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ABSTRACT

In this paper, we discuss issues that arise in the analysis of call center arrivals that are
mostly linked to individual ads. More specifically, we consider the case where there is no
complete linkage between the calls and the advertisements that led to the calls. The
ability to model and infer such latent call arrival sources is important from a marketing as
well as an operations point of view since knowledge of the linkage improves forecasting
performance of the model. We pose this as a missing data problem and develop a data
augmentation  algorithm for the Bayesian analysis. We implement the proposed
algorithm to simulated and actual call center arrival data and discuss its performance.
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1. Introduction and Overview

The focus of the previous work in call center arrival modeling was primarily on

forecasting models for optimal scheduling and staffing of telephone operators in call

centers [Gans et al. (2003)]. Some of the work involved use of time series models such as

ARIMA processes and transfer function models as in Andrews and Cunningham (1995);

queuing models as in Jongbloed and Koole (2001), doubly stochastic Poisson models as

in Avramidis et al. (2004). More recently, Bayesian nonhomogeneous Poisson process

(NHPP) models have been considered by Soyer and Tarimcilar (2008) and by Weinberg,

Brown and Stroud (2007).

The focus of the previous work was to model the call arrival (demand) process

based on aggregate arrival data. An exception to this is the work by Soyer and Tarimcilar

(2008) where the authors considered modeling of the call center arrival process for

evaluating efficiency of advertisement and promotion policies to develop marketing

strategies for call centers. As noted in the recent comprehensive review of the literature

in call center research by Aksin, Armony and Mehrotra (2007), there is an important

interface between operations and marketing components of call centers. However, most

of the previous research has failed to emphasize this interface.

In this paper we consider an extension of the Bayesian call center arrival models

of Soyer and Tarimcilar (2008) where there is no complete linkage between the calls and

the advertisements that led to the calls. In reality it is not uncommon to have cases where

the customer does not know the ad s he is responding to. The ability to model and inferÎ

such latent call arrival sources is important from a marketing as well as an operations

point of view since knowledge of the linkage improves forecasting performance of the

models.

In what follows, we first present the modulated Poisson process model considered

for call arrivals by Soyer and Tarimcilar (2008) and introduce a model that takes into

account the issue of incomplete linkage. This is done in Section 2. This model enables us
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to formulate the incomplete linkage problem as a missing data problem and provides us

with a framework to infer the unknown sources of the calls. In Section 3 we introduce a

data augmentation algorithm to develop a Bayesian analysis of the model and discuss

how posterior and predictive distributions are obtained. We illustrate how advertisement

specific as well as aggregate call arrival predictions can be made using the model. The

implementation of the data augmentation algorithm is illustrated with two examples in

Section 4 where we discuss the performance of the algorithm and its accuracy.

2. Modulated Poisson Process Model with Latent Variables

Following Soyer and Tarimcilar (2008) we define  as the number of callsR Ð>Ñ3

arrived during a time interval of length  as response to the advertisement and  as a> 3>2 ^3

: ‚ " 3>2 vector of covariates that describe the characteristics of the  advertisement.

Typically, the covariate vector  will consist of  media expense (in $'s), venue type^3

(monthly magazine, daily newspaper etc.), ad format (full page, half page, color etc.),

offer type (free shipment, payment schedule etc.) and seasonal indicators.

To reflect the fact that effectiveness of advertisement  is a function of time, the3

authors assumed that  is described by a nonhomogeneous Poisson process (NHPP)R Ð>Ñ3

with intensity function  and noted that the effectiveness of the advertisement, that is,-3Ð>Ñ

its ability to generate calls, decreases by time. In order to consider the effect of covariates

on the call volume intensity a modulation of the NHPP is considered following Cox

(1972). The modulated NHPP model has the intensity function

- -3 3 !
^Ð>ß ^ Ñ œ Ð>Ñ /"
w

3

where  is the baseline intensity function and  is a vector of parameters.-!Ð>Ñ "

The cumulative intensity (mean-value) function of the modulated NHPP is

A A3 3 !Ð>ß Ñ œ Ð>Ñ/^ " w^3 (2.1)
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where . Given , , and , the distribution of , is a PoissonA - A! ! ! 3 3!
>

Ð>Ñ œ Ð=Ñ.= Ð>Ñ R Ð>Ñ' " ^

model with

TÐR Ð>Ñ œ 8l Ð>Ñ Ñ œ /B:Ð  Ð>Ñ / Ñ
Ð Ð>Ñ/ Ñ

8x
3 ! 3 !

!
Ñ 8

A A
A

, , ." ^
"

"

w

w
^

^
3

3

In the modulated NHPP model (or PIM) if we assume a parametric form for A!Ð>Ñ

and a parametric prior for  then we can do a fully parametric Bayesian analysis. Soyer"

and Tarimcilar (2008) use the power law model

A #!Ð>Ñ œ >! (2.2)

with intensity function , where ,  and point out that values of- #! ! #!
"Ð>Ñ œ >  !  !!

!  " implies that the effectiveness of ads deteriorate with time.

2.1 A Latent Variable Model

In reality it is not uncommon to have cases where 100 % linkage between the ads

and the calls may not exist for all calls. As noted by Soyer and Tarimcilar (2008), one

strategy to deal with this problem is to treat these "unassigned" calls as if they were

generated by the same call arrival process and to assume no covariate information for the

unassigned  More specifically, for unassigned calls. all calls, the authors assume that the

intensity function is given by

A $ A $ #?
! ? ! ?Ð>Ñ œ Ð>Ñ œ >!,

where which rescales the baseline intensity function to reflect$? is a random component 

the behavior of all the calls.unassigned 

However, this approach does not enable us to infer the ad sources of the

unassigned calls and thus rather limited. Alternatively, we can treat this as a missing data

problem and introduce latent variables as will be discussed in the sequel.
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Assume that we have  ads with starting times . Calls are recorded as7 X ß á ß X" 7

number of arrivals in the intervals  where is the number of callsM œ Ð> ß > Ó 84 4" 4 34

associated with ad  in the interval  In addition to the  linked calls in interval  we3 4Þ 8 434

observe the number of calls can not be linked to any ad. Let  denote the number of calls?4

that can not be linked to any individual ad in interval .M4

Given the above setup we still have a NHPP for ad  with cumulativeR Ð>Ñ3

intensity function

A A
3

w
3

3
Ð>Ñ œ Ð>  X Ñ/ " Ð>Ñ! 3


ÒX ß_Ñ

" ^ . (2.3)

and given  we have the independent increments property and 's areA
3
Ð>Ñ R Ð>Ñ3

independent of each other. We define latent variables ,  to denote the] 4 œ "ßá ß734

unobserved number of calls in interval  that was intended for ad . Let   denote theM 3 ]4 4

vector of such latent variables for time interval , that is,  .4 ] œ Ð] ß â ß ] Ñ 4 "4 74

Furthermore, define as the probability that any unlinked call in interval  has arrived: 434

as response to ad . Thus, we assume that the latent vector  follows a multinomial3 ] 4

distribution denoted as , where  and  is] µ Q?6>Ð? à : ßá: Ñ ? œ ] ? 4 4 "4 74 4 34 4
3œ"

7!
observed for all intervals. Also, the latent vectors 's are conditionaly independent] 4

random variables.

3. Bayesian Analysis of the Latent Variable Model

In the modulated NHPP model with missing links we assume a Dirichlet prior on

: œ Ð: ßá: Ñ Ð ß ßá ß Ñ_  with parameters  which is independent across the4 "4 74 "4 #4 74! ! !

intervals. Thus, for the th interval we assume a Dirichlet prior as4

1Ð: Ñ º_ . (3.1)4 : â :"4
" "

74
! !"4 74
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It follows from (3.1) that

IÒ: Ó œ34
34

5œ"

7

54

!

!! . (3.2)

We can specify the prior parameters as

! $34 4 3 4ÒX ß_Ñº /B:Ö  Ð>  X Ñ×" Ð> Ñ
3

(3.3)

to reflect the fact that larger number of calls during the early phases of the life of an ad

will be followed by a decrease over time with for inactive ads.!34 œ !

Priors for other parameters can be specified independent of  ] : 4 4's and 's. For_

example, the prior for  can be specified as a gamma distribution as#

# µ K+77+Ð+ ß , Ñ# #  and a multivariate normal prior can be used for the covariate

parameter vector . An independent gamma prior can be chosen for  as" !

! µ K+77+Ð+ ß , Ñ! ! .

The Bayesian analysis of the model requires use of a data augmentation step in

the MCMC setup. More specifically, by introducing the independent latent vectors  for] 4

each of the intervals , , we can design a Gibbs sampler to draw samplesM 4 œ "ßá ß 84

from the posterior distribution of all unknown quantities.

Note that given 's for all intervals, we know that 's are independent] Ð8  ] Ñ 4 34 34

Poisson's with parameters  and? A A34 4 3 4" 3œ Ð>  X Ñ  Ð>  X Ñ
3 3

A #
3

w
3Ð>Ñ œ > /! " ^ . (3.4)

The (conditional) likelihood based on data from all intervals is given by

$ $Œ š ›
4œ" 3œ"

8 7
4

"4 74 34 34

8 ]
34  ]

34

?

] â] Ð8  ] Ñx
/ :

? 34 34

34 34? . (3.5)

In implementation of the Gibbs sampler we also draw from the full conditional posteriors

of  's. The full conditional posterior of   is given by] ] 4 4
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º :
?

] â] Ð8  ] Ñx
Œ š ›$4

"4 74 34 343œ"

7 8 ]
34 ]

34

? 34 34

34 . (3.6)

Alternatively, we can look at the full conditional posterior of  which is given by]34

º : :
? x

] x Ð?  ] Ñx Ð8  ] Ñx Ð8  ?  ] Ñx

4 34 74

34 4 54 34 34 74 4 54
5œ" 5œ"

7" 7"

8 ] ? ]
] ? ]
34 74! !

? ?34 34 4 34

34 4 34 ,

where the normalizing constant is

" ! !] œ!

?
4 34 74

34 4 54 34 34 74 4 54
5œ" 5œ"

7" 7"

8 ] ? ]
] ? ]
34 74

34

4 34 34 4 34

34 4 34? x

] x Ð?  ] Ñx Ð8  ] Ñx Ð8  ?  ] Ñx

: :
? ?

.

With a Dirichlet prior on  with parameters  the full_: Ð ß ßá ß Ñ4 "4 #4 74! ! !

conditional posterior of  will be also a Dirichlet distribution with parameters_:4

Ð  ] ßá ß  ] Ñ! !"4 "4 74 74 .

If the prior for  is a gamma then the full conditional of  is a gamma. More# #

specifically, if we have # µ K+77+Ð+ß ,Ñ then we can easily show that the full

conditional is a gamma with shape parameter and scale parameter’ “! !+  Ð8  ] Ñ
3œ"4œ"

7 8

34 34

’ “!,  Ð>  X Ñ /B:Ð Ñ >
3œ"

7

8 3 3 8
w! " ^  where  is the end point of the last interval.

Draws from full conditionals of  and can be obtained as before using adaptive! " 

rejection sampling [see for example, Gilks and Wild (1992)] or Metropolis-Hastings [see

for example, Chib and Greenberg (1995]. The full conditional of  is given by"

º / Ð Ñ$ $š ›
4œ" 3œ"

8 7
8 ]
34

   ? 134 34 34? " (3.7)

and the full conditional of  is given by!

º / Ð Ñ ÒÐ>  X Ñ  Ð>  X Ñ Ó
 Ð> X Ñ /B:Ð ^ Ñ

4œ" 3œ"

8 7

4 3 4" 3
8 ]

#
! !

!
3œ"

7

8 3 3
w

34 34

! "
1 ! $ $š ›. (3.8)
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It is possible to use the model for prediction of call volume at different time

periods generated by a single ad or by a group of ads that are active at the time. It is

important to note that once the posterior distribution of ,  and  is available we can! # "

provide these predictions for any time interval both for an individual ad as well for a

group of ads. Given the values ,  and  our inferences about call arrivals in any time! # "

interval are independent of latent variables 's. In other words, assessment of 's are] ]34 34

crucial for making correct inferences about parameters of the modulated NHPP model

but they do not directly provide information about the arrivals.

Given the posterior sample  from the joint posteriorš ›! #Ð1Ñ Ð1Ñ Ð1Ñ
K

1œ"
ß ß "

distribution using the Gibbs sampler, we can make call arrival predictions. For a single ad

3 8 Ð=ß >Ó =  > we can approximate the probability of  calls in the interval , , for

advertisement as3

T ÐR Ð>Ñ  R Ð=Ñ œ 8Ñ ¶ TÐR Ð>Ñ  R Ð=Ñ œ 8l ß ß ß Ñ
"

K
3 3 3 3 3

1œ"

K
Ð6Ñ Ð6Ñ Ð6Ñ  

, (3.9)" ! # " ^

where , , , and  is given by the Poisson8 œ !ß " # á TÐR Ð>Ñ  R Ð=Ñ œ 8l ß ß ß Ñ3 3 3! # " ^

model.

If we consider ads, then, given , , and 's, we have conditionally7 ß 7! # " ^3

independent NHPPs, 's. Thus, the cumulative number of calls generated by the R Ð>Ñ 73

ads

RÐ>Ñ œ R Ð>Ñ"
3œ"

7

3  (3.10)

is a superposition of independent NHHPs implying that  is a NHPP with the7 RÐ>Ñ

cumulative intensity function

A AÐ>ß Ñ œ Ð>ß Ñ "Ð>  X Ñß^ ^"
3œ"

7

3 3 3 (3.11)
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where  is the issue date of the  ad, •  is the indicator function. The posteriorX 3>2 "Ð Ñ3

predictive distribution of cumulative number of calls can be obtained using a Monte

Carlo integral approximation as in (3.9) by replacing  with  and using (3.11) asR Ð>Ñ RÐ>Ñ3

the cumulative intensity.

4. Numerical Illustrations

4.1 Example using Simulated Data

We consider data simulated from a modulated nonhomogeneous Poisson process

with cost of the advertisng as the single covariate and with baseline cumulative intensity

is a power law function.  Thus, the cumulative intensity function for advertisiment  is3

given by

A #3 3
^Ð>ß ^ Ñ œ > /! " 3  

where is a scalar and  is the cost of the advertisement. Data was generated for 10" ^ 3>23

different ads starting at the same time assuming 10, 0.5 and 0.1. The costs# ! "œ œ œ

of the ads changed between 1 an 10 units and 20 time intervals were generated for each

ad.

After the complete data was simulated, in each time interval it was assumed that

there were certain calls whose source ads were unknown. These latent calls for each

interval , that is,  were simulated independently assuming a binomial distribution and4 ?4's

]34's were then generated using the multinomial distributions Q?6>Ð? à : ßá: Ñ4 "4 74 . In

choosing the multinomial probabilities it was assumed that 's were proportional to the:34

cost of the ads implying that ads with high costs and thus high call arrival intensities are

more likely to have latent calls.

Once the data was generated, the Bayesian methodology of Section 3 was applied

using diffused priors for all the parameters. More specifically, we assumed Dirichlet

priors for 's with parameters 1 for all 10 and  1, , 20. Prior for _: œ 3 œ "ßá ß 4 œ á4 34! "
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was assumed to be normal with mean 0 and variance 100. Similarly, diffused gamma

priors were specified for the parameters  and .! #

It is important to note that the data available to us for analysis consists of the

number of calls 's with known sources, that is, advertisements, as well as the number834

of calls  with latent sources for each interval. Thus, the following results are obtained?4

using the data augmentation type algorithm presented in Section 3.

In Figure 1, we present the posterior distribution of the shape parameter  of the!

baseline intensity function on the left. As we can see the posterior distribution is

concentrated around (0.45, 0.6) which captures the actual value of  0.5. Posterior

distribution of the cost parameter  is illustrated on the left in Figure 1. The posterior"

density is concentrated in the region (0.06, 0.12) which again includes the actual value of

0.1. The posterior distribution of the scale parameter , which is not shown here, is#

concentrated in the (8, 12) interval and peaked at the actual value of 10.# œ

All these results suggest that the Bayesian approach presented in Section 3 to deal

with latent advertisement sources seems to be performing satisfactorily. We can see this

more explicitly by analyzing the posterior distributions of 's for different intervals and]34

by comparing the posterior inferences with the actual values of  's that are known to us]34

from the simulation. In Figure 2, we present the posterior distributions of  's for time]34

interval 8 where, for example, label "Yi8a1" denotes the posterior distribution for ad 1.

 Figure 2. Posterior distributions of  (left panel) and  (right panel).! "
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Figure 2. Posterior distributions of 's for interval 8.] Ð4 œ )ß 3 œ "ßá ß "!Ñ34

A comparison of the posterior means, medians and modes with the actual values

are illustrated in Table 1 for two different time intervals. As we can see from the table,

the posterior point estimates are close to the actual values of in most cases. Similar]34's 

results were obtained for other time intervals.
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Table 1. Comparison of posterior inferences with actual 's for intervals 2 and 8.]34

4.2 Example using Actual Call Arrival Data

We also applied our model to some actual call center arrival data similar to what

is used in Soyer and Tarimcilar (2008) to see how the approach works with large number

of advertisements over a long period of time. Data is on weekly call arrivals generated as

response to advertisements appeared in print media and includes information on the cost

of advertisement as well as . The data istype of promotion being offered in the ad

available for 84 advertisements with different starting times, 's, over a period of 72X3

weeks. Thus, at a given week there can be large number of advertisements that are

available and potentially generating calls. The actual data has 100 % linkage between the

ads and the calls. In order to see the performance of our approach, we assumed that in

each interval the ad sources were not known for some of the calls and we simulated the

?4's and 's as we did in Section 4.1.]34

An example of the data is shown in Table 2 for some of the weeks between 1 and

25. We note that during the first week there are only 2 active ads and there was only 1

call out of 24 which can not be linked to one of the two active ads. Based on the R34

column, there were 7 calls for ad 1 and 17 calls for ad 2. Similarly, during week 5 there
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were 7 active ads and 3 calls could not be associated with any of these. As expected as

the ad gets  it starts generating less calls. For example, we see that during week 25older

no calls were received for ads 1, 2 and 3 which are the oldest among the 18 that are active

at that time.

Week Active Ads4 ? R

" # " Ð(ß "(Ñ
# $ ! Ð#ß "%ß &Ñ
& ( $ Ð"ß "ß "ß "#ß ")ß )ß "'Ñ
"! "$ & Ð!ß $ß !ßááß $Ñ
#& ") $ Ð!ß !ß !ßá ß (ß #%ß $Ñ

4 34

Table 2. Example of data with unknown call sources.

It is important to note that as the number of active ads gets larger over time the

dimension of the multinomial distribution of   gets larger. For example, in week 2 we] 4

had only 3 active ads whereas this number was 18 on week 25. Thus, in week 25 the 3

calls with unknown sources could be in reponse to any of these active 18 ads.

The data includes information on the cost of each advertisement (in $000) as well

as the offer type with three categories: standard, interest bearing installment and free

originating and return shipment. The three offer types and these are captured by two

dummy variables in the model. More specifically, we used the log of the cumulative

intensity function

691Ò Ð>ÑÓ œ  691>  ^  ^  ^A ) ! " " "3 " "3 # #3 $ $3 (4.1)

where  in (3.2), ) #œ 691 ^ ^ ^"3 $3 %3 is cost of the advertisement,  and  are the dummy

variables representing the second and third order types. We assumed diffused but proper

priors for all parameters. We used the same parameter values for the Dirichlet prior on

:_ 's, for the normal prior on ad cost coefficient , and for the gamma priors on  and 4 "" ! #

as in Section 4.1. Priors for  and  were also assumed to be independent with normal" "# $

distributions with mean 0 and variance 100.
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A reasonable way to assess the performance of the proposed Bayesian approach

of Section 3 is to compare the posterior and predictive inferences from the model with

unknown call sources with those results from the complete model where all the call

sources are known. In Table 3, we present a comparison of the posterior means and

standard deviations of the unknown parameters from the latent source model and

complete source model. We note that in all cases, the posterior inferences are very similar

under the latent and complete source models. This suggests that the proposed approach

for modeling latent sources performs reasonably well in this case.

Latent Source Model Complete Source Model
Mean Std Mean Std
0.4156 0.0074 0.4015 0.0064
2.1928 0.0425 2.0910 0.0337
0.0303 0.0061 0.0289 0.00

!
)
"" 45

0.1945 0.0498 0.1931 0.0345
0.6350 0.0405 0.7781 0.0387

"
"
#

$

Table 3: Comparison of  Posterior Means and Standard Deviations

In Figure 3, we present the density plots for the posterior distributions of , ,! ""

" " !# $, and  from the latent source model. Note that the posterior  shows that the call

generating ability of the advertisements deteriorates by time. As expected, the cost as

well as the offer types have positive effect on the call intensity as implied by the support

for positive values in the posterior distributions of these coefficients.

As previously discussed in Section 4.1, a more direct assessment of the

performance of the Bayesian approach for modeling latent sources can be made by

looking at the posterior distributions of 's and comparing them to the actual values]34

which are known to us.

In Table 4 we show a comparison of the posterior means and the actual values

]34's for week 5 where we had 7 active ads and 60 calls 3 of which have latent sources.
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We see from the table that 's for all the ads except the 4th one predicted (or classified)]34

correctly. Again we note that as the number of time intervals (weeks) increase the

dimension of the 's increase and those ads which have been active for a longer time]34

become less likely sources of unidentified calls. Obviously this is due to the fact that the

call intensity decreases by time as  takes values less than 1. The table also presents the!

posterior means of 's for the interval. We note that the prior means for 's, which: :34 34

were chosen as  for each ad in the interval, now are revised to  posterior"Î( œ !Þ"%$

mean values shown in the last column. Based on these, the expected posterior probability

that a latent source call is generated by any of the first three ads is quite small. On the

other hand, the expected posterior probability is lot higher for ads 5, 6 and 7.

Figure 3. Posterior distributions of parameters in the latent source model.
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Ad Actual 3 IÒ IÒ:

" ! !Þ!& !Þ!")
# ! !Þ!( !Þ!##
$ ! !Þ!% !Þ!"%
% ! !Þ&' !Þ")'
& " !Þ(* !Þ#''
' " !Þ(( !Þ#&'
( " !Þ(" !Þ#$)

] ] Ó Ó34 34 34

Table 4. Comparison of actual 's with posterior means for week 5.]34

 

Similar conclusions can be reached by looking at the posterior distributions of ]34's

shown in Table 5. We can see from the table that for ads 1-3, the posterior probability

values of the actual  values are very high. For ads 4, 5 and 7 the mode of the posterior]34

distribution is at the actual value. But in these cases the variance is higher than the cases

of ads 1-3.  Note that we have specified diffused priors for 's which do not take into:34

account the age of the ad. We clearly see that the posterior inferences on 's suggest that:34

we learn about the latent sources from the data. Thus, these results are quite satisfactory.

If we use informative priors such as in (3.3), the accuracy will naturally improve. We

obtained similar results for the other time intervals.

Ad Actual 3 T Ð T Ð T Ð T Ð

" ! !Þ*%' !Þ!&$ !Þ!!" !Þ!!!
# ! !Þ*$% !Þ!'' !Þ!!! !Þ!!!
$ ! !Þ*&) !Þ!%" !Þ!!" !Þ!!!
% ! !Þ&%% !Þ$'" !Þ!)

] ] œ !Ñ ] œ "Ñ ] œ #Ñ ] œ $Ñ34 34 34 34 34

' !Þ!!*
& " !Þ$(( !Þ%'" !Þ"&" !Þ!""
' " !Þ%## !Þ%!' !Þ"&% !Þ!")
( " !Þ%#! !Þ%%( !Þ"$# !Þ!!"

Table 5. Posterior distributions of 's for week 5.]34

5. Concluding Remarks

In conclusion, our experience with the proposed Bayesian approach for modeling

latent sources and the corresponding data augmentation algorithm within the Gibbs
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sampler have shown lot of promise. The proposed approach provided very close posterior

inference results for the model parameters and actual arrivals when it is compared with

complete source model results. The inferences about 's when compared to actual]34

values were found to be reasonably close.

References

Aksin, O.Z., Armony, M. and Mehrotra, V. (2007). The Modern Call-Center:  A Multi-
Disciplinary Perspective on Operations Management Research. Production and
Operations Management, Vol. 16, pp. 665-688.

Andrews, B. H. and Cunningham, S. M. (1995). L. L. bean Improves Call-Center
Forecasting. , Vol. 25,  pp. 1-13.Interfaces

Avramidis, A. N., Deslauriers, A. and L'Ecuyer, P. (2004). Modeling Daily Arrivals to a
Telephone Call Center. , Vol. 50, pp. 896-908.Management Science

Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm,
The American Statistician, 49, 327-335.

Cox, D. R. (1972). The Statistical Analysis of Dependencies in Point Processes. In
Stochastic Point Processes. Ed. P. A. W. Lewis, pp. 55-66, New York Wiley.

Gans, N., Koole, G. and Mandelbaum, A. (2003). Telephone Call Centers: Tutorial,
Review and Research Prospects, , Vol.Manufacturing & Service Operations Management
5, pp. 79-141.

Gilks, W. and Wild, P. (1992). Adaptive Rejection Sampling for Gibbs Sampling.
Journal of the Royal Statistical Society, Ser. B, Vol. 41, pp. 337-348.

Jongbloed, G. and Koole, G. (2001). Managing Uncertainty in Call Centers using Poisson
Mixtures. , Vol. 17, pp. 307-318.Applied Stochastic Models in Business and Industry

Soyer, R. and Tarimcilar, M. M. (2008). Modeling and Analysis of Call Center Arrival
Data: A Bayesian Approach, , Vol. 54, pp. 266-278.Management Science

Weinberg. J., L. D. Brown, J. R. Stroud. (2007). Bayesian forecasting of an
inhomogeneous Poisson process with applications to call center data. Journal of the
American Statistical Association, Vol. 102, pp. 1185–1199.




