (1992) consists of 101 succesive times between software

failures. A plot of the data is shown in Figure 1 where times between failures tend to increase over time

suggesting an overall improvement in reliability.
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Figure 1: Musa’s System 40 Data

Figure 2 presents posterior density plots for distributions of failure rates λ15, λ45, λ85 and λ101. We note

from Figure 2 that the posterior distributions of the failure rates has mixture components as implied by

13



(21). Furthermore, we see from the figure that the failure rates have different supports at each stage and

the values of failure rates in general seem to be decreasing by time, that is, by testing stages. The same

conclusion was reached by Singpurwalla and Soyer (1992) who used dynamic Bayesian time series models

to analyze the same data. A similar conclusion can be reached from Figure 3 which shows the box plots of

posterior distributions of λi’s over different stages of testing. Again we note that the λi’s differ from one

stage to another and on average λi’s tend to go down over time suggesting potential reliability growth.

The use of the Dirichlet process prior for G implies discreteness and therefore there is a positive probability

that some of the λi’s will take the same values. This formation of groups of λi’s allows grouping of similar

testing stages. This similarity may be due to the similar design changes made to the software at those

stages and/or due to the similar faults encountered during the debugging process. Posterior inference about

number of heterogeneous groups can be made using the posterior distribution of K given in Figure 4. The

figure suggests that 9-10 different groups of failure rates seem to be the most likely one.
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Figure 2: Posterior distributions of λ15, λ45, λ85 and λ101.

5 Decision Models in Software Reliability

As noted by Singpurwalla and Wilson (1999), in addition to inference and prediction, software reliability

models can also be used for decision making. An important component of software reliability modeling is

development of optimal testing strategies. As Singpurwalla and Wilson (1999) point out, such strategies

involve determining “how long should the software be tested” as well as deciding “which test cases are to

be used.” Our discussion in this section will focus on the former, that is, on deciding when to stop testing

the software and release it. In so doing, we will review the literature and discuss the decision theoretic
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Figure 3: Posterior distributions of λi’s over different stages testing

formulation of this class of problems.

Earlier works on determining when to stop the testing process and release the software include Forman

and Singpurwalla (1977, 1979), Okumoto and Goel (1980), Yamada, Narihisa and Osaki (1984) and Ross

(1985). None of these earlier approaches are based on a formal decision-theoretic approach. The decision

theoretic approach involves trade-offs such as cost of testing versus cost of releasing an unreliable piece of

software.

Dalal and Mallows (1986) was among the first who considered a decision theoretic approach to the

problem. Singpurwalla (1989, 1991) also tackled the problem using a Bayesian decision theoretic setup. The

work of Dalal and Mallows provides an exact but a complicated solution and as a result, an asymptotic

solution is given by the authors. The work of Singpurwalla addresses a two-stage problem where the solution

is complicated due to computational difficulties involved in preposterior analysis. More recent work by

Ozekici and Catkan (1993) and McDaid and Wilson (2001) also propose decision theoretic solutions. Ozekici

and Catkan (1993) present a very general setup and provide characterizations of the optimal release policy.

Their approach does not include any revision of uncertainty in the Bayesian sense. McDaid and Wilson

(2001) considered the case of single stage testing using nonhomogeneous Poisson process type models and

developed a Bayesian solution. The authors also considered a sequential testing problem but the solution

was not analytically tractable. Boland and Singh (2003) looked at the optimal release time problem using

the geometric Poisson model and developed solutions for the case of known parameters as well as using a

Bayesian framework.

Morali and Soyer (2003) addressed the optimal stopping problem during the software development phase.

They formulated the problem as a sequential decision problem and used a Bayesian approach. Ozekici and
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Soyer (2001) developed optimal testing strategies for software with an operational profile as discussed in

Musa (1993, 1996). The authors assumed that the software was tested sequentially for given durations of

time in all of the operations. In so doing, they considered a testing scenario where each test case was designed

to test a given operation in the profile and obtained optimal testing time for each operational profile.

The Bayesian decision theoretic approach to the optimal release time problem requires specification of

three components:

(i) a utility (loss) function that reflects the consequences of selecting a specific release (or stopping) time;

(ii) a probability model;

(iii) a prior distribution reflecting software engineer’s a priori beliefs about all unknown quantities.

These three components are common to all the decision theoretic approaches discussed in the above.

In what follows, we highlight the setup by Morali and Soyer (2003) who considered the problem of how to

decide when to terminate the testing/modification process and to release the software.

5.1 A Sequential Decision Model

Consider the testing protocol where testing is done sequentially until failure (or up to a prespecified testing

time) and at the end of each test stage corrections and modifications are made to the software with the hope

of increasing its reliability. Let Ti, i = 1, 2, . . ., denote the life-length of the software during the i-th stage

of testing after the (i− 1)-st modification made to it. Assume that Ti follows the exponential model in (2)

with failure rate λi which changes from one stage to another as a result of the modifications made to it after

each stage.
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At the end of each stage, following modifications made to the software, a decision must be made whether

to terminate the debugging process. Thus after completion of i stages of testing, the decision of whether

or not to stop testing will be based on T (i) = (Ti, T (i−1)), where T (0) represents information prior to any

testing. Morali and Soyer (2003) assumed that the evolution of λi’s was described by the Markovian model

(8). The authors considered the loss function associated with stopping and releasing the software after the

i-th testing stage as

Li(T (i), λi+1) =
i∑

j=1

LT(Tj) + LS(λi+1), (22)

where LT(·) represents the loss due to testing for one stage, and LS(·) relates to the loss associated with

stopping and releasing the software. Note that L0 (the loss associated releasing the software before any

testing) is a function of λ1. We note that in (22) LT(·) captures the cost of testing which is a function of

Tj and LS(·), the loss associated with stopping and releasing the software which is a function of the failure

rate λi+1. This component reflects costs associated with bugs discovered and fixed after testing, that is, it

deals with failures during the usage phase. Since λi+1 will be proportional to the number of bugs present in

software after release, LS(·) will be assumed to be an increasing function of λi+1.

Morali and Soyer (2003) represented the stopping problem as a sequential decsion problem as a m-stage

decision tree given in Figure 5. The solution of the decision problem involves using dynamic program-

ming. As noted by the authors, solution of the tree proceeds in the usual way by taking expectation at

random nodes and minimizing the expected loss at the decision nodes. At decision node i, the additional

expected loss associated with the STOP and the TEST decisions are given by the terms E[LS(λi+1)
∣∣T (i)]

and E[LT(Ti+1)
∣∣T (i)] + L*

i+1, respectively where

L*
i = MIN

{
E[LS(λi+1) | T (i)] , E[LT(Ti+1) | T (i)] + L*

i+1

}
(23)

for i = 0, 1, . . ., and the optimal decision at decision node i then is the one associated with L*
i .

In Figure 5, m, the maximum number of testing stages, can be considered infinite with L*
m+1 = ∞.

We note that even for the case of finite m the calculation of L*
i in (23) is not trivial as it involves implicit

computation of expectations and minimizations at each stage. Morali and Soyer (2003) investigated the

possibility of developing one-stage ahead optimal stopping rules by using results from van Dorp, Mazzuchi

and Soyer (1997) and illustrated implementation of their approach using simulated as well as actual software

failure data.
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Figure 5: The m-stage decision tree for the optimal release problem

6 Concluding Remarks

In this article we have presented an overview of software reliability. Our overview has focused on two issues,

namely, software reliability modeling and software testing strategies including optimal stopping decisions.

We have presented basic concepts and definitions in software reliability and discussed unique aspects of

software failure mechanism. Our coverage of software reliability modeling has included both traditional

models as well as more recent developments such as hidden Markov models and nonparametric modeling

strategies. We have discussed basic issues in development of software testing strategies and have reviewed

earlier approaches most of which were not based on decision theoretic approaches. More recent Bayesian

decision theoretic approaches have been emphasized in our overview and computational difficulties associated

with them have been discussed.
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