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Abstract

An optimal portfolio is a weighted sum of p stocks, or variables, that max-

imizes the mean return and has minimum variance. Finding such a portfolio

is the classical mean-variance optimal portfolio selection problem. Markowitz

(1952) computed the solution to this problem, which involves the inversion of

the covariance matrix of the returns of the p stocks. Two main approaches

seeking to find a well-conditioned estimator of the covariance matrix have been

proposed. Ledoit and Wolf (2004) used the idea of shrinkage toward a target

covariance matrix, typically the identity, to regularize the sample covariance.

Another approach is to impose a low-dimensional factor structure on the co-

variance estimator via a K-factor model with uncorrelated residuals so that it

is non-singular. Yet, there is no consensus either on the identity of the factors

or on the number of factors K. In this paper we present an approach where K

is the rank of a random matrix. We estimate K using a sequential asymptotic

chi-square test for the rank of a random matrix. The resulting non-singular

estimate of the covariance matrix is used to solve the portfolio optimization

problem.
∗Department of Statistics, George Washington University, Washington, DC 20052.
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1 Portfolio Selection

In Portfolio Selection capital is allocated over a number of available assets in order

to maximize the return on the investment while minimizing the risk. Markowitz’s

mean-variance efficiency (1952, 1959) gives the classic paradigm of modern finance

for efficiently allocating capital among risky assets: diversification always reduces

investment risk since real assets almost never have returns perfectly correlated with

others.

Markowitz viewed investment choice as a result of utility maximizing behavior in

a world of uncertainty. The utility assigned to a given wealth level can be expressed

as a quadratic utility function U(w) = aw − bw2, where a and b are constants. Since

a portfolio’s return can be defined as end-of-period wealth divided by initial wealth,

the quadratic utility function implies that investors will select portfolios based solely

on their expected return and standard deviation of return.

Consider a universe of p stocks whose returns are distributed with mean vector µ

and covariance matrix Σ. By assuming that investors’ preference is fully defined by

the mean and the variance of portfolio returns over a single holding period, Markowitz

showed that, given either an upper bound on the risk that the investor is willing to

take or a lower bound on the return the investor is willing to accept, the optimal

portfolio can be obtained by solving a convex quadratic programming problem:

min wT Σw = min
n∑

i=1

n∑
j=1

wiwjσij =
n∑

i=1

w2
i σ

2
i +

n∑
i=1

n∑
j=1,i 6=j

wiwjσij (1)
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subject to

wT 1p = 1

wT µ = E(Rp)

where 1p denotes a p-vector of ones, E(Rp) is the expected rate of return that is

required on the portfolio, wi is the investment portion of the weights of the ith stock,

σ2
i is the variance of the ith stock, and σij is the covariance between the return of the

ith and jth stocks. The solution is:

w =
C − qB
AC −B2

Σ−11p +
qA−B
AC −B2

Σ−1µ (2)

where A = 1T
p Σ−11p, B = 1T

p Σ−1µ, and C = µT Σ−1µ. Equation (2) shows that

optimal portfolio weights depend on the inverse of the covariance matrix. This may

cause difficulty if the covariance matrix estimator is not invertible or if it is numeri-

cally ill-conditioned, which means that inverting it amplifies estimation error tremen-

dously (Michaud, 1989). This mean-variance model has had a profound impact on

the economic modeling of financial markets and the pricing of assets.

In practice, the covariance matrix is estimated from historical data available up

to a given date, optimal portfolio weights are computed from this estimate, then the

portfolio is formed on that date and held until the next rebalancing occurs. The

performance of a covariance matrix estimator is measured by the variance of this

optimal portfolio after it is formed. It is a measure of out-of-sample performance, or

of predictive ability. An estimator that overfits in-sample data can turn out to work

very poorly for portfolio selection, which is why imposing some structure is beneficial.

In the specific context of risk management and portfolio allocation, the number p of

stocks can be in the order of hundreds, which is typically of the same or higher order

as the sample size n. For example, when p = 200 there are more than 20,000 free

parameters in the covariance matrix. Yet, the available sample size is usually in the
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hundreds or a few thousands because longer time series (larger n) increase modeling

bias.

1.1 Factor Models

• Capital Asset Pricing Model (CAPM): The computation of risk reduction as

proposed by Markowitz is tedious. For a more efficient computation, the Cap-

ital Asset Pricing Model (CAPM), independently developed by Sharpe (1964),

Lintner (1965) and Mossin (1966), becomes an immediate logical extension of

Markowitz’s portfolio theory.

The CAPM assumes the financial market is efficient and in equilibrium and

states that that the expected return of any risky asset is a linear function of its

tendency to co-vary with the market portfolio:

E(Rj) = Rf + βj[E(Rm)−Rf ] (3)

where E(Rj) and E(Rm) are the expected returns to asset j and the market

portfolio, respectively, Rf is the risk free rate, and βj measures the tendency of

asset j to co-vary with the market portfolio.

The market portfolio, usually described as an ”index,” is the single most impor-

tant factor that influences the variability of each individual asset and variability

from all other influences rapidly disappears when a portfolio is formed. In other

words, the risk associated with a risky asset now can be decomposed into sys-

tematic risk and an idiosyncratic risk and only the idiosyncratic risk can be

diversified away.

Since the market portfolio is not observable in practice, some publicly-traded

security indices are commonly used as its proxy. However, the real market also

consists of other non-publicly-traded investments that make up so much of the
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economy’s net wealth. Therefore, the universe of the publicly-traded securities

does not exactly represent all of the capital risks investors are exposed to. As a

result, this miss-specification of the market portfolio has led to the failure of the

CAPM: many empirical studies of stock returns have shown that the market

beta alone can not explain the cross-sectional variation in returns.

• Arbitrage Pricing Theory (APT): Unlike the CAPM, which is a model of fi-

nancial market equilibrium, the APT starts with the premise that arbitrage

opportunities should not be present in efficient financial markets. This assump-

tion is much less restrictive than those required to derive the CAPM. The APT

starts by assuming that there are K factors which cause asset returns to sys-

tematically deviate from their expected values. However, the theory does not

specify how large the number K is, nor does it identify the factors. It simply

assumes that these factors cause returns to vary together. There may be other,

firm-specific reasons for returns to differ from their expected values, but these

firm-specific deviations are not related across stocks. Since the firm-specific de-

viations are not related to one another, all return variation not related to the

K common factors can be diversified away. Based on these assumptions, Ross

(1976) shows that, in order to prevent arbitrage, an asset’s expected return

must be a linear function of its sensitivity to the K common factors:

E(Rj) = Rf +
n∑

i=1

βjifi (4)

where E(Rj) and Rf are defined as before. Each βji coefficient represents the

sensitivity of asset j to risk factor f , and fi represents the risk premium for

factor i.

As with the CAPM, we have an expression for expected return that is a linear

function of the asset’s sensitivity to systematic risk. Under the assumptions
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of APT, there are K sources of systematic risk, whereas there is only one in a

CAPM world.

• Some extensions of Capital Asset Pricing Model: Both the CAPM and the APT

are static, or single-period models. As such, they ignore the multi-period nature

of participation in the capital markets. Merton’s (1973) intertemporal capital

asset pricing model (ICAPM) was developed to capture this multi-period as-

pect of financial market equilibrium. The ICAPM framework recognizes that

the investment opportunity set might shift over time, and investors would like to

hedge themselves against unfavorable shifts in the set of available investments.

If a particular security tends to have high returns when bad things happen to

the investment opportunity set, investors would want to hold this security as

a hedge. This increased demand would result in a higher equilibrium price for

the security (all else held constant). One of the main insights of the ICAPM

is the need to reflect this hedging demand in the asset pricing equation. The

form of the ICAPM is very similar to that of the APT. There are subtle differ-

ences, however. The first factor of the ICAPM is explicitly identified as being

related to the market portfolio. Further, while the APT gives little guidance

as to the number and nature of factors, the factors that appear in the ICAPM

are those that satisfy conditions such that they describe the evolution of the

investment opportunity set over time and investors care enough about them to

hedge their effects. We still don’t know exactly how many factors there are, but

the ICAPM at least gives us some guidance. It is clear from well-established

stylized facts that the unconditional security return distribution is not normal

and the mean and variance of returns alone are insufficient to characterize the

return distribution completely. This has led researchers to pay attention to the

third moment - skewness- and the fourth moment - kurtosis. Investors are gen-

erally compensated for taking high risk as measured by high systematic variance
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and systematic kurtosis. Investors also forego the expected returns for taking

the benefit of a positively skewed market. It also has been documented that

skewness and kurtosis cannot be diversified away by increasing the size of port-

folios (Arditti, 1971). Many researchers extensively investigated the validity of

the CAPM in the presence of higher-order co-moments and their effect on asset

prices and extend the CAPM to incorporate skewness in asset valuation models

and provided mixed results.

1.2 K-factor Covariance Estimation

An optimal portfolio is a weighted sum of the p stocks, or variables, that maximizes

the mean return and has minimum variance. Finding such a portfolio is the classical

mean-variance optimal portfolio selection problem. Markowitz (1952) computed the

solution to this problem, which involves the inversion of the covariance matrix, Σx, of

the returns of the p stocks. Two main approaches seeking to find a ”well-conditioned”

estimator of Σx have been proposed. Ledoit and Wolf (2004) used the idea of shrink-

age toward a target covariance matrix, typically the identity, to regularize the sample

covariance estimator of Σx. Another approach is to impose a certain structure on

Σx. Fan et al. (2006), motivated by the Arbitrage Pricing Model, proposed a model-

based covariance matrix estimator that is non-singular and asymtotically normally

distributed.

If we letXi, i = 1, . . . , p, denote the excessive returns over the risk-free interest rate

of the p assets, η1, . . . , ηK be the factors that can be used to model an efficient market

portfolio (see Campbell, Lo and MacKinlay, 1997) and αij, i = 1, . . . , p, j = 1, . . . , K,

be the unknown factor loadings, the K-factor model is

Xi = αi1η1 + αi2η2 + . . .+ αiKηK + εi (5)

where the errors ei are uncorrelated given the factors η1, . . . , ηK . The factors ηi in (5)
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are observable and of pre-set dimension K.

If a few factors can completely capture the cross-sectional risks, the number of

parameters in covariance matrix estimation can be significantly reduced. For example,

using the Fama-French three-factor model (Fama and French (1992, 1993)), there are

4p instead of p(p+ 1)/2 parameters to be estimated. Despite the popularity of factor

models in the literature, the impact of dimensionality on the estimation errors of

covariance matrices and its application to portfolio allocation and risk management

are poorly understood. The factor model has been extensively studied in the literature

[see, e.g. Scott (1966) and (1969), Browne (1987), Browne and Shapiro (1987), and

Yuan and Bentler (1997)], but traditional work assumes the sample size n tends to

infinity while the stocks in the portfolio p and the number of factors K are fixed.

The factor model (5) is expressed in matrix form as

x = Aη + ε (6)

where x = (X1, . . . , Xp), A = (α1, . . . ,αp)T with αi = (αi1, . . . , αip)T η = (η1, . . . , ηK)T

and ε = (e1, . . . , ep)T . Throughout we assume that E(ε|η) = 0 and Cov(ε|η) = Σ0 is

diagonal.

Let (η1,x1), . . . , (ηn,xn) be n independent and identically distributed (i.i.d.) sam-

ples of (η,x). Also, let

Σ = Cov(x) F = (η1, . . . ,ηn) X = (x1, . . . ,xn) E = (ε1, . . . , εn)

Then, model (6) yields

Σ = ACov(η)AT + Σ0 (7)

Since model (6) is a regression model, one can estimate Σ by least squares. That is,

Σ̂ = ÂĈov(η)ÂT + Σ̂0 (8)
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where Â = XFT (FFT )−1 is the matrix of estimated regression coefficients, Ĉov(η) =

(n− 1)−1FFT − {n(n− 1)}−1F11T FT is the sample covariance matrix of the factors

η, and Σ̂0 = diag(n−1ÊÊT ), where Ê = X− ÂF is the residual matrix.

The sample covariance matrix estimator is written as

Σ̂x = (n− 1)−1XXT − {n(n− 1)}−1X11T XT (9)

Fan et al. (2006) showed that Σ̂ is always invertible, even when p > n. The main

advantage of the factor model lies in the estimation of the inverse of the covariance

matrix, not the estimation of the covariance matrix itself. Optimal portfolio allocation

involves the inverse of the covariance matrix and the factor model based estimates

yield substantial gain. They also showed that the random matrix Σ̂ is asymptotically

normal.

In this paper, we present an estimation method for the number K of factors

that are truly needed to model stock returns. This approach is one of the sufficient

dimension reduction methods that have been developed over the last seventeen years.

It is especially suited to the formulation of the K factor model as its formulation is

that of reduced-rank regression.

Reduced rank regression assumes that the coefficient matrix in a multivariate re-

gression model is not of full rank. The unknown rank is traditionally estimated under

the assumption of normal responses. Bura and Cook (2003) derived an asymptotic

test for the rank that only requires the response vector have finite second moments.

The test was extended to the non-constant covariance case. Linear combinations

of the components of the predictor vector that are estimated to be significant for

modelling the responses were obtained. In our context, these serve as the factor

projections sufficient to capture the common features of the portfolio’s asset returns.

In the next section we present an overview of sufficient dimension reduction

methodology (SDR) and then we proceed by focusing on estimating the rank of the

regression in (6).
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2 Introduction to Sufficient Dimension Reduction

(SDR)

Let X = (X1, . . . , Xp)T denote a predictor vector and Y a response variable. Through-

out vectors and matrices will be boldfaced in contrast to univariate quantities. Suf-

ficient dimension reduction via inverse regression is based on the idea that X can be

replaced with a lower-dimensional projection PSX without loss of information about

the conditional distribution of Y |X, where PS is the orthogonal projection onto the

vector space S in the usual inner product. No pre-specified model for Y |X is required.

The intersection of all subspaces S ⊂ Rp with F (Y |X) = F (Y |PSX), where F (·|·) is

the conditional distribution function of the response Y given the second argument,

is the central subspace, SY |X (Cook, 1996, 1998). The dimension d = dim(SY |X) is

called the structural dimension of the regression of Y on X and can take on any value

in the set {0, 1, . . . , p}. When d < p, the structural dimension of the regression is

smaller than the numbers of predictors. If η = (η1, . . . ,ηd) is a basis for SY |X, PηX,

or equivalently, the d linear combinations ηT X = (ηT
1 X, . . . ,ηT

d X) contain all the

information in X about Y .

For numerical stability and computational simplicity and efficiency, the predictor

is standardized to have zero mean and identity variance-covariance structure; that is,

if Σx denotes the covariance matrix of X, Z = Σ−1/2
x (X− E(X)) is its standardized

version. There is no loss of generality in working in the Z-scale as SY |X = Σ−1/2
x SY |Z .

The estimation of the central subspace in almost all sufficient dimension reduction

(SDR) techniques is based on finding a kernel matrix M so that

S(M) ⊂ SY |Z (10)

Kernel matrices based on first moments are used in SIR (Li, 1991) with M =

Cov(E(Z|Y )), and polynomial inverse regression (Bura and Cook, 2001b), with M =

E(Z|Y ). Kernel matrices based on both first and second moments are used in pHd (Li,
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1991), with M = E((Y − E(Y ))ZZT ), SAVE (Cook and Weisberg, 1991), with M =

E(Ip − Cov(Z|Y ))2, and SIRII (Li, 1991) with M = E(Cov(Z|Y )− E(Cov(Z|Y )))2.

For the span of a kernel matrix to be a subspace of or equal to SY |Z at least one

of two conditions on the marginal moments of the predictors must hold. For first

moment based kernel methods the following linearity condition is needed:

E(Z|PSY |ZZ) = PSY |ZZ (11)

For second moment based kernel methods condition (11) and also the constant vari-

ance condition

Var(Z|PSY |ZZ) = QSY |Z (12)

are required to hold.

To assess d = dim(SY |Z), typically a test statistic for dimension that is a function

of the singular (or eigen) values of an estimate of the kernel matrix M̂ is used. The

test statistic is generally of the form Lk = n
∑

i f(λ̂i), where λ̂i are the singular or

eigenvalues of M̂ in decreasing order and f is a smooth non-negative valued function.

The dimension is usually estimated via sequential hypothesis testing of H0 : d = k

against Ha : d > k, starting at k = 0, which corresponds to independence of Y and Z.

Assessment of the accuracy of the estimation requires knowledge of the asymptotic

distribution of the test statistic, whose computation comprises an important aspect

of all SDR techniques.

The Unification of SDR Methods: At the heart of most SDR methods is the

estimation of a kernel matrix M so that (10) is satisfied. In general, M is of order

p × q. If we let r = rank(M), then r is a lower bound of the dimension d of the

central subspace SY |X . If the estimation of the central subspace is exhaustive, that

is S(M) = SY |X , then d = r. Let λ1 ≥ . . . ≥ λr be the singular values of M, and

u1, . . . ,ur be the corresponding singular vectors. Under (10), span(u1, . . . ,ur) ⊂ SY |X

11



so that SDR estimation methods can be formulated as eigen-decomposition problems

where estimating the dimension of S(M) amounts to estimating the rank of the kernel

matrix M, r, and estimation of the subspace itself amounts to estimating the r left

singular vectors of M, u1, . . . ,ur. In a separate project (Bura, 2007, work in progress),

the rank r is estimated via sequential hypotheses testing. Special cases of this test

are the tests for the most widely used SDR methods of SIR (Li, 1991; Bura and Cook,

2001(a,b)) and SAVE (Yin, 2005).

Determining the rank of a matrix is a difficult task. The approach in Bura and

Pfeiffer (2007) is based on the fact that the rank of the matrix equals the number of its

non zero eigen- or singular values. A formal test for the rank of a matrix is equivalent

to testing how many of the eigen- or singular values of the matrix are equal to zero.

The two rank tests proposed in Bura and Pfeiffer (2007), based on the smallest eigen-

or singular values of the estimated matrix, generalize and unify previous results in

SDR methodology. The weighted chi-squared test statistic is based on an important

result for the asymptotic distribution of the singular values of a random matrix by

Eaton and Tyler (1994). The perturbation theory based test is asymptotically chi-

squared and is expected to be more accurate since it does not involve estimation of

weights.

Furthermore, a Wald type test for assessing the contribution of any given subset

of the individual predictors X1, . . . , Xp to the SDR projections is developed in Bura

and Pfeiffer (2007). This test allows one to carry out variable selection prior to fitting

any model to the data.

2.1 Reduced-rank regression and SDR

Let S = span(Aη) denote the subspace spanned by the columns of Aη. This subspace

represents the fewest linear combinations of η that are needed for the regression. If

b is a known matrix whose columns form a basis for S then we can replace η with b
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without loss of information on the regression. The dimension of S, the minimum num-

ber of reduced predictors, is equal to the rank of A: Since rank(Aη) = rank(ηT AT ),

dim(S) = rank(ηT AT ) = rank(AηηT AT ) = rank(A) (13)

because ηηT is a K × K positive definite matrix (see A4.4, Seber, 1977) by our

assumption on the rank of η. In consequence, inference on the dimension of S can

be based solely on A in the sense that an estimate of the rank of A constitutes an

estimate of the dimension of S.

When the dimension of S is less than min(K, p), model (6) corresponds to the

basic reduced-rank regression model (see Reinsel and Velu, 1998, ch. 2). Reduced-

rank regression models were introduced by Anderson (1951) and are used mostly

when there is a need to reduce the number of parameters in (6). They have a wide

spectrum of applications in fields such as chemometrics (Frank and Friedman, 1993),

psychometrics (Anderson and Rubin, 1956), econometrics (Velu, Reichern and Wich-

ern, 1986), and financial economics (Zhou, 1995). The typical analysis of a reduced

rank regression model is based on the assumption that the coefficient matrix A is not

of full rank. The elements of A are subsequently estimated for a given value of the

rank of A.

Recall that Â is the OLSE for A, and assume that Gn = (FFT/n)−1 has a K×K

positive definite limit matrix G. Let Hn = Σ ⊗ (FFT/n)−1 denote the covariance

matrix of
√
nvec(Â−A).

Bura and Cook (2003) showed that under model (6), if Gn has a positive definite

limit matrix, and that Σ̂ is any consistent estimate of Σ, then

Λd = n

min(K,p)∑
j=d+1

φ2
j (14)

is asymptotically distributed as a χ2
(K−d)(p−d) random variable, where φ1 ≥ φ2 ≥ . . . ≥

φmin(K,p) are the ordered singular values of Âstd, Âstd = GnÂΣ̂
−1/2

.
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We use Λk as a test statistic for the rank of A, or equivalently, for the rank of

the model. We start by testing the hypothesis that d = 0, that is, by comparing Λ0

to the percentage points of a chi-squared distribution with Kp degrees of freedom.

If the test is significant, the rank is estimated to be 0. Otherwise, we sequentially

test d = 1, 2, . . . ,min(K, p) till we encounter a significant value which serves as the

estimate of the rank of the model. This is a fairly standard general procedure to

estimate a rank (see, for example, Rao, 1965, p. 474). As an aside, it is easy to see

that the chi-square asymptotic test coincides with the usual F-test for testing d = 0;

that is, that all the coefficients are zero, when p = 1.

The d left singular vectors uj of Â that correspond to its d largest singular val-

ues provide an estimated basis for S. The linear combinations of η needed for the

regression are then constructed as uT
j F, j = 1, . . . , d.

We will use this result to estimate how many factors are necessary to model the

three-year daily data of 30 Industry Portfolios from May 1, 2002 to Aug. 29, 2005,

which are available at the website

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html using

several factors. Fama and French (1993) proposed a three factor model. The first

factor is the excess return of the proxy of the market portfolio, which is the value-

weighted return on all NYSE, AMEX and NASDAQ stocks (from CRSP) minus the

one-month Treasury bill rate (from Ibbotson Associates). The other two factors are

constructed using six value-weighted portfolios formed on size and book-to-market.

These three factors will be included along with a few others. The structural dimension

of the (6) model will be assessed with the chi-square test and the resulting projected

factors will be used in the estimation of Σ using (8). Our results will be compared

to those of Fan et al. (2006).
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