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Introduction 
 
When results are obtained from data based modeling or a study, there may be observable or 

unobservable factors that could affect the findings if data were to be obtained again and the 

modeling effort or the study were to be repeated.  The notion of ceteris paribus, or "all things 

being the same", refers to such factors not changing enough to affect the results.  In order that a 

model or study results be considered to apply beyond the data from which they were derived, the 

ceteris paribus assumption might be invoked to assert that the findings would remain 

undisturbed. 

 
  Some examples of the appearance of this phrase in recent Management Science papers 

are 

(i)  "The positive effect of age suggests that, the longer the retail unit has existed, the higher was 

its aspiration level, ceteris paribus." (Mezias et al. 2002)  

 (ii) "If cardiac surgeons at a particular hospital achieve significantly better outcomes with CABG 

than cardiologists do with PTCA, one would expect that facility to have a higher CABG rate 

ceteris paribus."   (Huckman 2003)  

 (iii) "The significant coefficient of 0.0114 on MAS% indicates that, ceteris paribus, a first-mover 

firm with an extra growth of 1% in MAS% from 1995 to 1999 experienced an incremental 

productivity growth of 0.97%." (Banker et al. 2005) 
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 (iv) "LOANREV is an ongoing periodic revenue that positively affects future profits, and 

DEPEXP is an ongoing periodic cost that negatively affects future profits, ceteris paribus." 

(Nagar and Rajan 2005) 

(v) "Suppose there is a shock to the expected return, ceteris paribus.  In this example a change of 

1% in r leads to approximately a 20% change in asset value." (Ferson et al. 2005) 

In each of these examples, the invocation of ceteris paribus appears to be for the purpose 

of extending a researcher's claims from (apparent) internal validity of a model or study to external 

validity, by resorting to "hand-waving" rather than pursuing formal or even informal analysis as a 

foundation for the expanded claims.  We believe that at best this type of use of ceteris paribus is 

tautological or vacuous.  Furthermore, it can be misleading or wrong.  In the context of obtaining 

data and constructing simple linear regression models, we derive counterintuitive results when a 

particular implementation of ceteris paribus is invoked.   

 Typically, goodness of fit of a simple linear regression model is measured with respect to 

the observed data points and relates primarily to the response variable. The coefficient of 

determination, R2, is calculated to reveal how much of the variation of the response variable is 

"explained" by variation in the predictor variable.  All things being the same for a given sample 

size and correctly specified model, one might suppose that the greater the value "explained" the 

better.  Also, a standard error is calculated for the slope in the regression model, SE(b).  All 

things being the same for a given sample size and correctly specified model, one might suppose 

that the smaller the standard error the better, since the size of the standard error is related to the 

width of the confidence interval for the corresponding population parameter, i.e., the true slope. 

 Dallal (2008) makes the following observations regarding simple linear regression 

models: 

Sometimes the same model is fitted to two different populations. For example, an 

[sic] researcher might wish to investigate whether weight predicts blood pressure 
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in smokers and nonsmokers and, if so, whether the regression model fits one 

group better than the other. The problem with questions like this is that the 

answer depends on what we mean by better.  

It is common to hear investigators speak of the model with the larger coefficient 

of determination, R2, as though it fits better because it accounts for more of the 

variability in the response. However, it is possible for the model with the smaller 

R2 to have the smaller standard error of the estimate and make more precise 

predictions. 

He provides a small dataset that illustrates this behavior and discusses possible meanings 

of the model fitting one group better than the other.  When a regression modeler wants to 

understand how the response variable (dependent variable) changes with changes in a predictor 

variable (independent variable), we believe that an appropriate measure of goodness of fit should 

relate to the coefficient of the predictor variable. 

In the context of ceteris paribus, our results are stronger than those alluded to by Dallal.  

In the context of simple linear regression for models derived from two sample, using a plausible 

interpretation of ceteris paribus we show that not only does the model with the larger R2 not 

necessarily provide the better fit, but that the model with the smaller standard error of the 

coefficient provides a poorer fit of the coefficient in the model to the corresponding parameter in 

the population.   

Standard formulas for analyses using simple linear regression may be found in texts such 

as Draper and Smith (1998) and Chatterjee and Price (1977).   We rely on such formulas as the 

starting points for our analyses and do not specifically reference sources for them.   

For convenience, we use the following notation conventions throughout the paper: 

(a) Capital English letters or small Greek letters, such as Y or β represent entities 

related to the population such as a variable or a parameter. 
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(b) Small bolded English letters, such as x, represent an ordered set of 

observations for a variable.  Assume that the sample size is n. Small subscripted unbolded 

English letters, such as xi, represent individual observations, e.g.,  x = (x1, …, xn)  

(c) We use suggestive, not necessarily standard, representations of statistical 

concepts, such as Var() for variance, SE() for standard error, Cov( ) for covariance, 

Corr() for correlation, and sqrt() for square root.  Note:  Var(X), using capital X, is the 

variance of the variable X in the population. Var(x), using small bolded x, is the estimate 

of the population variance based on the sample x. We use r2
xy and R2 interchangeably. 

 

Suppose that there is a linear relationship in the population that may be represented as  

Y = βX + D ,        (1) 

where Y is the response variable, X is the predictor variable, β is a parameter that is the average 

change in Y for a unit change in X, and D is a variable representing "displacements" that cause Y 

not to be merely a  linear transformation of X.  We assume that X has a finite mean and a non-

zero finite variance.  We make the same assumptions for D. The mean of the displacements 

variable is not restricted to be 0, so we do not lose generality by omitting an explicit constant 

term in equation (1). 

In order that the model we derive be correctly specified, we assert that β fully captures 

the linear relationship between X and Y.  This assumption implies that Corr(X,D) = 0, as shown 

in the following lemma.  

Lemma 1 

If equation (1), Y = βX + D, represents the true linear relationship in the population, then 

Corr(X,D) = 0. 

Proof:  Express the full linear relationship (if any) between D and X as D = β' X + D', where 

Corr(X,D') = 0.  Substituting, in equation (1), we obtain 

Y = βX + D  = βX + (β' X + D') = (β + β') X + D' .   (1a) 
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Since β captures the true linear relationship between X and Y, we must have β + β' = β , implying 

β' = 0 .  It follows that D = D'.  So Corr(X,D) = Corr(X,D') = 0. 

QED 

Assuming a sample size n, let x and y represent vectors of length n of observed values of 

X and Y, respectively.  Let d be a vector of length n representing corresponding values of D. 

These values of d "occur", but are not observable by the typical researcher.  However, when we 

do computer simulation studies, we will generate d and x and calculate y for a chosen value of β. 

Thus, we can observe d. 

 For any sample we have a "true" population relationships corresponding to equation (1):  

y = βx + d .        (1b) 

A standard OLS approach produces a regression model of the form 

yest =  bx + a ,       (2) 

where b and a are derived constants and yest represents the estimate for y based on the regression 

model.  There is a corresponding "full" simple linear regression model of the form 

y = bx + a + e ,        (2a) 

where e = y - yest is the vector of residuals. 

Assume that two samples are taken from the population described by equation (1) and 

that models as described by equation (2) are constructed from each of these samples. Suppose that 

we invoke ceteris paribus to assure that the second model would be numerically "substantially" 

the same as the first.   What factors do we mean to be equal from the first sample to the second?  

Do we merely have the uninformative condition that whatever factors need to be substantially the 

same are substantially the same so that the numerical results for the two models are substantially 

the same?  If so, the concept of ceteris paribus is not helpful.  It is vacuous or tautological. 

There may be many identifiable conditions in this context that could plausibly be invoked 

by the ceteris paribus concept.  For our explorations, the ceteris paribus concept is that 

sqrt(Var(d)/Var(x)) is the same for both samples, i.e., the ratio of the standard deviations of the 
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displacements to the carrier variables in each sample are the same. Theorem 1, regarding the 

distance between b and β, lays the ground work for exploring the implications of this assumption. 

Theorem 1: 

b - β = Corr(x,d)sqrt((Var(d)/Var(x)) =  Corr(x,d)w = cw,              (3) 

where  c = Corr(x,d) and w = sqrt(Var(d)/Var(x)) .       

NOTE: Fixing w = sqrt(Var(d)/Var(x)) is our ceteris paribus invariant. 

Proof:  Taking the covariance with respect to x of both sides of equation (1b), we have  

Cov(x,y)  =  Cov(x,β x+d)  =  β Var(x)  + Cov(x,d).   (3a) 

Similarly taking the covariance with respect to x of both sides of equation (2a) we have  

Cov(x,y)  =  bVar(x)  + Cov(x,a) + Cov(x,e).    (3b) 

The last term in equation (3b) is 0 by construction of the regression equation and the next to last 

term is also 0 since the covariance of a variable with a constant is 0.  Thus we have the well 

known relationship (usually written with terms rearranged) 

Cov(x,y)  =  b Var(x)         (3c) 

Since the left hand sides of equations (3a) and (3c) are the same, we equate the right hand sides, 

obtaining 

  β Var(x)  + Cov(x,d)  =  b Var(x)     (3d) 

Rearranging terms in equation (3d) we can obtain 

  b- β   = Cov(x,d)/Var(x)  = ( Corr(x,d) sqrt((Var(d)/Var(x) ) / Var(x) 

   = Corr(x,d) sqrt((Var(d)/Var(x)) = Corr(x,d)w = cw  (3e) 

QED 

Corollary 1.1: 

abs(b-β) = abs(c)w       (3f) 

Proof:  This follows immediately from equation (3). 

QED 
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We will use abs(b- β ) as the measure of goodness of fit of the model to the population, 

since we are interested in how well we estimate the change in the response variable with a unit 

change in the predictor variable.  (Note:  We could also use (b- β)2.) 

Corollary 1.2; 

If w≠ 0, then b= β if and only if c = 0. 

Proof:  From equation (3), when w ≠ 0, we see that b –  β = 0 if and only if c = 0.  Thus, b= β if 

and only if c = 0. 

QED 

As a practical matter, the case where w=0 would not occur, since that would require 

Var(d)=0. 

Corollary 1.3: 

The maximum possible value for abs(b-β) is w. 

Proof:  Since the maximum value of abs(c) is 1, Corollary 1.1 implies that the maximum possible 

value for abs(b-β) is w. 

QED 

We might intuitively use confidence intervals to get a sense of the distance between b and 

β.  As a confidence level approaches 1.0, the width of the corresponding confidence interval 

approaches infinity, i.e., the possible distance between b and β is unbounded.  However, using the 

concept of w, we can express a bound for the distance between b and β. 

 

Exploring SE(b) 

We now explore implications of the invocation of our implementation of ceteris paribus with 

regard to the relationship between SE(b) and abs(b-β).  The formula for the standard error of the 

regression coefficient b is typically given as 

 SE(b) = sqrt(SSE / n-2) / sqrt(SSxx )  ,    (4) 
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where  SSE = ∑ (yi – yest i )2 = ∑ei
2   and SSxx = ∑ (xi – xavg)2.  

We can rewrite SSE as (n-1)Var(y) and SSxx as (n-1)Var(x) and substitute into equation (4) to 

obtain 

SE(b)  =  sqrt(( (Var(e) (n-1)) / (n-2) ) / (Var(x) (n-1)) )   

  = sqrt( (1/(n-2) ) sqrt( Var(e) / Var(x) )    (4a) 

Thus, for a fixed sample size, n, SE(b) is proportional to sqrt(Var(e)/Var(x)).  We create the term 

 pSE(b)  = sqrt( Var(e) / Var(x) ) = [sqrt(1/(n-2)] SE(b)    (4b) 

to mean "proportional to SE(b)" and use it in place of SE(b).  This suffices for the derivations 

below since we produce closed form results that are independent of sample size.   

Lemma 2 

Var(y)  =  Var(x)(β 2 + 2β cw + w2)  .    (4c) 

Proof:  From equation (1a) we have 

  Var(y)  = Var(β x+d) = (β 2Var(x) + 2β Cov(x,d) + Var(d)) 

  =  (β 2Var(x) + 2β (b-β )Var(x) + Var(d)) 

  =  Var(x)( β 2 + 2β  (b-β ) + Var(d)/Var(x)) 

  =  Var(x)( β 2 + 2β  (b-β ) + w2)   .  (4d) 

Using Theorem 1, substitute for (b-β ) in the right hand side of equation (4d) to get 

Var(y)  = Var(x)(β 2 + 2β cw + w2) 

QED  

Theorem 2 

Var(e) =  (1-c2)Var(d)        (5) 

Proof:  We begin with two standard expressions for R2: 

R2  =  rxy
2 =  Corr(x,y)2  = Cov(x,y)2 / (Var(x) Var(y) )    (5a) 

and 
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R2  = 1 – Var(e)/Var(y)        (5b) 

Setting the right hand sides of equations (5a) and (5b) equal and rearranging terms, we can obtain 

Var(e)  = Var(y)  –  Cov(x,y)2 / Var(x) .      (5c) 

Now, take the covariance of equation (1a) with respect to x and then square both sides to obtain 

Cov(x,y)2 = (β Var(x)  + Cov(x,d))2        .  (5d) 

Use the expression for Var(y) from the first line of equation (4d) and substitute this and the right 

hand side of equation (5d) into equation (5c) to obtain 

Var(e)  =  ( β 2Var(x) + 2β Cov(x,d) + Var(d))   

    -  (β Var(x)  +Cov(x,d))2 / Var(x) ).     (5e) 

Expanding the square, (β Var(x)  +Cov(x,d))2 , on the right hand side of equation (5e) and 

canceling terms we can get 

Var(e)  =  ( β 2Var(x) + 2β Cov(x,d) + Var(d))   

   -  (β 2Var(x)2
  + 2 β Cov(x,d)Var(x)  +  Cov(x,d)2) / Var(x) )  

= (β 2Var(x) + 2β Cov(x,d) + Var(d) ) 

   -  (β 2Var(x)  + 2 β Cov(x,d)  +  Cov(x,d)2/ Var(x) ) 

= (β 2Var(x) -β 2Var(x)) + (2β Cov(x,d) - 2β Cov(x,d)) 

  + Var(d) – Cov(x,d)2 /Var(x)      (5f) 

Converting Cov(x,d) to Corr(x,d)sqrt(Var(d)Var(x), squaring and substituting into the right hand 

side of equation (5f), we obtain 

Var(e) = Var(d) – [Corr(x,d)2 Var(x)Var(d)]/Var(x)  

=  Var(d) (1 – c2) = Var(d)(1-Corr(x,d)2  =  Var(d) (1 – c2)  (5g) 

QED 

One might intuit that minimizing Var(e) is a good thing. However, we can show 

Corollary 2.1 
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If c2 = 1, then Var(e) = 0. 

Proof:  This follows immediately Theorem 2. 

QED. 

Theorem 1 implies that for a given set of di's and xi's in a sample, the worst fit that can be 

produced between b and β occurs when c = Corr(x,d) = 1. Corollary 2.1 shows us that for samples 

with the same Var(d), which is a condition that is a bit different than our ceteris paribus, Var(e) is 

minimized when abs(b-β) is maximized.  Of course, the maximized value of abs(b-β) also 

depends on Var(x), as can be seen from Theorem 1. 

Corollary 2.2 

pSE(b) =   sqrt((1-c2)w        (5h)  

Proof: Divide both sides of equation (5) by Var(x) and take the square root of both sides. 

QED 

Recall that we can use pSE(b) in place of SE(b) until we need an explicit n (see equation 

(4b).   

One might anticipate that samples that produce simple linear regression models with 

smaller values of SE(b) would tend to yield better, i.e., smaller, values of abs(b- β), since 

confidence intervals for β would be tighter (for given confidence levels).  However, when our 

ceteris paribus condition holds, this is wrong. 

Theorem 3: 

Assume that equation (1) fully captures the linear relationship in the population and ceteris 

paribus (w is constant) holds for two samples of size n.  Let b1 and b2 be the estimates for β from 

regression models from the two samples of size n. If SE(b1) < SE(b2) then abs(b1 – β) > abs(b2 – 

β). 

Proof: From Corollary 1.1 we have 

abs(c) = abs(b-β)/w        (6) 
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Because the c is squared in equation (5h), we can substitute abs(c) for c in that equation, 

obtaining 

 pSE(b) = sqrt(1-abs(c)2) w      (6a) 

Substituting the right hand side of equation (6) for abs(c) into equation (6a) we have  

pSE(b) = sqrt(1- [abs(b-β)/w]2) w = sqrt(w2 - (b-β)2)     (6b) 

(from Lemma 2, we know that abs(b-β) ≤ w, so the expression inside the radical of equation (6b) 

is never negative). 

We can square both sides of equation (6b) and rearrange terms to get 

(b-β)2 =  w2 - pSE(b)2        (6c) 

Equations (6b) and (6c) show that (b-β)2 is monotonically decreasing in pSE(b)2.  Equivalently, 

abs(b-β) is monotonically decreasing in pSE(b). Since SE(b) is proportional to pSE(b), we have 

the desired result.         QED 

We have shown that for a fixed sample size when the ceteris paribus condition is 

invoked, smaller values of SE(b) are always associated with larger values of abs(b-β). 

From Theorem 3 we infer that the relationship between abs(b-β) and pSE(b) does not 

depend on β.  Figure 1 is an illustration of how abs(b-β) varies with pSE(b) for several values of 

[β/w].  We index the family of curves by using  [β/w] because this is more general than fixing β 

and indexing by varying w or by fixing w and indexing by varying β. 

------------------------ 

Figure 1 about here 
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------------------------- 

Rather than using pSE(b) on the horizontal axis of Figure 1, if we were to select a 

particular n and use SE(b) as the variable for the horizontal axis, the only change would be the 

scale for the axis, as can be inferred from equation (4b).  

 

Exploring R2 

One might believe that there is some connection in simple linear regression between goodness of 

fit of b to β and the size of R2, since statistical significance for the model (using the F statistic for 

R2) matches statistical significance for b (using the t statistic).  Such a belief is not correct.  In 

addition to this, we find some interesting relationships between R2 and abs(b-β) by invoking 

ceteris paribus as we have done in the previous section. 

R2 can be computed for a simple linear regression model using the well known 

relationship 

  R2 =  rxy
2 =  [b sqrt(Var(x)/Var(y)]2   .  (7) 

Corollary 1.1 provides the distance between b and β  as a function of c and w.  We can use this 

corollary to derive an expression for R2 as a function of c and [β /w].  

Theorem 4: 

R2     =   (c + [β /w])2  /  ( [β /w]2 + 2c[β /w] +1)    (8) 

Proof:  Use Var(y)  = Var(x)(β 2 + 2β cw + w2) from Lemma 2 and b = cw + β based on 

Theorem 1 to substitute into equation (7), obtaining 

R2
   =  [(cw + β ) sqrt(Var(x) /(Var(x)( β 2 + 2β cw + w2))]2 .  (8a) 

Cancelling Var(x) from numerator and denominator, this simplifies to 
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R2  =    (cw +β )2 / (β 2 + 2β cw + w2) .     (8b) 

Dividing the numerator and denominator on the right hand side of equation (8b) by w2 we have 

the desired result. 

QED 

Corrollary 4.1: 

If β  = 0,  then R2 = c2         

Proof:  Set β  = 0 in equation (8) and cancel terms. 

QED 

Corollary 4.1 together with Theorem 1 show that when β = 0 and ceteris paribus is 

invoked, the larger that R2 is the worse the fit of b to β is.  This matches our intuition, since larger 

R2 tend to correspond to larger values of abs(b), which corresponds to b being farther away from 

0.  Our approach formalizes this, without having concern for Var(e).  We have certainty rather 

than tendency.  (Note:  We have not assumed that Var(e) is fixed.) 

Corollary 4.2:  

If  b =β , then 

R2
opt  =  R2 = β 2 / (β 2 + w2) =    [β /w]2 / (1 + [β /w]2)   (8c) 

where R2
opt is the value of R2 corresponding to the optimal value of b, i.e., b =β . 

Proof:  A necessary condition for R2
opt is to have b =β .  When this is true, we can substitute 0 for 

b -β  in the right hand side of equation (4d) to obtain 

Var(y) = Var(x) (β 2 + w2)   .  (8d) 

Substituting the above expression for Var(y) and  substituting β for b in equation (7) we have 

R2 =  [β sqrt(Var(x)/( Var(x) (β 2 + w2))]2  

=   β2  / (β 2 + w2)       (8e) 
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Divide numerator and denominator of the right hand side of equation (8e) by w2 to obtain the 

extreme right hand side of equation (8c). 

QED  

Corollary 4.2 shows that, ceteris paribus, the value of R2 that corresponds to the optimal 

b, i.e., b =β , is not the largest possible value for R2 , which is 1.0, but is R2 = β 2 / (β 2 + w2).  

This is a necessary condition for R2 for the model to produce the optimal b, but it is not sufficient.  

That is, it is possible for R2 to have this value, but b ≠ β .   

Since our ceteris paribus assumption is that w = sqrt(Var(d)/Var(x)) is invariant across 

samples, we can create a family of curves by varying β and leaving w fixed.  Figure 2 displays 

the relationship between R2 and abs(b -β ) for several values of [β / w]. The data points in the 

figure are generated by varying c from -1.0 to 1.0 in increments of 0.05 and using the formulas in 

Theorems 3 and 4 or their corollaries. To create these graphs we have used positive values for β.  

We would get similar results if negative values were used. 

-------------------------------------------------------------------- 

FIGURE 2 ABOUT HERE 

--------------------------------------------------------------------- 

Figure 2 illustrates that the curves relating abs(b-β) to R2 are not mathematical functions, 

since there are two values of the former relating to each value of the latter.  For example, it can be 

seen that corresponding to R2 = R2
opt there is a value of abs(b – β) other than 0, illustrating that  

R2 = β 2 / (β 2 + w2) is a necessary but not sufficient condition for the optimal fit b = β .  Figure 

2 also illustrates that for R2  > R2
opt , increasing values of R2 yield worse fits of b to β, ceteris 

paribus.  The slopes of each curve are positive in this range.  For R2 <  R2
opt , increasing values of 

R2 sometimes yield better fits of b to β and sometimes worse.  The slopes of each curve can be 

both positive and negative in this range   
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So far, we have not needed to use the sample size, n, in our derivations or graphs, except 

to link SE(b) to pSE(b).  However, if we wish to consider probable values of c = Corr(x,d), not 

merely possible values, it is necessary to take n into account.  For Figures 3a, 3b, and 3c, instead 

of enumerating values of c from -1 to +1 as we did for Figures 1 and 2, values of c are computer 

simulated.  The results of the computer simulation depend on sample size.  Figures 3a, 3b, and 3c 

display scatterplots for sample sizes n = 10, 30, and 100, respectively.  A family of curves of 

abs(b-β) vs. R2 are shown for each, based on generating 200 data points by computer simulation 

using Microsoft Excel.  It can be seen by examining Theorems 1 and 4 and their corollaries that 

we only need to simulate values of c (based on generating x and d) to formulate the scatterplots 

for the figures.   

-------------------------------------- 

Figures 3a 3b and 3c about here 

---------------------------------------- 

We see that the curves in Figures 3a, 3b, and 3c correspond to a portion of the equivalent 

curves in Figure 2.  Larger sample size results in more compact distributions for corresponding 

curves.  Unlike in Figure 2 where sample size is irrelevant, in Figure 3 we see that sample size 

can be sufficiently large so that the relationship between abs(b-β) and R2 is a mathematical 

function.  As in Figure 2, for R2  > R2
opt , increasing values of R2 correspond to worse fits of b to 

β.  However, when n is sufficiently large, for R2  <  R2
opt , increasing values of R2 always 

correspond to better fits of b to β.  Of course, in the field as opposed to in computer simulation 

experiments, we do not know what the value of R2
opt is. 

We now briefly explore the relationship between abs(b-β) and R2 without our ceteris 

paribus invocation. Figure 4 shows an example for which n = 10.  As before, we have computer 

generated the data for x and d using normality assumptions for X and D.  We have chosen values 

for β, Var(D), and Var(X) so that the square of the correlation between X and D in the population 

is 0.5  The concept of the square of the population correlation between X and Y corresponds to 
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R2
opt in the sample. We refer to this value as R2

OPT .  We have used 100 simulation trials.  The 

fitted quadratic trendline shows that on average abs(b-β) is monotonically increasing in R2 for R2 

> R2
OPT and abs(b-β) is monotonically decreasing in R2 for R2 <  R2

OPT . 

--------------------------- 

Figure 4 about here 

--------------------------- 

Although in the field we do not know the value of R2
OPT, this figure suggests that even 

without the ceteris paribus assumption that we have been invoking, it is not reasonable to assume 

that larger values of R2 correspond to better fits of b to β.   

 

Discussion and Conclusion 

The use of ceteris paribus as a way of generalizing the applicability of a model or the result of a 

study (i.e., moving from internal validity to external validity) without the benefit of any 

additional evidence may be common. It is used in a fashion somewhat similar to "hand waving" 

in mathematics.  If specifics are not provided with regard to what must be the same, the 

invocation of ceteris paribus is vacuous or tautological. 

With malice aforethought, we have used simple linear regression modeling results to 

show that there can be potential issues even in basic modeling with regard to invoking ceteris 

paribus when specifics are not provided by the researcher.   

The inclusion of the phrase ceteris paribus adds no insight to a discussion and may 

actually be misleading or false.  It should be dropped unless it is explicitly supported by the 

research or modeling work. 
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Figure 1
This is a family of curves illustrating the monotonically decreasing  relationship
between pSE(b), which is proportional to SE(b), and abs(b-β).  Data points are
generated by iterating values of c = Corr(x,d) from -1 to +1 in steps of 0.05
Formulas from Theorems 1 and 2 and their corollaries are used to calculate
abs(b-β) and pSE(b).
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Figure 2
This is a family of curves illustrating the relationship between R2 and abs(b-β).
Data points are generated by iterating values of c = Corr(x,d) from -1 to +1
in steps of 0.05. Formulas from Theorems 1 and 4 were used to calculate abs(b-β) and R2.
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Figures 3a, 3b, 3c 
This is a family of scatter plots Illustrating relationships between abs(b-β) and R2.  
The scatterplot curves are indexed by values of [β/w]. As a practical matter,
 we have fixed the value of w and varied the value of β. Also, as a practical matter 
we have used normal distributions for X and D as the basis for generating values  
of x and d by computer simulation. The curves in the three figures vary 
according to the sample sizes used in the simulation:  n = 10, 30, 100.

A. Simulations of Abs(b-β) vs. R2 for n = 10 
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B. Simulations of Abs(b-β) vs. R2 for n = 30 
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C. Simulations of Abs(b-β) vs. R2 for n = 100 
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Figure 4
This is an illustration of the relationship between abs(b-β) and R2, based
on 100 computer generated samples from a virtual population.  The
quadratic trendline demonstrates the non-monotonic relationship.

Abs(b- β) vs. R2 for n = 10 
with Var(X) = 4, Var(D) = 4 and β = 1

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 0.2 0.4 0.6 0.8 1

R2

ab
s(

b 
-β

 )

quadratic trendline


	Zalkind -- Ceteris Paribus paper with Figures.pdf
	Ceteris Paribus paper A
	ceteris paribus paper Figures 1 2 3 4 Excel XP format
	Figure 1 
	Figure 2 
	Figures 3a b c
	Figure 4



