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Abstract

In this paper we consider modeling abandonment behavior in call centers. We present several

time to event modeling strategies and develop Bayesian inference for posterior and predictive

analyses. Different family of distributions, piecewise time to abandonment models and mixture

models are introduced and their posterior analysis is carried out using Markov chain Monte

Carlo methods. We illustrate implementation of the proposed models using real call center

data, present additional insights that can be obtained from the Bayesian analysis and discuss

implications for different customer profiles.
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1 Introduction and Overview

Call center operations typically consist of three fundamental processes of arrival, service and aban-

donment. One of the main challenges that modern day call center practitioners are faced with

is to find a balance between efficiency of the call center operation and quality of service offered

to the customers. Careful study of these processes may provide managerial insights about several

operating characteristics of the underlying queuing system and could help practitioners to find such

a balance.

The focus of this paper will be on the study of the abandonment process in call centers. Aban-

donment, or patience, is defined as the time a customer is willing to wait before abandoning the

queue (see Mandelbaum and Shimkin (2000)). Call center customers expect fast and efficient ser-

vice, and if their expectations are not met, abandonments will occur more frequently and might

lessen the perceived quality of a call center. According to Mandelbaum and Shimkin (2000), AT&T

studies indicate that a 15 seconds wait for an agent caused a 44% abandonment rate; for a 30 sec-

onds wait that figure increased to 69%. Also, the Help Desk Institute, in its annual report, indicates

that around 43% of all call centers have a targeted abandonment rate, and about 40% of the call

centers observe an abandonment rate of over 10%. In toll free services, service providers are re-

quired to pay the holding times of their customers. Thus, study of the abandonment process in call

centers plays a crucial role also from an economic point of view.

Most of the literature on abandonment processes in call centers is from a queuing theory per-

spective and emphasizes modeling and development of associated performance measures. There is

a lack of research in statistical inference with the exception of Brown et al. (2005) who analyze

an anonymous call center from a queuing science perspective by focusing on statistical aspects of

the three fundamental processes. In this paper we will attempt to fill this gap by analyzing the

abandonment behavior exhibited by different call center customer profiles and in so doing, we will

take a Bayesian viewpoint.

The model that is most commonly used in call center analysis is the so called M/M/s (Erlang-

C) model where customers are assumed to have infinite patience. Garnett et al. (2002) make an

argument about why the Erlang-A model (an M/M/s+M queue where customers’ time to abandon

the queue follows an exponential distribution) is superior from an optimal staffing point of view and

provide comparisons of performance measures for Erlang-C and Erlang-A models. From a practical

2



point of view, the only parameter that the call center managers have control over is the number of

agents working for a call center during a specific period of time. Call center management consists of

labor intensive operations, where staffing comprise 60-80% of the overall operating budget (Aksin

et al. (2007)). Therefore, a detailed study of the abandonment processes in call centers and its

effect on staffing will be of interest to call center practitioners. Garnett et al. (2002) point out

that most of the literature and practice in call center operations ignore the effects of abandonment

which leads to either over or under staffing. The Erlang-A model is based on the assumption of

exponentially distributed abandonment times, an extension is discussed in Bacelli et al. (1984)

who introduce a queuing system with general abandonment distribution, G and obtain certain

operating characteristics. Brandt and Brandt (1997) provide an extension in the form of a birth

and death process for the M(n)/M(m)/s + G model where n is the number of callers in the

system, and m = min(n, s) is the number of busy servers. More recently, Zeltyn and Mandelbaum

(2005) provide a summary of operating characteristics for the M/M/s+G with additional operating

characteristics. Brown et al. (2005) provide non-parametric estimates of the hazard rate for the

abandonment process and point out that abandonment does not exhibit exponential behavior in

their data set.

An important issue associated with abandonment in call centers is the effect of announcements

on system performance. Typically, one can think of two types of announcements. The first is

where an announcement is made regarding the expected wait in the queue (or the exact position

of the caller in the queue) during fixed intervals, the second is where the customer is informed that

all lines are busy and asked to hold on the line until a server becomes available. In this paper,

we will adopt the latter definition and will investigate whether different customer profiles change

their abandonment behavior as they experience announcements. In order to improve system service

along with customer satisfaction, call center management will be interested in predicting delays or

the effects of informing customers of expected delays. Whitt (1999a), Whitt (1999b) and Aksin

et al. (2008) investigate the issue of delays, informing customers of these delays and their effect on

system performance. Zohar et al. (2002) make the argument that customer patience is a function

of several covariates and study its behavior with respect to mean waiting time in the queue.

What would be of interest to call center practitioners is a detailed study of the abandon-

ment distribution for different types of customers for call center design and staffing purposes. For
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instance, new/potential customers might exhibit different abandonment behavior as opposed to

regular ones. Another issue of interest is whether call center customers exhibit monotonic or non-

monotonic abandonment behavior, namely whether customers change their abandonment behavior

as they experience announcements or as they wait in the line. In this paper we introduce models

to describe abandonment process in call centers for different customer profiles. We also develop

Bayesian analysis of these models using Markov chain Monte Carlo methods. Duration models such

as generalized gamma family of distributions as well as piecewise and mixture models are considered

for describing customer abandonment behavior motivated by the behavior of their hazard rates (or

abandonment rates). To the best of our knowledge, these models, that are capable of capturing

non-monotonic abandonment rates, have not been considered in the call center modeling literature.

Furthermore, Bayesian view point has not been previously implemented in analysis of call center

abandonment data.

A synopsis of our paper is as follows. In section 2, we cover the preliminaries and the properties

of our proposed models. The Bayesian analysis of our proposed work, predictive analysis and model

comparison criteria will be summarized in Section 3. We will illustrate the proposed models using

real call center abandonment data with different customer profiles in Section 4. Section 5 will

conclude our study with further remarks and potential future work.

2 Modeling the Abandonment Rate in Call Centers

Palm (1953) is the first one who has pointed out the relationship between the impatience of a

customer and the hazard rate. Brown et al. (2005) represent the hazard rate of the patience

distribution and virtual waiting time via non-parametric estimates. Mandelbaum and Shimkin

(2000) study how changes in the hazard rate for the abandonment distribution effects the rational

decision of when to abandon the system. They provide optimal rules of abandonment for cases

when the hazard rate is increasing, decreasing and increasing-decreasing.

Time to abandonment of a customer in a virtual queue can be considered as similar to the time

to failure of an item in reliability/survival analysis. Reliability function (or survival function) is

defined as F (t|θ) = P (T ≤ t|θ), where t ≥ 0 and T is said to be the life length of an item. A closely
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related concept is the model failure rate (or hazard rate) defined as

r(t) = lim
t→∞

P (t ≤ T ≤ t + dt|T ≥ t)
dt

=
f(t)

1− F (t)
. (2.1)

The failure rate can be thought as a measure of the risk that a failure will occur at t. For

small dt, it can be interpreted as the probability that an item of age t will fail in (t, t + dt); see

Singpurwalla (2006). This provides a natural way of thinking about the abandonment rate of a

customer in a virtual queue. In other words, following (2.1), the random variable T can be thought

as the time a customer will wait before abandoning the queue. Therefore r(t) can be referred to as

the customer abandonment rate in a call center.

In what follows, we introduce different classes of time to event (duration) models to describe

the customer abandonment behavior in call centers and discuss their properties. These models are

motivated by the behavior of abandonment rates observed in actual call centers.

2.1 Generalized Gamma Family of Models

The generalized gamma distribution was first introduced by Stacey (1962) in the context of reli-

ability. Its flexible structure makes it a good candidate for modeling time to event phenomenon,

in reliability and survival analysis. Pham and Almahana (1995) discuss its properties and the

behavior of its hazard rate for different values of its parameters. Dadpay et al. (2007) integrate

it into the information theoretic literature, discuss additional properties and propose its Bayesian

estimation. In what follows, we will discuss its properties in the context of abandonment in call

centers.

Let T denote the time to abandonment of customers in a call center. The density function of

the generalized gamma random variable T is

f(t|α, γ, λ) =
γλαtαγ−1

Γ(α)
exp{−λtγ}, (2.2)

where t ≥ 0, α, γ, λ > 0, α and γ are shape parameters and λ is the scale parameter.

As discussed in Pham and Almahana (1995) and Dadpay et al. (2007), several well known

distributions can be obtained using the generalized gamma family parametrization. For instance,

for γ = α = 1 one can obtain the exponential distribution, for α = 1 the Weibull distribution, for
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γ = 1 the gamma distribution, for γ = 2, α = 1/2 the half-normal distribution, for γ = 2, α = 1 the

Rayleigh distribution, for γ = 2, α = 3/2 the Maxwell-Boltzmann distribution and for γ = 2, α =

k/2, (k = 1, · · · ) the Chi distribution. In the limiting case, as α →∞, the lognormal model can be

obtained.

The cumulative distribution for the generalized gamma model is given by

F (t|α, γ, λ) =
Γλtγ (α)
Γ(α)

, (2.3)

where

Γλtγ (α) =
∫ λtγ

0
xα−1exp(−x)dx. (2.4)

Its power moment is given by

E(T s|α, γ, λ) = (
1
λ

)
s
γ
Γ(α + s/γ)

Γ(α)
, for s > 0. (2.5)

Combining (2.3) and (2.4) the hazard rate can be obtained as

r(t|α, γ, λ) =
γλαtαγ−1exp{−λtγ}

Γ(α)− Γλtγ (α)
. (2.6)

An attractive feature of the generalized gamma family is the flexibility of its hazard rate func-

tion which can be used to represent non-monotonic unimodal or bathtub shaped hazard functions

(different shapes of the hazard rate can be seen in Figure 1). This is desirable in abandonment pro-

cess modeling, since as discussed in Brown et al. (2005), the hazard rate can exhibit non-monotonic

behavior. It can be shown that for γ 6= 1, if (1−αγ)/[γ(γ− 1)] is a strictly positive constant, then

the hazard rate is bathtub shaped for γ > 1 and inverse bathtub shaped for 0 < γ < 1. Otherwise,

the hazard rate is increasing for γ > 1 and decreasing for 0 < γ < 1.

As pointed out previously, in the limit when α → ∞, one can obtain the lognormal family of

models as a special case of the generalized gamma model. The density function of the lognormal

random variable is given by

f(t|µ, σ) = (t
√

2πσ)−1exp{−1
2

(log(t)− µ)
σ2

}, t > 0. (2.7)
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Figure 1: Hazard Rates for Generalized Gamma; α = 0.5, λ = 0.5, γ = 1.6 (left) and α = 2, λ =
1.33, γ = 0.66 (right)

The hazard rate exhibits non-monotonic behavior in t as seen in Figure 2. If the customers exhibit

an increasing abandonment rate followed by a decrease than the lognormal density will be a proper

candidate for abandonment behavior modeling. In other words, customers may be more patient

when they join the queue but after waiting a certain amount of time they might start abandoning

followed by a period of decreasing abandonment rate. This would indicate a lognormal type of

abandonment behavior as shown in Figure 2. The hazard rate of the lognormal density can be

obtained as

r(t|µ, σ) =
f(t|µ, σ)

1− Φ(log(T ), µ, σ)
, (2.8)

where f(t|µ, σ) is given in (2.7) and Φ(log(T ), µ, σ) is the cumulative density function of the normal

random variable log(T ) with parameters µ and σ.

2.2 Mixture Models

An alternate modeling strategy to describe abandonment behavior in call centers is use of finite

mixture models. What makes the finite mixture models attractive from a modeling point of view is

their flexibility in terms of the hazard rate function. Different combinations of family of distributions

can capture several different shapes for the hazard rate along with bimodal type of behavior in the

respective densities. As pointed out by Diebolt and Robert (1994), mixture models can be thought
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Figure 2: Hazard Rates for the Lognormal Distribution

of as an alternative to non-parametric models and they are less restrictive as opposed to standard

parametric distributions.

Following Gilks et al. (1996), a finite mixture model for f(t) can be defined as

f(t|θ1, · · · , θk) =
k∑

i=1

pif(t|θi), (2.9)

where
∑k

i=1 pi = 1 (usually referred to as mixing weights), k ≥ 0 is any integer, and f(t|θi) for

i = 1, · · · , k represent the densities of k different components (also referred to as the components of

the mixture). As pointed out by Gilks et al. (1996), depending on the context the mixture is being

used for, the components of the mixture may or may not have any physical meaning. For instance

in reliability, one can think of the individual components as items coming from different populations

(such as items manufactured by different machines, factories, etc...). For the abandonment modeling

purposes we will not attempt to assign a physical meaning to the individual components and will

simply refer to them as components of the abandonment mixture.

Suppose that k = 2 in (2.9), then the mixture density can be written as

f(t|θ1, θ2) = pf(t|θ1) + (1− p)f(t|θ2), (2.10)
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and the mixture hazard rate is given by

r(t|θ1, θ2) = w(t)r(t|θ1) + [1− w(t)]r(t|θ2), (2.11)

where 0 ≤ w(t) ≤ 1 and

w(t) =
pF (t|θ1)

pF (t|θ1) + (1− p)F (t|θ2)
. (2.12)

It follows from (2.12) that

min{r(t|θ1), r(t|θ2)} ≤ w(t) ≤ max{r(t|θ1), r(t|θ2)}. (2.13)

Wondmagegnehu et al. (2005) discuss the behavior of the hazard rate for a mixture density with

two components for different distributions, discuss further properties in the limits and point out

how bathtub type of hazard rate behavior can be obtained under different parametrization of the

mixture.

Gilks et al. (1996) point out that maximum likelihood estimation of mixture models is not

straightforward in most cases and it may not exist in others. Therefore using Bayesian methods

for parameter estimation is the natural way to approach the problem. Gilks et al. (1996) discuss a

general Bayesian estimation method for finite mixtures for the exponential family of distributions. A

Bayesian estimation via Gibbs sampling and data augmentation can be implemented in an efficient

manner as will be discussed in the sequel.

In our development, we will attempt to model T with k mixtures regardless of when the an-

nouncements are made. In doing so, we will consider lognormal and Weibull densities as components

of the mixture. For instance, the density plots for mixture models with two Weibull and three log-

normal components are shown in Figure 3 (with equal mixing probabilities). A similar behavior is

observed in actual time to abandonment data shown in Figure 4, suggesting evidence for presence

of mixtures.

2.3 A Piecewise Time to Abandonment Model

A preliminary analysis of call center abandonment data, as done in Brown et al. (2005), suggests

that upon joining the queue abandonment rate is increasing, followed by a bathtub and then a fairly

constant type of behavior. Such behavior can also be observed from the density plots of time to
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Figure 3: Mixture Density Plots with Weibull Components k = 2 (left) and Lognormal Components
k = 3 (right)

abandonment given in Figure 4. Here we can see that there is a peak around 5-10 seconds and this

is followed by a second peak at 60 seconds which coincides with the first announcement time. This

suggests that the abandonment rate can exhibit different behavior before or after announcements.

Thus, as an alternative strategy, a piecewise model with switching points defined by announcement

times can be considered for describing the behavior of abandonment rate.

As before, let T denote the time to abandonment. Then, a piecewise time to abandonment

density for T with switching points as announcements is defined by

f(t|Θ) =





Cf0(t|θ0), for 0 < t ≤ τ1

Cf1(t|θ1), for τ1 < t ≤ τ2

...

Cfk(t|θk), for τk < t < ∞

(2.14)

where

C

∫ τ1

0
f0(t|θ0) + · · ·+ C

∫ ∞

τk

fk(t|θk) = 1, (2.15)

and Θ = {θ1, · · · ,θk, τ1, · · · , τk}. The switching point τi represents the time of the ith announce-

ment (for example, in our call center data every 60 seconds there is an announcement), fi(t|θi)

is the piecewise density of the abandonment rate before the (i + 1)th announcement and θi is the
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Figure 4: Time to Abandonment Densities for January, February, March of Regular Customers

corresponding vector of paramaters for i = 1, · · · , k.

Different types of customer behavior before or after announcements can be captured in the

above model where lognormal or Weibull models can be used as density functions.

3 Bayesian Inference for Abandonment Models

As previously discussed, the generalized gamma, the mixture and the piecewise models can cap-

ture the non-monotonic abandonment rate behavior typically observed in call center operations.

In the sequel, given time to abandonment data on n customers, we discuss posterior and pre-

dictive Bayesian analyses of these models using Markov chain Monte Carlo methods. We let

D = {t1, · · · , tn} denote the n observed abandonment times of a given customer profile.
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3.1 Inference for the Generalized Gamma Family

For the generalized Gamma parametrization introduced in (2.2), if we assume a joint prior p(α, γ, λ),

then the joint posterior distribution p(α, γ, λ|D) is obtained proportional to

p(α, γ, λ)
n∏

i=1

γλαtαγ−1
i

Γ(α)
exp{−λtγi }. (3.1)

The posterior distribution p(α, γ, λ|D) can not be obtained analytically for any choice of the prior

p(α, γ, λ) in (3.1). Therefore in order to obtain the joint posterior distributions of the model

parameters we will use a Gibbs sampler along with the random walk Metropolis-Hasting algorithm

whose proposal density is multivariate normal. In so doing, we assume independent gamma priors

for α, γ, and λ. In implementation of the Gibbs sampler, the choice of a gamma prior for λ enables

us to obtain the full conditional of the λ as a gamma distribution. More specifically, if we assume

a gamma prior with parameters a and b, denoted as λ ∼ G(a, b), then the full conditional for λ is

given by

p(λ|α, γ, D) ∝ λαn+a−1e−λ(b+
∑n

i=1 tγi ), (3.2)

implying that (λ|α, γ,D) ∼ G(αn + a, b +
∑n

i=1 tγi ).

If we let θ = {γ, α}, then following Chib and Greenberg (1995) the steps in the Metropolis-

Hasting algorithm and the Gibbs sampler using (3.2) can be summarized as follows

1. Assume the starting points θ(0) at t = 0.

Repeat for t > 0,

2. Generate λ(t) from G(α(t)n + a, b +
∑n

i=1 tγ
(t)

i ).

3. Generate θ∗ from q(θ∗|θ(t)) and u from U(0, 1).

4. If u ≤ α(θ(t), θ∗) then set θ(t) = θ∗; else set θ(t) = θ(t) and t = t + 1,

where

α(θ(t), θ∗) = min

{
1,

π(θ∗|λ(t))q(θ(t)|θ∗)
π(θ(t)|λ(t))q(θ∗|θ(t))

}
. (3.3)

In (3.3), q(.|.) is the multivariate normal proposal density and π(.|.) is the full conditional that

we need to generate samples from. If we repeat the above a large number of times then we obtain

samples from the joint posterior distribution p(θ, λ|D).
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3.1.1 Special Case: The Lognormal Model

As α →∞ in the generalized gamma model (2.2) we obtain the special case of the lognormal model

(2.7). Let yi = log(ti) for i = 1, · · · , n represent the log of n abandonment times and φ = 1/σ2

represent the precision parameter. Also assume that a priori, µ ∼ N(m0, C0) and φ ∼ G(a0, b0)

where µ and φ are independent. In order to obtain the joint posterior distribution of the parameters,

p(µ, φ|D) where D = {y1, · · · , yn}, it is possible to obtain a full Gibbs sampler. The full conditional

for µ can be written as

(µ|φ, D) ∼ N(m1, C1), (3.4)

where C1 = (nφ + 1/C0)−1 and m1 = C1(nφȳ + m0/C0) where ȳ = (
∑n

i yi/n). Also the full

conditional of φ is given by

(φ|µ,D) ∼ G(a1, b1), (3.5)

where a1 = a0 + n/2 and b1 = b0 +
∑n

i [(yi − µ)2/2]. Therefore, given (3.4) and (3.5) we can easily

implement the Gibbs sampler as follows

• Assume the starting points (µ(0), φ(0)).

• Generate µ(1) from (µ|φ(0), D) and φ(1) from (φ|µ(0), D).

• · · ·

• Generate µ(j) from (µ|φ(j−1), D) and φ(j) from (φ|µ(j−1), D).

If we repeat the above a large j number of times then we obtain samples from p(µ, φ|D).

3.2 Inference for the Mixture and Piecewise Models

In our discussion of Bayesian inference for the mixture model (2.9), we consider the lognormal and

the Weibull distributions for the components of the mixture and discuss the implementation of the

Markov chain Monte Carlo methods. More specifically, following Diebolt and Robert (1994), we

will present a data augmentation step within the Gibbs sampler for both Weibull and lognormal k

component mixtures.

Let Θ = {θ1, · · · , θk, p1, · · · , pk} where θj for {j = 1, · · · , k} are the parameters of the respec-

tive components, pj for {j = 1, · · · , k} are the mixing weights. Furthermore assume that zij is a
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latent variable indicating which component the ith observation ti belongs to, that is, zij ∈ {0, 1} and
∑k

j=1 zij = 1. In the data augmentation method z = {z1, · · · , zn} is referred to as the incomplete

data where zi = {zi1, · · · , zik} for i = 1, · · · , n. Given z, the density of the ith observation from

(2.9) can be rewritten as

f(ti|Θ, z) =
k∏

j=1

p
zij

j f(ti|θj)zij , for i = 1, · · · , n. (3.6)

Therefore given a sample size of n, let D = {t1, · · · , tn} the likelihood term with the missing data

structure can be written as

L(Θ; D, z) =
n∏

i=1

k∏

j=1

p
zij

j f(ti|θj)zij . (3.7)

We assume that the mixing weights, (p1, · · · , pk) follow a Dirichlet prior with paremeters

(α1, · · · , αk). Therefore the Gibbs sampler with the data augmentation step for a general pa-

rameter vector Θ can be summarized as follows

• Assume the starting points Θ(0).

• Generate z(0) from p(z|D,Θ(0)) and Θ(1) from p(Θ|D, z(0)).

• · · ·

• Generate z(m−1) from p(z|D,Θ(m−1)) and Θ(m) from p(Θ|D, z(m−1)).

If we repeat the above a large m number of times then we obtain samples from p(Θ, z|D).

In order to implement this algorithm one needs to obtain p(z|Θ, D) and p(Θ|z, D). The full

conditional of z is given by

p(zi|D,Θ) ∼ Multinomial(πi1, · · · , πik), (3.8)

where

πij =
pjf(ti|θj)∑k
l=1 plf(ti|θl)

, (3.9)

for i = 1, · · · , n and j = 1, · · · , k.
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Furthermore, we can show that p(Θ|D,z) = p(p1, · · · , pk|z, D)p(θ1|z, D) · · · p(θk|z, D) where

(p1, · · · , pk|z, D) ∼ Dir(α1 +
n∑

i=1

zi1, · · · , αk +
n∑

i=1

zik), (3.10)

that is, a Dirichlet posterior for the mixing weights. Note that under the lognormal model,

p(θ1|z, D), · · · , p(θk|z, D) can be obtained using (3.4) and (3.5) with θj = (φj , µj) for j = 1, · · · , k.

In the case of Weibull components with scale parameters λj and shape parameters γj , for

j = 1, · · · , k, we have θj = (λj , γj). In order to obtain samples from the joint posterior distribution

of p(θj |z, D) for j = 1, · · · , k, the Gibbs sampler with the Metropolis-Hastings step can be used

as discussed in the generalized gamma model. If we assume independent gamma priors for λj ’s as

λj ∼ G(aj , bj), then for any particular form of priors on γj ’s we can obtain the full conditional of

λj ’s as gamma distributions given by

(λj |z, γj , D) ∼ G(aj +
n∑

i

zij , bj +
n∑

i

zijt
γj

i ). (3.11)

The full conditional distributions for γj ’s can not be obtained analytically for any choice of a prior

form. Thus, we can use the Metropolis-Hastings algorithm to generate samples from p(γj |z, λj , D)

in implementing the Gibbs sampler.

3.2.1 Inference for the Piecewise Model

Similarly posterior samples for the piecewise abandonment rate models introduced in (2.14) can be

obtained using the random walk Metropolis-Hastings algorithm as summarized for the generalized

gamma model (without the full conditional generation step for λ). In our development, we have

considered the Weibull and the lognormal distributions as the components of the piecewise models

with a switching point coinciding with the first announcement (i.e. τ0 = 60s). Therefore, the

relevant joint posterior is p(Θ|D) and Θ = {θ0, θ1} where θ0 and θ1 represent the parameters of

the first and the second components of the piecewise model respectively.

3.3 Predictive Inference and Model Comparison

Once the samples from the joint posterior densities are obtained, it is possible to obtain the pre-

dictive posterior densities and predictive failure rates for different customer profiles. These enable
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us to compare different abandonment rate behavior in call centers implied by different models and

assess the model fit to data. Based on S posterior realizations from the joint posterior distribution

of the parameter vector θ, the predictive posterior density can be obtained as

p(t|D) =
1
S

S∑

i=1

f(t|θ(j))p(θ(j)|D). (3.12)

As pointed out by Lynn and Singpurwalla (1997) the predictive abandonment rate cannot be

calculated as
∫

r(t|θ)p(θ|D)dθ. Given S set of samples the predictive abandonment rate can be

obtained as

r(t|D) =
1
S

∑S
i=1 f(t|θ(j))p(θ(j)|D)

1− 1
S

∑S
i=1 F (t|θ(j))p(θ(j)|D)

. (3.13)

Once posterior samples are available from the distributions of model parameters, model compar-

ison can be made using sampling based methods as suggested by Gelfand (1996). In what follows,

we summarize the comparison criteria discussed by Gelfand (1996).

Let, as before, D represent a sample of observed times of abandonment, {ti; i = 1, · · · , n}. The

cross validation predictive density for observation i is defined as f(ti|D(−i)), where D(−i) represents

data D except for ti. Note that f(ti|D(−i)) represents values of ti which are supported by the model

constructed using D(−i) and is given by

f(ti|D(−i)) =
∫

f(ti|θ, D(−i))f(θ|D(−i))dθ. (3.14)

Since the observations are conditionally independent given θ, f(ti|θ, D(−i)) = f(ti|θ). Therefore,

using (3.14) the pseudo-Bayes factor (PBF) is defined as

n∏

i=1

f(ti|D(−i),M1)
f(ti|D(−i),M2)

, (3.15)

where M1 and M2 are any of the two proposed models. In addition, Ci = f(ti|D(−i),M1)

f(ti|D(−i),M2) is referred

to as the conditional predictive ordinate (CPO) ratio for the ith observation. In order to be able to

compute (3.15) directly, we need to obtain f(ti|D(−i),M1) and f(ti|D(−i), M2) for all i = {1, · · · , n}
which are not available in closed form. However, using the samples of θ generated via Markov

chain Monte Carlo methods for each proposed model, it is possible to estimate the cross validation
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predictive density as follows

f(ti|D(−i)) =
f(D)

f(D(−i))

=
1

∫ f(D(−i),θ)

f(D,θ) f(θ|D)dθ

=
1∫

1
f(ti|D(−i),θ)f(θ|D)dθ

,

for i = 1, · · · , n. Therefore, a Monte Carlo estimate of f(ti|D(−i)) can be obtained as

f̂(ti|D(−i)) =
1

1
S

∑S
j=1

1
f(ti|D(−i),θ

(j))

, (3.16)

where S is the number of samples generated and θ(j) is the jth vector of the generated parameter

samples. Since given θ, ti’s are independent, f(ti|D(−i),θ
(j)) = f(ti|θ(j)) can be used in (3.16).

Finally, once the cross validation predictive densities are estimated using (3.16), coupled with the

pseudo-Bayes factor as introduced in (3.15), we can compare the proposed time to abandonment

models. Alternatively, we will investigate the fit of the proposed models to abandonment data from

a future month. For instance using the models constructed using the abandonment behavior in

January, we can assess their fit to abandonment data in February and March.

4 Numerical Illustrations

In order to show the implementation of the Bayesian methods introduced in the previous section

we have used real call center abandonment data from an anonymous bank operation. A detailed

description of the data can be found at Data (2000). We have carried out Bayesian inference for

the abandonment behavior observed in the month of January for two different customer profiles;

regular customers and stock exchange customers. Next we discuss the implications of the models

on call center customer abandonment behavior, effect of announcements on such behavior, change

of behavior from one month to the next as well as for different customer profiles. In addition, we

summarize issues such as model fit, predictive abandonment rate behavior and predictive perfor-

mance.
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4.1 Case 1: Regular Customers

First we discuss the model fit issue using the sampling based method introduced in (3.14). Let

log(
∏n

i=1 f̂(ti|D(−i),Mj)) be called the global CPO of model j in the log scale and represent how

much the model j supports the data. In other words, higher the global CPO better is the fit of the

model.

Models Global CPO
LogNormal -7859

Generalized Gamma -7822.48

Table 1: Global CPO in the Log Scale for the Generalized Gamma and Lognormal Models

Models Global CPO
Piecewise Weibull -7833.59

Piecewise LogNormal -7818.48

Table 2: Global CPO in the Log Scale for the Piecewise Models

Models Global CPO
Mixture Weibull (2) -7776.11
Mixture Weibull (3) -7763.62

Mixture LogNormal (2) -7823.11
Mixture LogNormal (3) -7760.74

Table 3: Global CPO in the Log Scale for the Mixture Models

Based on the global CPO values shown in Tables 1, 2 and 3 the best fit is obtained using the three

component lognormal mixture model. Also we note that the lognormal does not seem to support the

abandonment behavior of the regular customers. This might be due to the specific abandonment

behavior shown by regular customers and is discussed in the sequel. Although the three component

lognormal mixture model seems to provide the best fit, we have also investigated for each time to

abandonment sample how much better it was outperforming its closest fit competitor. In order

to be able to observe this, consider the difference, log(f̂(ti|D(−i), M1)) − log(f̂(ti|D(−i),M2)), for

which positive values represent support for the first model for the ith sample (and vice versa). The

behavior of this log difference for different sample values is shown in Figure 5. Mostly this value

oscillates around the value of zero, indicating a balance between the two models. However as can

be observed from the high positive values in the graph, there are several occasions where the first
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model (three component lognormal mixture) outperforms the second one (three component Weibull

mixture).

0 500 1000 1500

−
0.

5
0.

0
0.

5
1.

0

i

C
P

O
 D

iff
er

en
ce

Figure 5: log(f̂(ti|D(−i),M1))− log(f̂(ti|D(−i), M2)) vs Sample i

Another issue that we have investigated was the potential existence of higher order mixtures.

All the higher order mixture models seemed to be indistinguishable from the three-component

mixture models as suggested by similar parameter values. We have investigated the possibility of

fourth,fifth and sixth order mixtures and found no evidence in favor of higher order mixtures for

both the lognormal and Weibull models.

The mixture and the piecewise models seem to support the behavior of the regular customers

as exhibited in the general pattern of Brown et al. (2005). This suggests that regular customers

change their abandonment behavior. The customers tend to become more or less patient as they

wait more in the line or as they experience announcements. What would be of interest to call center

practitioners is the investigation of how regular customers exhibit different abandonment behavior

over time or before/after announcements. This can be observed via the posterior predictive aban-

donment rates implied by different models and are obtained as discussed in (3.13). The posterior

predictive abandonment rates of some of the models are shown in Figures 6 and 7 from which

non-monotonic abandonment rate can be inferred. This supports the claim that regular customers

exhibit different abandonment rate behavior as they wait in the line or experience announcements

(non-monotonic). The non-monotonic behavior is also supported by the posterior results implied
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by the generalized gamma distribution whose abandonment rate is the most flexible and is not a

mixture nor a piecewise model and is among the best fitting models (see Figure 7). Furthermore

all models implicate that as customers join the queue their abandonment rate is increasing at first,

in other words they are less patient upon arrival. However as they wait more in the queue or

experience announcements they become more patient and their abandonment rate decreases.

An attractive feature of the Bayesian modeling of the abandonment rate is that we can now

formally test the hypothesis of non-monotonic behavior. Since the generalized gamma model can

exhibit both monotonic and non-monotonic abandonment rate behavior you can use its posterior

samples to test the hypothesis. Therefore, using the notation introduced in (2.2), formally the

hypothesis testing can be setup as

H0 : {1− (αγ)
γ(γ − 1)

> 0|D} vs. H1 : {1− (αγ)
γ(γ − 1)

≤ 0|D}

where Pr(H0 : {1−(αγ)
γ(γ−1) > 0|D}) was found to be equal to one. In other words, we can infer that

regular customers exhibit non-monotonic behavior with probability one.

Another interesting finding is the one implied by the piecewise lognormal model. After the

60th second which coincides with the first announcement (it is also the switching point for the

piecewise model), the customers begin to exhibit a decreasing abandonment rate behavior, that

is they become more patient as soon as they hear the announcement (see Figure 7). A similar

behavior can also be inferred from the lognormal mixture models where customers begin to exhibit

a decreasing abandonment rate behavior slightly after the 60th second.
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Figure 6: Predictive Abandonment Rates for Regular Customers: Three-Component Lognormal
Mixture (left) and Two-Component Lognormal Mixture (right)
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Figure 7: Predictive Abandonment Rates for Regular Customers: Generalized Gamma (left), Piece-
wise Lognormal (right)

In Tables 1-3, we presented comparison of the models based on abandonment data during the

month of January. We are also interested in how these models perform in predicting abandonment

behavior in other months. Thus, we next obtained one-month ahead fits using the best fitting

models to investigate if there are clear differences between the months of January and February

(see Figure 4). The results are very encouraging, the best fit rankings mostly stayed the same

(except for the two component mixture lognormal model which seem to provide a slightly better fit

than the piecewise lognormal and generalized gammma models) and there is strong evidence that

the customer abandonment behavior does not change from month to month. This also suggests

that the proposed models were able to adequately capture the abandonment behavior of regular

customers. In order to assess the fits, we have used one-month ahead log-likelihoods as follows

log{
nf∏

i=1

1
S

S∑

j=1

f(tfi |θj)}, (4.1)

where nf is the sample size for the month of February, tfi for i = 1, · · · , nf are the nf time to

abandonment samples for February customers and θj for j = 1, · · · , S are S posterior samples

obtained in the previous month. The log-likelihoods for the best fitting models are shown in Table

4.

Posterior predictive distributions which are obtained as in (3.12) for the top three best fitting

models, that it the mixture models are shown in Figure 8 against the actual abandonment data. An

interesting property that can be noted is that the lognormal mixture captures a small proportion
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Model Log Likelihood
Mixture LogNormal (3) -8090.952
Mixture LogNormal (2) -8142.75

Mixture Weibull (3) -8099.588
Mixture Weibull (2) -8123.107

Piecewise LogNormal -8149.24
Generalized Gamma -8154.642

Table 4: One-Month Ahead Fits

of abandonments that occur immediately right after customers join the queue. In other words, one

of the components of the lognormal mixture captures behavior that regular customers exhibiting

that is referred to as balking in the queuing literature.
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Figure 8: Posterior Predictive Fits vs. Actual Data

Table 5 shows a summary of statistics and Figure 9 shows the respective density plots of the

posterior parameters of the best model fit, the lognormal mixture model with three components.

Parameters µ1 µ2 µ3 φ

Mean 0.5025 2.5560 4.1004 3.5609
St.Deviation 0.1494 0.0300 0.0226 0.1728
Parameters p1 p2 p3

Mean 0.0180 0.3990 0.5830
St.Deviation 0.0040 0.0154 0.0156

Table 5: Posterior Parameters Summary Statistics for the Lognormal Mixture Model with Three
Components

The results presented in this section are based on the Markov chain Monte Carlo sampling
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Figure 9: Posterior Parameters Density Plots for the Lognormal Mixture Model with Three Com-
ponents

techniques discussed in the previous section. Therefore we briefly discuss issues of convergence and

in doing so, we present the results obtained using the generalized gamma model. For the sake of

preserving space we will omit a detailed discussion of convergence for the rest of the models for

which similar results were obtained. An informal way of assessing convergence is to observe the

behavior of the trace plots of the posterior parameters. As shown in Figure 10, where λ = eθ, all

trace plots exhibit a fairly constant behavior around a specific value which is the first evidence of

convergence.
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Figure 10: Trace Plots of α (left), γ (middle) and θ (right)
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A more formal way of assessing convergence can be carried out using the Brooks and Gelman

plots and the shrink factor (see Brooks and Gelman (1998) for a detailed discussion). In order to

assess convergence using the methods discussed in Brooks and Gelman (1998) we have used three

different chains with different starting points. According to Brooks and Gelman (1998), if the

shrink factor also referred to as the scale reduction point estimate is around 1 then convergence is

said to have been attained. The Brooks and Gelman plots are shown in Figure 11 where the shrink

factor approaches 1 as the number of iterations increases.
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Figure 11: Brooks and Gelman Plots

The scale reduction point estimates for the parameters α and γ were 1.04 and 1.03 for θ which

also supports what we were able to conclude by observing the trace plots and the Brooks and

Gelman plots.

4.2 Case 2: Stock Exchange Customers

Another customer profile for which we have investigated abandonment behavior is the stock ex-

change customers. As shown in Figure 12, stock exchange customers exhibit a different time to

abandonment behavior as opposed to the regular customers. Our first impression was that they

did not seem to exhibit mixture behavior. We have investigated potential mixture behavior us-

ing Weibull components and found no evidence in its favor. The expected values of the shape

parameters, as in (2.9), were very close to 1 and mixing probabilities were equal (∼ 0.5) which

shows evidence against mixing. We have also considered a Weibull model to be able to assess

whether stock exchange customers were exhibiting increasing, decreasing or constant abandonment

rate behavior. The expected value of the posterior shape parameter (E(γ|D)) was found to be
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0.9606, a value very close to 1. These results led us to believe that stock exchange customers were

exhibiting an abandonment rate behavior which can be captured by the exponential model. We

have carried out a conjugate Bayesian analysis of the exponential model (see Gelman et al. (2003)

for instance) and compared it against the Weibull model using the pseudo Bayes factor (3.15). The

pseudo Bayes factor was ∼ 3.815, slightly in favor of the exponential model. This suggests that the

stock exchange customers, unlike the regular customers, do not change their abandonment behavior

(monotonic abandonment rate) as they wait more in the line or as they experience announcements

as implied by both the Weibull and the exponential models. This might be due to the fact that

stock exchange service is time sensitive and do not offer the customer the luxury of redialing at a

later time since abandoning might yield a lost investment opportunity for the customers. Whereas

regular customers might redial at a later time when the lines are less busy.
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Figure 12: Histogram for Stock Exchange Customers in January

5 Concluding Remarks

In this paper we have introduced different strategies to model different customer abandonment

behavior in call centers. Most of the research in call centers with abandonment (also referred to

as impatience) has been conducted from a queuing perspective and to the best of our knowledge

research from statistical inference has not been considered. This research aims to fill this gap and

to bring concepts from survival and reliability analysis into the call center literature. In doing

so we have introduced different family of distributions, mixture models and piecewise time to
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abandonment models with their respective properties and their Bayesian analysis via Markov chain

Monte Carlo methods. Furthermore we have introduced the notion of the abandonment rate by

motivating its relationship to the hazard and failure rate concepts from survival and reliability

analysis.

In order to show the implementation of the proposed models we have used real call center data

for two customer profiles, regular and stock exchange customers. We were able to illustrate different

customer abandonment rate behavior exhibited by different customer profiles and found evidence

in favor of mixture models for regular customers due to their flexible hazard rate behavior and in

favor of exponential behavior for stock exchange customers. Furthermore, the piecewise models

showed that regular customers tend to change their abandonment behavior as they experience

announcements, whereas the stock exchange customer do not tend to exhibit such behavior. In

other words, regular customers exhibit non-monotonic abandonment rate and the stock exchange

customers monotonic abandonment rate. We note here that the models introduced are general, that

is they are applicable to call center operations with several different customer profiles. Combined

with studies in queues with abandonment and their relationship to staffing (see Garnett et al.

(2002) for instance), the proposed models can be used to infer operational regimes (as in Garnett

et al. (2002)), level of service and operating characteristics (as in Zeltyn and Mandelbaum (2005)

and Brandt and Brandt (1997)) implied by different abandonment behavior. We also note here

that these studies can only be possible if other call center primitives such as the arrival rate and

the service rate are given (or studied separately).

We believe that further research from a decision theoretic framework in call centers with aban-

donment is possible. Coupled with the proposed models, one can study the optimal announcement

time which will maximize the utility of the call center operation from a maintenance problem point

of view. Furthermore one can also study the effects of the optimal announcement times on call

center operating characteristics implied by different customer profiles.
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