
\ fWf#

The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2009-1
January 26, 2009

A Markov Modulated Poisson Model for Software Reliability

Joshua Landon
Institute for Integrating Statistics in Decision Sciences

The George Washington University, USA

Süleyman Özekici
Department of Industrial Engineering

Koc University, Turkey

Refik Soyer
Department of Decision Sciences

The George Washington University, USA

A Markov Modulated Poisson Model for Software
Reliability

Joshua Landon�, Süleyman Özekiciyand Re�k Soyerz

Abstract

In this paper we consider a latent Markov process governing the intensity rate of soft-
ware failures. The latent process represents the behavior of the debugging operations
over time and enables us to deal with the imperfect debugging scenario. We develop
the Bayesian inference for the model and also introduce a method to infer the unknown
dimension of the Markov process. We illustrate the implementation of our model and
the Bayesian approach by using actual software failure data.
Keywords. Software reliability, Hidden Markov model, Bayesian inference

1 Introduction

Poisson process and its extensions are widely used in software reliability modeling. These

point process models are generated by the interfailure times of the software. One of

the original Poisson process models is the time-dependent error detection model of Goel

and Okumoto (1980). Most other Poisson process models are extensions of the Goel-

Okumoto model. Such extensions and Kuo and Yang�s (1996) uni�cation of the Poisson

process models via general order and record value statistics are discussed in the recent

review by Soyer (2011).

A Markov-modulated Poisson process (MMPP) is a Poisson process whose intensity de-

pends on the current state of an independently evolving continuous-time Markov process.

Özekici and Soyer (2006) discuss probabilistic and statistical issues related to these processes

�The George Washington University, Department of Statistics, Washington, DC 20052, USA
yKoç University, Department of Industrial Engineering, 34450 ·Istanbul, Turkey
zCorresponding Author, The George Washington University, Department of Decision Sciences, Wash-

ington, DC 20052, USA (soyer@gwu.edu)

1

in a rather general setting. These processes are used in a variety of applications in queue-

ing, inventory, and reliability. The use of modulating processes in these applications have

gained a lot of attention because they make the models more realistic. The customer

arrival process in queueing and inventory models are often a¤ected by an external envi-

ronmental process that represents economic, �nancial, social or other factors in which the

system operates. The arrival rate of customers depend on the state of the environment

as well as other stochastic or deterministic parameters. Prabhu and Zhu (1989) discuss

Markov modulated queues, and Arifo¼glu and Özekici (2010) analyze an inventory model

operating in a partially observable random environment.

First consideration of MMPPs in software reliability applications is due to Özekici

and Soyer (2003) who assume that the failures of the software depend on its operational

pro�le. Musa (1993) de�nes the operational pro�le as the set of all operations that a

software system is designed to perform and their occurrence probabilities. The modulating

process now represent how the software is used and, thus, the failure process depends on it.

Özekici and Soyer (2003) consider a setting where there is perfect debugging during the

testing of software and the state of the environmental process is observed. In this paper,

we relax both of these assumptions. More speci�cally, in our setup we consider software

that goes through a debugging process, but we do not assume that debugging is perfect.

Instead, we assume that the failure rate of the software is nonhomogeneous and modulated

by the environmental process and this enables us to consider both improvements and

deteriorations in the software as a result of the debugging.

Unlike Özekici and Soyer (2003), in our setup the environmental process is latent and

it represents the state of the debugging process as well as the operations that the software

goes through during the process. Our objective is to provide a computationally tractable

Bayesian procedure to make inference on the software failure rates and the parameters of

the modulating Markov process based on observed data. In our setting, since the state of

the modulating process is latent or hidden, we only have information on the failure times.

An interesting problem then is to make statistical inferences on the hidden process based

2

on failure data. Our model extends the discrete time hidden Markov model considered

by Durand and Gaudoin (2005) to continuous time and develops its Bayesian analysis.

Applications of our model in reliability also include hardware reliability where a device

performs a stochastic mission and its failure rate depends on the stage of the mission.

Çekyay and Özekici (2010) discuss issues related to mean time to failure and availability

when the mission or environmental process is semi-Markovian.

The details of our model will be presented in Section 2 where the stochastic structures

of the modulating and failure processes are described. In Section 3 we will assume that

the number of states of the hidden process is known, and show how we can estimate

the software failure rates as well as the transition rates of the Markov process. Then, in

Section 4 we will assume that we do not know the number of states of the hidden Markov

process, and will present an approach to obtain the marginal likelihood based on Chib

(1995) that will enable us to infer the unknown number of states. Finally, our results

will be demonstrated using actual software failure data in Section 5. Conclusions follw in

Section 6.

2 Markov Modulated Poisson Process Model for Software
Reliability

Let N = fNt; t � 0g be a modulated Poisson process such that Nt depicts the total

number of software failures until time t: There is an environmental process that modulates

the software failure rates. In other words, the software failure rate is random at any

time depending on the state of this environmental process. In software reliability, the

environmental process can have several di¤erent interpretations. In Özekici and Soyer

(2003), for example, it is used to represent the operational pro�le or process which depicts

the operations that the software performs randomly after it is released. It may also be

used to represent the state of the software during testing and debugging with respect to

its failure properties. At any time, the software can be classi�ed to be in �excellent�,

�good�, or �bad� state depending on the number of faults or other failure properties.

3

Although our analysis applies to both of these cases, we motivate it by the latter so

that the environmental process represents the state of the software during testing and

debugging. This state is not necessarily observed and the software failure rate depends on

the unobserved state.

The environmental process is Y = fYt; t � 0g where Yt represents the state of the

software during testing and debugging at time t. Since the e¤ect of the changes made to

the software during the debugging process is not necessarily observable, Y is a latent or

hidden process. We assume that Y = fYt; t � 0g is a continuous-time Markov process

with a �nite state space E = f1; 2; � � � ;Kg where K is the number of states. We further

assume that when the state of the software is i 2 E; failures occur according to an ordinary

Poisson process with rate �i: Therefore, the rate of failures at time t is �Yt : To be more

precise,

P [Nt = kjY] =
e�AtAkt
k!

(1)

where

At =

Z t

0
�(Ys)ds (2)

for all k = 0; 1; � � � and t � 0:

It follows from the above that, given Y; N is a nonstationary Poisson process with mean

value function E[NtjY] = At. Letting T = fTn;n = 0; 1; 2; � � � g denote the software failure

process so that Tn is the time of the nth failure, we have the conditional distribution

P [Tn+1 � Tn > tjY; Tn] = e�(ATn+t�ATn): (3)

The modulated process reduces to the ordinary Poisson process with rate � if the failure

rate vector is �i = � independent of the state of Y: In this case, At = �t deterministically.

The failure process N can be studied via the additive functional A of Y: In particular,

(1) and (3) directly yield

P [Nt = k] = E

�
e�AtAkt
k!

�
(4)

and

P [Tn+1 � Tn > tjTn] = E[e�(ATn+t�ATn)]: (5)

4

Therefore, the probability law of A; thus that of the environmental process Y; plays an

important role in our analysis of N and T:

Let Xn be the nth state of the environmental process and Un denote the time when the

process enters the nth state so that Yt = Xn whenever Un � t < Un+1: Since Y is a Markov

process, it is well-known that the sequence of states X = fXn;n = 0; 1; 2; � � � g is a Markov

chain with state space E and some transition matrix Pij = P [Xn+1 = jjXn = i] with

Pii = 0 for all i; j 2 E: Moreover, the duration of any state is exponentially distributed

so that P [Un+1 � Un > tjXn = i] = e��it where �i is the holding rate for state i: The

transition rate matrix or generator of the Markov process Y is

Gij =

�
��i; if j = i
�iPij ; if j 6= i (6)

or Gij = �i(Pij � Iij) where I is the identity matrix.

Following Özekici and Soyer (2006), we de�ne another process Y � such that

Y �t =

�
Yt; if t < T1
�; if t � T1

(7)

where T1 is the time of the �rst failure. While the process is in state i; the time to failure

has the exponential distribution with rate �i: It is clear that Y � is also a Markov process

on the extended state space E� = E [f�g and it is obtained by �stopping�the Markov

process Y as soon as a failure occurs. Here, � is an absorbing state where the process is

dumped to as soon as it is stopped. The transition matrix of the embedded Markov chain

is now extended as

P �ij =

8><>:
�i

�i+�i
Pij ; if i; j 2 E

�i
�i+�i

; if i 2 E; j = �
1; if i; j = �

(8)

and the transition rate vector is

��i =

�
�i + �i; if i 2 E
0; if i = �:

(9)

If we let the matrix G�ij = ��i (P
�
ij � Iij) denote the generator of Y �; then it is well

known that the transition function P �ij(t) = P [Y
�
t = jjY �0 = i] for all i; j 2 E� is given by

5

the matrix-exponential solution

P �(t) = exp
�
G�t

�
=

+1X
n=0

tn

n!

�
G�
�n
: (10)

A further simpli�cation is obtained by noting that

G�ij = Gij � �ij (11)

for all i; j 2 E where � is a diagonal matrix de�ned as

�ij =

�
�i; if j = i
0; if j 6= i: (12)

Since G��j = 0 and G
�
i� = �i for all i 2 E and j 2 E�; we can rewrite (10) as

P �ij(t) = exp
�
G�t

�
ij
= exp ((G� �)t)ij (13)

for all i; j 2 E:

Now, note that our construction of Y � implies

T1 = infft � 0;Y �t = �g (14)

and T1 is the �rst-passage-time to the absorbing state �: So, it has a phase-type distrib-

ution and, in particular,

P [T1 > tjY0 = i] = P [Y �t 2 EjY0 = i] =
X
j2E

P �ij(t) =
X
j2E

exp ((G� �)t)ij : (15)

Note that in reliability applications where failures occur exponentially with a rate that

depends on the randomly changing environmental process, (15) gives the survival function.

In this case, the mean time to failure is another quantity of interest. Using the Markov

property, it can be computed by solving the system of linear equations

E[T1jY0 = i] =
1

��i
+
X
j2E

P �ijE[T1jY0 = j] (16)

for i 2 E so that the explicit solution is

E[T1jY0 = i] =
X
j2E

h
I � P �

i�1
ij

1

��j

!
: (17)

6

Following Özekici and Soyer (2006) an ergodic analysis can also be developed. Suppose

that bothX and Y are ergodic processes with limiting distributions �j = limn!+1 P [Xn =

j] and �j = limt!+1 P [Yt = j]: This implies that � is the unique solution of � = �P with

the normalizing condition
P
i2E �i = 1. It can be shown that

�i =
�j=�jP

k2E (�k=�k)
: (18)

Using Theorem 1 of Özekici and Soyer (2006), we can obtain

lim
t!+1

E[Nt � �̂tjY0 = i] =
X
j2E

�j

"
�̂� �j
�j

#
(19)

where

lim
t!+1

E[NtjY0 = i]
t

= �̂ =
X
j2E

�j�j (20)

is the average failure rate. It follows from Fischer and Meier-Hellstern (1992) that the

expected number of arrivals until time t is

E[NtjY0 = i] = �̂t+
X
j2E

�
[exp (Gt)� I] [G+�]�1

�
ij
�j (21)

where the matrix �ij = �j has identical entries in each column:

Our primary objective is to develop statistical inference for the MMPP model using a

Bayesian framework. It is important to note that in our model the Y process is latent and

therefore in addition to the unknown parameters we also need to make inference about

the latent states.

3 Bayesian Analysis of the MMPP Model

In this section we will illustrate how we can estimate all the parameters as well as the

latent states in the MMPP model. The approach is based on the Markov Chain Monte

Carlo (MCMC) method given in Fearnhead and Sherlock (2006). This method is based

on a Gibbs sampler and requires a three-stage process. We �rst introduce some notation

that will be used in describing the three stages. We de�ne the software failure rates

as � = f�i; i 2 Eg; holding rates of the Y process as � = f�i; i 2 Eg, and transition

7

probabilities as P = fPij ; i; j 2 Eg: Since there are K states in E and Pii = 0 the total

number of parameters to be estimated is K2: For example, when K = 3, the transition

matrix for the three-state Markov chain is

P =

0@ 0 p12 p13
p21 0 p23
p31 p32 0

1A
where the sum of the probabilities in each row is one; so we only need to estimate one

probability in each row, say p12, p21 and p31; when estimating P. We assume that the

system is observed until some time tobs and we suppose that n failures are observed at

times t1; t2; � � � ; tn during the observation interval [0; tobs].

In Stage 1, we will simulate the state of the hidden Markov process at each of the failure

times given by our data set D = f t1; t2; � � � ; tng. Thus, all the results are conditional on

the parameters �; � and P. In Stage 2, we will simulate the entire hidden Markov process,

and in Stage 3 we will simulate a new set of parameter values using the Gibbs sampler.

In the rest of this section we will outline what each of the three stage involves.

Stage 1

Since Y is a Markov process, the states fSk = Ytkg observed at times 0 = t0 � t1 �

t2 � � � � � tn � tn+1 = tobs form a Markov chain with transition probabilities

T(k)sk�1;sk = P [Sk = skjSk�1 = sk�1]

during the kth interval with duration tk � tk�1: It is well-known that T(k) is the matrix

exponential

T(k) = exp [(G��)(tk � tk�1)] : (22)

We recursively de�ne the matrices

A(n+1) = T(n+1); (23)

A(k) = T(k)�A(k+1)

for k = n; n� 1; � � � ; 1: Note that these matrices denote the likelihoods

A(k)sk�1;sn+1 = P [ftk; tk+1; � � � ; tng; Sn+1 = sn+1jSk�1 = sk�1]:

8

So we �rst of all calculate fT(k)g using (22), and then we calculate fA(k)g using (23),

starting with A(n+1), and going backwards until we have

A(1)s0;sn+1 = P [D; Sn+1 = sn+1jS0 = s0]:

We will assume that we know S0 = s0 and Sn+1 = sn+1, the states of the Markov

process at times 0 and tobs, respectively. If they are unknown then we can adjust this

algorithm slightly by putting a prior distribution on the state of the process at these

times, but in our example we will assume that these states are known. Then, the state Sk

of the Markov chain at time tk can be simulated using the conditional distribution

P [Sk = sjD; Sk�1 = sk�1; Sn+1 = sn+1] =
T
(k)
sk�1;s�sA

(k+1)
s;sn+1

A
(k)
sk�1;sn+1

(24)

recursively by proceeding forwards through the observation times t1; t2; � � � ; tn.

Stage 2

After completing Stage 1 we will have our simulated states of the hidden Markov process

fSkg at each of our observation times ftkg. We will now use these to simulate the entire

hidden Markov process Y . To do this we �rst of all simulate it over the interval (t0; t1),

then (t1; t2) and so on until (tn; tn+1). The simulation over each interval is done using

the uniformization of the Markov process Y supposing that � = maxi2E �i is �nite. It is

well-known (see, for example, Ross (1996)) that the Markov process Y can be represented

as a Markov chain X̂ subordinated to a Poisson process N̂ with arrival rate � so that

Yt = X̂N̂t and

P [Yt = stjY0 = s0] = P [X̂N̂t = stjX̂N̂0 = s0]

=

+1X
n=0

P [N̂t = n]P [X̂n = stjX̂0 = s0]

=

+1X
n=0

e��t (�t)n

n!
Mn
s0;st

where

M =
1

�
G+ I: (25)

9

is the transition matrix corresponding to the Markov chain X̂: Over any interval (tk�1; tk);

we already obtained the simulated states Ytk�1 = sk�1 and Yttk = sk in Stage 1: Therefore,

the conditional distribution of the number failures of N̂ during (tk�1; tk) is

P [N̂tk � N̂tk�1 = n jYtk�1 = sk�1; Yttk = sk] (26)

=

e��(tk�tk�1) (�(tk � tk�1))n

n!

!
Mn
sk�1;sk

exp [G(tk � tk�1)]sk�1;sk

since

P [Ytk = skjYtk�1 = sk�1] = exp [G(tk � tk�1)]sk�1;sk :

Therefore, the number of failures N̂tk � N̂tkl�1 can be simulated using the distribution

(26). If simulation yields N̂tk � N̂tkl�1 = r; then the r arrival times t̂1; t̂2; � � � ; t̂r of N̂ over

the interval (tk�1; tk) are simulated by generating r uniform variates over (tk�1; tk) and

ordering them: Now, we know that Ytk�1 = sk�1 and Ytk = sk and the states of hidden

Markov process at t̂1 � t̂2 � � � � � t̂r are simulated recursively by using the conditional

distributions

P [Yt̂j = sjYt̂j�1 = ŝj�1; Ytk = sk] =
Mŝj�1;sM

r�j
s;sk

Mr�j+1
ŝj�1;sk

(27)

for j = 1; 2; � � � ; r: For j = 1; one should set t̂j�1 = t̂0 = tk�1 and ŝj�1 = ŝ0 = sk�1: It

also follows from the conditional distribution (27) that Yt̂r = Ytk = sk at the last time

point when j = r since M0 is the identity matrix.

Stage 3

Having completed Stages 1 and 2, we should now have the entire simulated hidden

Markov process, as well as our data, the observed times of the failures. Let F = fYt; 0 �

t � tn+1g denote the environmental process generated using the procedure in stage 2.

Thus, we can write out our conditional likelihood function of the parameters and then

obtain the full conditionals to generate a new set of values for our parameters at each step

of the Gibbs sampler. Let � i be the total time that the hidden Markov process spends in

state i, let ni be the total number of failures that occur while the process is in state i, and

10

let rij be the number of times the process makes a transition from state i to state j. It is

clear that � i; ni; and rij are in F for all i; j 2 E: Given data D and the entire history F

of the Markov process, the conditional likelihood function of the parameters �i�s, �i�s and

Pij�s is given by

L(�; �;P;F ;D) /
Y
i2E

�

P
j2E

rij

i exp(��i� i)�nii exp(��i� i)
Y
j2E

P
rij
ij :

Assuming conjugate independent priors for the unknown parameters the full conditional

distributions can be easily obtained. More speci�cally, for a given state i = 1; : : : ;K, we

assume independent gamma priors for �i�s and �i�s, denoted as �i � G(a
�
i ; b

�
i), and �i �

G(a�i ; b�i), respectively. For the i-th row of the transition matrix P , we assume a Dirichlet

prior, independent of the other rows, as Pi � Dir(�i1; : : : ; �iK) where Pi = (Pi1; : : : ; PiK).

Note that in Pi we have Pii = 0 and the corresponding parameter �ii = 0. Using standard

Bayesian results we can show that given the full history of the hidden Markov process,

the full conditional distributions of the parameters can be obtained as

�ij��ii � G(a�i +
X
j2E

rij ; b
�
i + � i) and �ij �

�i
i � G(a�i + ni; b�i + � i)

PijP�ii � Dir(�i1 + ri1; : : : ; �iK + riK)

where �ii = rii = 0.

We then generate new values for these parameters from their posterior distribution

and then repeat the whole process again, starting with Stage 1.

4 Determining the Number of States in the Hidden Markov
Process

Our analysis in Section 3 assumed that the number of states K in the hidden Markov

process was known. However, in general, the actual number of states may be unknown to

11

us, so it is important to be able to determine how many states there are. The problem of

determining K can be considered as a model selection problem in the Bayesian approach

where the model choice is made using Bayes factors; see Kass and Raftery (1995) for a

review. The computation of the Bayes factors requires the evaluation of marginal likeli-

hood for a given model, that is, for given value of K in our case. More speci�cally, if we

let D = ft1; � � � ; tng, denote our observed data, we want to obtain the marginal likelihood

p(DjK): The model with the highest value of p(DjK) is the one most supported by the

data and this can be used as the criterion for determining the value of K. Alternatively,

assuming a support for K and specifying prior probabilities P [K = k] for di¤erent mod-

els such that
P
k P [K = k] = 1 we can obtain posterior model probabilities P [K = kjD]

using the marginal likelihood.

Evaluation of the marginal likelihood p(DjK) analytically is not possible in many prob-

lems since it requires integrating out the unknown parameters. Since draws from prior

distributions of the parameters result in unstable estimation, the use of Monte Carlo meth-

ods emphasize use of posterior Monte Carlo samples to evaluate p(DjK). Although this

is not straightforward in many cases, when the full posterior conditional distributions are

known forms, the marginal likelihood terms can be approximated using the approach pro-

posed by Chib (1995). Since the Bayesian analysis of the MMPP in Section 3 is based on

known full conditionals, we can adopt Chib�s procedure to our problem as will be discussed

in the sequel.

In our case, the marginal likelihood for a speci�c model with dimension K is given by

p(D) = p(Dj�; �;P;F) p(�; �;P;F)
p(�; �;P;FjD) (28)

where � and � areK-dimensional vectors of �i�s and �i�s and P is the transition probability

matrix of dimension K with zeros on the diagonal. We can rewrite (28) as

p(D) = p(Dj�; �;P;F) p(Fj�;P)p(�; �)p(P)
p(�; �;PjF ;D)p(FjD) (29)

Equation (29) holds for any values of (�; �;P;F) such as (��; ��;P�;F�) which is typically

chosen as the mean or mode values of the posterior distributions. We note that all the

12

terms in the numerator are available to us analytically and therefore can be evaluated at

(��; ��;P�;F�):The tricky part to evaluate is the denominator term

p(F�jD) =
Z
p(F�jD; �; �;P)p(�; �;PjD)d(�; �;P)

which can be evaluated using G samples from the posterior distribution p(�; �;PjD) via

p(F�jD) = 1

G

GX
g=1

p(F�j�(g); �(g);P(g);D): (30)

The �rst term p(��; ��;P�jF�;D) can easily be written down as product of gamma and

Dirichlet densities. Thus, for each value of K, we can approximate (29) and determine the

model with the highest support of the data. As previously mentioned, using the marginal

likelihood we can also compute posterior model probabilities P [K = kjD] to infer the

value of K.

5 Numerical Illustration

In this section we consider Musa�s System I data (see for example, Singpurwalla and

Soyer (1992)) to illustrate our model and to discuss what type of additional insights can

be obtained from the MMPP model. The data was observed over a period of tobs = 90; 000

units, and n = 136 failures were observed during this time. A plot of the time between

failures is shown in Figure 1 below.

Time Series Plot of Failure Times

Period

0 20 40 60 80 100 120 140

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure 1: Musa�s System 1 Data

13

The failure times will be labeled t1; � � � ; t136. All the numbers from Musa�s System I

data have been divided by 1000. We also set t0 = 0 and tn+1 = t137 = tobs = 90. So the

data we are using is t0 = 0, t1 = 0:003, � � � , t136 = 88:682, t137 = 90. In our analysis we

will use the standard homogeneous Poisson process model as benchmark in our analysis.

Note that the marginal likelihood in this can be easily obtained as a negative binomial

model by using the conjugate gamma prior for failure rate �.

In our development we will present results from the analysis of the two-state MMPP.

Note that in this case the transition matrix for the embedded Markov chain of the envi-

ronmental process is given by

P =

�
0 1
1 0

�
and therefore we only need inference on parameters �1; �2; �1;and �2; as well as on latent

states s1; � � � ; sn. In our analysis we use di¤used but proper priors for these parameters by

setting a�i = b
�
i = 0:01 for i = 1; 2. Similarly, we use a

�
i = b

�
i = 0:01 for the priors of �1 and

�2. After a small burn-in sample, we collected 1000 simulations to obtain the posterior

distributions for our four parameters. We have not witnessed any convergence problems

in running the Gibbs sampler. Trace plots for posterior samples from the distributions of

�1;and �2 are shown in Figures 2 and 3.

Figure 2: Trace plot of �1

The posterior distributions of �1 and �2 that are shown in Figures 4 and 5 imply

that the failure rate in state 1 is higher than the failure rate in state 2. The posterior

14

Figure 3: Trace plot of �2

distribution of the holding rate �1 in state 1 is given in Figure 6. The posterior mean of

�1 is 0.0532 implying that the expected holding time in state 1 is about 18.795 time units.

Our analysis has shown that state 2 is acting like an absorbing state, that is, expected

holding time is in�nite. Similarly, when we look at the posterior distributions of the long-

run probabilities �1 and �2 of equation (18), we can see that the posterior expected values

for �1 and �2 are 0.997 and 0.003, respectively. We can also infer this behavior by looking

at the posterior distributions of the states at the failure times ti�s of the software.

Table 2 shows the posterior mean values of the states at each failure time. These values

seem to suggest that the hidden Markov process remains in state 1 approximately until

between t78 and t79. Looking at the data, we can see that t78 = 18:728 and t79 = 19:556.

Comparing this to the posterior distribution of �1, the mean of this distribution is 0.0532,

which means that the expected holding time in state 1 before changing to state 2 is

1=0:0532 = 18:795, which also seems to suggest that, on average, the hidden Markov

process remains in state 1 until between the 78th and 79th failure. Our simulated posterior

density of �2 is of no use to us at all. It basically just looks like a point mass at some

number very close to zero. Thus, once the environmental process enters state 2 it stays

there forever. This implies that during the debugging process the reliability improvement

in the software is initially limited as re�ected by shorter failure times and the higher failure

rate �1. As the debugging process continues to later periods, failure rate decreases and

15

the time between failures get larger. Thus, based on this we can conclude that as a result

of the debugging process reliability of the software has improved. Figure 7 shows both

the data and the posterior means of the states of the hidden Markov process on the same

graph.

Figure 4: Posterior density of �1

Figure 5: Posterior density of �2

Furhermore, using the posterior samples of parameters (�; �) we can obtain the poste-

rior predictive reliability using (15). We note that (15) is a function of (�; �) and therefore

we need to evaluate the integral

16

1 � � � 57 58 59 60 61 62 63 64
1.000 � � � 1.000 1.101 1.002 1.002 1.002 1.002 1.005 1.017
65 66 67 68 69 70 71 72 73 74
1.025 1.025 1.025 1.025 1.020 1.036 1.037 1.048 1.142 1.155
75 76 77 78 79 80 81 82 83 84
1.191 1.262 1.308 1.362 1.755 1.885 1.899 1.920 1.997 1.999
85 86 87 88 89 90 91 92 93 94
2.000 2.000 2.000 1.999 1.999 1.999 1.999 2.000 2.000 2.000
95 96 97 98 99 100 101 102 � � � 136
2.000 2.000 2.000 2.000 2.000 1.999 1.999 2.000 � � � 2.000

Table 1: Mean value of states

Figure 6: Posterior distribution of �1

0

1

2

3

4

5

6

0 20 40 60 80 100 120

Figure 7: Data with hidden Markov chain when K = 2

17

0 2 4 6 8 10

P[T1 > t |Y0 = 1]

t

Figure 8: Posterior Predictive Reliability when Y0 = 1:

P [T1 > tjY0 = i;D] =
Z
P [T1 > tjY0 = i; �; �] p(�; �jD) =

Z X
j2E

exp ((G� �)t)ij p(�; �jD) d� d�:

(31)

The above can be approximated by the Monte Carlo average

P [T1 > tjY0 = i;D] �
1

S

X
s

X
j2E

exp ((Gs � �s)t)ij (32)

using posterior samples f�; �gSs=1 from p(�; �jD). In Figures 8 and 9 we present the

posterior predictive reliability functions for Y0 = 1 and Y0 = 2, respectively. Since envi-

ronmental state 1 has a higher failure rate, if testing starts in state 1, then the posterior

predictive reliability goes to 0 around t = 2000 time units. On the other hand, if the

initial state is state 2, the reliability reaches to 0 around 6000 time units.

We can reach the same conclusion by computing the posterior expected time to fail-

ure (17). Again we note that (17) is a function of unknown parameters and it can be

18

0 2 4 6 8 10

P[T1 > t |Y0 = 2]

t

Figure 9: Posterior Predictive Reliability when Y0 = 2:

approximated as a Monte Carlo average given by

E[T1jY0 = i;D] �
1

S

X
s

X
j2E

 h
I � P �

i�1
ij

1

��j

!s
(33)

using posterior samples f�; �gSs=1 from p(�; �jD). Note that P � is given by (8) which also

depends on P and therefore in general one needs to use the posterior samples of P to

evaluate (33). But since P is known for the two dimensional case, we do not need it in our

calculations. It can be shown that the posterior expected time to failure can be obtained

as E[T1jY0 = 1;D] = 0:83 and E[T1jY0 = 2;D] = 4:15 when testing starts at states 1 and

2, respectively.

We have repeated a similar analysis for the MMPP with K = 3 states. Finally, we

computed the marginal likelihoods using approach introduced in Section 4. The compar-

ison of the marginal likelihoods indicate that the model with K = 2 is preferred over the

others.

19

6 Concluding Remarks

In this paper we introduced a Markov modulated Poisson process to describe the failure of

a software that goes through a debugging process. The model can capture imperfect de-

bugging and allows us to make inferences about the performance of the debugging process

at each stage of testing. We presented a Bayesian analysis of the model and illustrated

how Bayesian inferences can be made about reliability of the software. Furthermore, we

introduced an approach to assess the dimension of the hidden Markov process of the model

by using the marginal likelihood. In doing so, we showed how the marginal likelihood can

be computed using the approach proposed by Chib (1995). We illustrated the implemen-

tation of our approach using actual software failure data and discussed the additional

insights that can be obtained from our model.

References

[1] K. Arifo�glu and S. Özekici, Optimal policies for inventory systems with �nite capacity

and partially observed Markov-modulated demand and supply processes, European

Journal of Operational Research 204 (2010), 421�483.

[2] B. Çekyay and S. Özekici, Mean time to failure and availability of semi-Markov mis-

sions with maximal repair, European Journal of Operational Research 207 (2010),

1442�1454.

[3] S. Chib, Marginal likelihood from the gibbs output, Journal of the American Statistical

Association 90 (1995), 1313�1321.

[4] J.B. Durand and O. Gaudoin, Software reliability modelling and prediction with hidden

Markov chains, Statistical Modelling 5 (2005), 75�93.

[5] P. Fearnhead and C. Sherlock, An exact Gibbs sampler for the Markov-modulated

Poisson process, Journal of the Royal Statistical Society: Series B 68 (2006), 767�

784.

20

[6] W. Fischer and K. Meier-Hellstern, The Markov-modulated Poisson process cookbook,

Performance Evaluation 18 (1992), 149�171.

[7] A. Goel and K. Okumoto, Optimal release time for software systems based on relia-

bility and cost criteria, The Journal of Systems and Software 1 (1980), 315�318.

[8] R. E. Kass and A. E. Raftery, Bayes factors, Journal of the American Statistical

Association 90 (1995), 773�795.

[9] L. Kuo and T.Y. Yang, Bayesian computation for nonhomogeneous Poisson processes

in software reliability, Journal of the Ameriacn Statistical Association 91 (1996), 763�

773.

[10] J.D. Musa, Operational pro�les in software reliability engineering, IEEE Software 10

(1993), 14�32.

[11] S. Özekici and R. Soyer, Reliability of software with an operational pro�le, European

Journal of Operational Research 149 (2003), 459�474.

[12] , Semi-Markov modulated Poisson process: Probabilistic and statistical analy-

sis, Mathematical Methods of Operations Research 64 (2006), 125�144.

[13] N.U. Prabhu and Y. Zhu, Markov-modulated queueing systems, Queueing Systems 5

(1989), 215�246.

[14] S. Ross, Stochastic processes, 2. ed., Wiley, New York, 1996.

[15] N.D. Singpurwalla and R. Soyer, Nonhomogeneous autoregressive processes for track-

ing reliability growth, and their bayesian analysis, Journal of the Royal Statistical

Society, Series B 54 (1992), 145�156.

[16] R. Soyer, Software reliability, Wiley Interdisciplinary Reviews: Computational Sta-

tistics 3 (2011), 269�281.

21

