
\ fWf#

The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2008-21
December 4, 2008

Selecting Optimal Alternatives and Risk Reduction
Strategies in Decision Trees

Hanif D. Sherali
Grado Department of Industrial and Systems Engineering
Virginia Polytechnic Institute and State University, USA

Evrim Dalkiran
Grado Department of Industrial and Systems Engineering
Virginia Polytechnic Institute and State University, USA

Theodore S. Glickman
Department of Decision Sciences

The George Washington University, USA

Selecting Optimal Alternatives and Risk Reduction
Strategies in Decision Trees

Hanif D. Sherali1, Evrim Dalkiran1, Theodore S. Glickman2

1Grado Department of Industrial and Systems Engineering (0118),
Virginia Polytechnic Institute and State University,
250 Durham Hall, Blacksburg, VA 24061, U.S.A.

email: hanifs@vt.edu dalkiran@vt.edu

2Department of Decision Sciences,
The George Washington University,

415 Funger Hall, Washington, DC 20052, U.S.A.
email: glickman@gwu.edu

In this paper, we conduct a quantitative analysis for a strategic risk management problem
that involves allocating certain available failure-mitigating and consequence-alleviating re-
sources to reduce the failure risk of system safety components and subsequent losses, respec-
tively, together with selecting optimal strategic decision alternatives, in order to minimize
the risk or expected loss in the event of a hazardous occurrence. Using a novel decision tree
optimization approach to represent the cascading sequences of probabilistic events as con-
trolled by key decisions and investment alternatives, the problem is modeled as a nonconvex
mixed-integer 0-1 factorable program. We develop a specialized branch-and-bound algorithm
in which lower bounds are computed via tight linear relaxations of the original problem that
are constructed by utilizing a polyhedral outer-approximation mechanism in concert with
two alternative linearization schemes having different levels of tightness and complexity. We
also suggest three alternative branching schemes, each of which is proven to guarantee con-
vergence to a global optimum for the underlying problem. Extensive computational results
are presented to demonstrate the efficacy of the proposed algorithm.

Subject classifications: Programming: integer. Programming: integer: branch-and-bound.
Decision analysis: risk.

Area of Review: Optimization.

1 Introduction

This paper addresses the strategic reduction of risk in a system that is characterized by a

decision tree. Such a tree contains two types of nodes that represent either event-points or

decision-points. At an event-point, some safety feature or measure is invoked that might

lead to one of several outcomes, each represented by an arc having a specified probability

of occurrence. For example, in the particular context of Bernoulli events, an event-point

i would trigger either a failure or a success outcome state with respective probabilities pi

and 1− pi corresponding to the particular safety feature applied at this stage. On the other

hand, the arcs emanating from each decision-point node are deterministic, and represent a

selection among different available alternatives. These choices might involve making certain

strategic decisions or system design selections at the particular stage in the process, which

then govern the subsequent sequence of events and decisions. The decision tree is rooted at a

root node or node zero that represents some component failure in the system under study or

an external hazardous occurrence, which triggers a cascading sequence of strategic decisions

and event outcomes based on applied actions or safety features that are invoked to control

the damage. Hence, each branch in the tree represents a specific sequence of decision choices

and event outcomes starting from the root node, and culminating in a final outcome or leaf

node of the tree, where the latter entails an associated consequence or loss.

Figure 1 displays a particular example of a decision tree pertaining to the rupture of

a gas-line in an offshore oil and gas platform, which has been adapted from a simpler event

tree representation (i.e., one having only event-point nodes) as described in Andrews and

Dunnett (2000), and that involves Bernoulli events. Here, each event-point, represented by

the nodes indexed 1, . . . , 9, corresponds to applying some safety measure such as closing an

isolation valve to localize the damage or opening a blow-down (BD) valve to depressurize

certain critical sections of the system, and can lead to one of two immediate scenarios or

outcomes depending on the success or failure of this measure. Note that a particular safety

measure can be activated at different event-points in the tree to counteract the hazard at

1

that particular stage in the process. At any decision-point in the tree (nodes 10, . . . , 13 in

Figure 1, depending on the situation at that particular stage as governed by the sequence

of events and decisions leading up to it, one of several strategic alternative options can be

selected, where each such option is represented by a binary variable that takes on a value

of one if this option is selected and zero otherwise. Hence, at the decision node 10 for

example, one of three choices can be made with respect to subsequently activating only the

closure of valve B, or the closure of valve B and the opening of the blow-down (BD) valve,

or neither of these, which are respectively represented by the binary variables φ1, φ2, and

φ3 with φ1 + φ2 + φ3 = 1. The binary variables designating the alternative choices at the

other decision nodes 11, 12, and 13 are specified in the legend of Figure 1 along with their

constraining relationships. For example, assume that the first option is chosen at decision

node 10. At the event-point represented by node 6, the valve B either fails or succeeds to

operate with respective probabilities p6 and 1− p6. Following the success outcome, the leaf

node 14 is reached, while the failure event leads to another decision node at which one of

two emergency response choices can be made, which are represented by the binary variables

φ4 and φ5, respectively, with φ4 + φ5 = φ1. Note that when φ1 = 0, the choice represented

at decision node 11 does not arise. In this fashion, the cascading sequences of events and

decisions lead to final leaf nodes 14, . . . , 28, each entailing a particular loss or consequence.

Jiang et al. (2006) study maintenance selection and scheduling under tight budgetary

and labor constraints to maximize the risk reduction. A composite heuristic using linear

programming relaxations and dynamic programming is developed to solve the large-scale

integer programming problem. Based on this, a Lagrangian relaxation approach is adopted

to formulate a particular knapsack problem, and a sequence of such knapsack problems are

then solved using dynamic programming in concert with a heuristic. In another study, Dil-

lon et al. (2003) develop the Advanced Programmatic Risk Analysis and Management model

as a decision tool for allocating a limited budget amongst design and residual investments

that involve reinforcement (to mitigate technical failure risks) and initial budget reserves (to

2

mitigate managerial failure risk). For all levels of residual investments, the corresponding al-

locations of the budget between subcomponents are listed and the alternative that minimizes

the expected risk is chosen. Using sensitivity analysis, the value of additional investments

is assessed, which provides insights into the amount of additional budget levels required to

satisfy certain specific risk thresholds. Mehr and Tumer (2006) study resource allocation

in the form of a portfolio selection problem in which risk is related to both the likelihood

and consequence of an undesirable event, and each unit of resource allocation reduces the

risk by a random amount. Sherali et al. (2008) also study resource allocations to minimize

the expected risk in a given system. In contrast to Mehr and Tumer (2006), they differenti-

ate between investment decisions for failure-mitigation and consequence-alleviation. A logit

model is used to represent the relationships between investments and failure probabilities

instead of adopting a linearity assumption as in Mehr and Tumer (2006). Furthermore, the

probability of a final consequence is given via an event tree as a polynomial function of the

probabilities of cascading events as opposed to using an assigned probability. The overall

event tree optimization problem is modeled as a continuous nonconvex factorable program,

and an equivalent transformed reformulation of the problem is solved using the commercial

global optimization software BARON (Sahinidis (1996)).

Several other risk management applications where decision trees of the type described

in Figure 1 arise are discussed in the literature. Beim and Hobbs (1997) utilize event trees

to estimate the lock closure risks due to vessel accidents and nonstructural failures, while

Acosta and Siu (1993) analyze steam generator tube rupture accidents in a power plant.

Alternatively, Ulerich and Powers (1988), Andrews and Bartlett (2003), and Hayes (2002)

adopt fault trees for modeling chemical processes, firewater deluge systems, and biological

invasions, respectively. Dugan et al. (2000) develop a fault tree modeling and analysis tool,

which decomposes the tree into static and dynamic subtrees that are solved using binary

decision diagrams and Markov models, respectively. Another such computer-automated

fault tree analysis tool that is applied in chemical process industries has been designed by

3

Khan and Abbasi (2000). For fault tree management problems, Rauzy (1993) proposes new

algorithms based on binary decision diagrams that enable an efficient computation of minimal

cuts along with deducing the probability of the root event. Dutuit and Rauzy (1996) describe

a linear-time algorithm to detect independent subtrees in a fault tree by which computational

costs can be reduced by means of a divide-and-conquer technique. Using the binary decision

diagram approach of Rauzy (1993) and Dutuit and Rauzy (1996), Sinnamon and Andrews

(1997a, 1997b) calculate the exact values of the top event parameters efficiently in contrast

with the approximations produced by using traditional kinetic tree theory approaches. In

addition, Furuta and Shiraishi (1984), Kenarangui (1991), and Huang et al. (2001) suggest

using the fuzzy-set approach in order to enable the use of verbal statements for possibility

measures instead of requiring the specification of event probabilities.

The remainder of this paper is organized as follows. In Section 2, we formulate a

mathematical model for the DTO problem and then develop a suitable reformulation along

with a tight lower-bounding representation through some transformations, polyhedral ap-

proximations, and valid inequalities in concert with two alternative linearization schemes.

In Section 3, we describe a specialized branch-and-bound procedure to solve the DTO prob-

lem and establish its convergence. Computational results for a hypothetical case study and

a set of simulated test cases are presented in Section 4. Finally, Section 5 concludes the

paper with a summary and some recommendations for future extensions.

2 Model Formulation: Analysis and Enhancements

To model the proposed decision tree optimization problem, we begin by defining the risk

associated with each possible final outcome or leaf node of the tree. Toward this end,

consider the following notation:

• Ie ≡ {1, . . . , I}: set of indices representing the event-point nodes.

• pi and (1− pi): respectively, the conditional probabilities of failure and success associ-

4

ated with the outcomes resulting from the application of the particular safety feature

at event-point i, given that the sequence of decisions and events on the chain from the

root node to node i has occurred, i ∈ Ie.

Remark 1. Note that for the sake of notational simplicity and clarity in exposition, we

consider Bernoulli events in our model, although our analysis readily generalizes to multi-

state events. For example, we could consider multiple levels of failure indexed by r ∈ Fi,

having respective probabilities pir, r ∈ Fi,∀i ∈ Ie, with the success probability given by

ps
i ≡ (1−∑

r∈Fi
pir) ∈ (0, 1). Some comments on accommodating this feature in the model

are provided in our discussion. ¤

• τ = {j: node j is a final outcome or leaf node index of the tree}.

• d = 1, . . . , D: indices for the collective set of decisions made over the entire tree.

• φd =

1 if decision d is selected

0 otherwise.

• K: index set of decision-point nodes in the tree.

• Jk = {decisions d (with corresponding binary variables φd) associated with the alter-

native option-based arcs that emanate from node k}, ∀k ∈ K.

• Bk = {ordered set of decisions d (with corresponding binary variables φd) that occur

on the (unique) path from the root node 0 to node k}, ∀k ∈ K ∪ Ie ∪ τ .

For each j ∈ τ :

• Cj = {i: node i lies on the (unique) path from the root node 0 to node j, excluding

nodes 0 and j}.

• Aij= arc emanating from node i ∈ Cj that lies on the path joining the root node 0 to

node j ∈ τ .

5

• S1j = {i ∈ Cj ∩ Ie: the (conditional) probability associated with arc Aij is pi}, ∀j ∈ τ .

• S2j = {i ∈ Cj ∩ Ie: the (conditional) probability associated with arc Aij is (1 − pi)},
∀j ∈ τ .

• S3j = {d: decision d is associated with arc Aij,∀i ∈ Cj ∩K}, ∀j ∈ τ .

• lj= loss or consequence (in dollars, say) associated with leaf node j ∈ τ .

• cd= fixed cost associated with selecting decision d, ∀d = 1, . . . , D. (Note that for the

sake of simplicity, we consider here only linear cost terms; however, the methodology

described below readily extends to the case where we might have polynomial cost terms

that are predicated on products of the φ-variables that occur along (partial) paths from

node 0 to any leaf node.)

Then the risk associated with the leaf node j ∈ τ is the expected consequence/loss

that is conditioned on the binary decisions as given by:

ψj ≡ lj
∏

i∈S1j

pi

∏
i∈S2j

(1− pi)
∏

d∈S3j

φd, ∀j ∈ τ, (1)

and the overall risk is the total expected consequence given by
∑

j∈τ ψj.

Thus far, the only decisions identified with respect to the decision tree analysis involve

selecting binary values for the variables φd, d = 1, . . . , D, subject to the restrictions that

∑

d∈Jk

φd =
∏

d∈Bk

φd, ∀k ∈ K, (2)

where
∏

d∈Bk

φd ≡ 1 whenever Bk = ∅, ∀k ∈ K. Now, as in Sherali et al. (2008), suppose

that we can additionally bring to bear certain preventive or protective event-related resources

such as investments in improved technologies or supporting equipment for the various safety

features involved so as to mitigate the conditional failure probabilities, pi, i ∈ Ie, given

6

the sequence of preceding actions and events. Likewise, suppose that we can invest in

certain available consequence-related resources such as clean-up mechanisms and trained

emergency response personnel in order to ameliorate the potential consequences or losses lj

associated with the leaf nodes j ∈ τ . Accordingly, the goal would be to determine how to

effectively deploy the available limited resources under some budgetary restrictions so as to

appropriately manipulate the failure probabilities and the resultant consequences, as well as

devise a plan for making suitable strategic decision option choices, in order to minimize the

overall risk. More specifically, consider the following related notation and concepts:

• m = 1, . . . , M : index set for the available event-related resources.

• sm = total available units of the event-related resource m, ∀m = 1, . . . , M .

• qim= decision variable representing the quantity of event-related resource m that is

allocated to reduce the associated (conditional) failure probability pi of the safety

feature deployed at event-point or node i, ∀i ∈ Ie, m = 1, . . . , M .

• cim= cost (in dollars) per unit of qim.

• n = 1, . . . , N : index set for the available consequence-related resources.

• tn= total available units of the consequence-related resource n, ∀n = 1, . . . , N .

• rjn= decision variable representing the quantity of consequence-related resource n that

is allocated to reduce the loss magnitude lj associated with the leaf node j, ∀j ∈ τ, n =

1, . . . , N .

• djn= cost (in dollars) per unit of rjn.

• β = total available budget (in dollars).

• Logit model for relating pi to {qim, m = 1, . . . , M}, ∀i ∈ Ie:

ln

[
pi

1− pi

]
= ai0 −

M∑
m=1

aimqim, ∀i ∈ Ie, (3)

7

where (ai0, ..., aiM) ≥ 0.

• [pl
i, p

u
i]: lower and upper bounds on pi, where 0 < pl

i ≤ pi ≤ pu
i < 1, ∀i ∈ Ie, and where

these bounds are either imposed or are implied by (3) and the available resources; in

particular, we assume that pu
i = p

u(3)
i ≡ eai0/(1+eai0),∀i ∈ Ie, as implied by (3), i.e., the

model seeks further possible reductions in pi below pu
i by using suitable event-related

resource allocations as necessary.

• Model for relating lj to {rjn, n = 1, ..., N}, ∀j ∈ τ :

lj = bj0 −
N∑

n=1

bjnrjn, ∀j ∈ τ (4)

where (bj0, ..., bjN) ≥ 0.

Remark 2. As an alternative to (4), we could consider a diminishing marginal return loss

function of the type lj = bj0 exp{−∑N
n=1 bjnrjn}, ∀j ∈ τ, having nonnegative parameter

values. Our proposed algorithm can be identically applied for such loss functions upon

taking logarithms. Likewise, for the general multi-failure state scenario discussed in Remark

1, the corresponding logit model would take the form ln[pir/p
s
i] = air0−

∑M
m=1 airmqim,∀r ∈

Fi, i ∈ Ie, with the analysis described below following identically. ¤

• [llj, l
u
j] : lower and upper bounds on lj, where 0 < llj ≤ lj ≤ luj < ∞, ∀j ∈ τ, and where

these bounds are either imposed or are implied by (4) and the available resources; in

particular, we assume that luj = l
u(4)
j ≡ bj0, ∀j ∈ τ, as implied by (4), i.e., the model

seeks further possible reductions in lj below luj by using suitable consequence-related

resource allocations as necessary.

The decision tree optimization problem, DTO, can then be formulated as the follow-

ing 0-1 mixed-integer nonlinear programming problem:

DTO: Minimize
D∑

d=1

cdφd +
∑
j∈τ

lj
∏

i∈S1j

pi

∏
i∈S2j

(1− pi)
∏

d∈S3j

φd (5a)

8

subject to

∑
i∈Ie

qim ≤ sm, ∀m = 1, . . . , M (5b)

∑
j∈τ

rjn ≤ tn, ∀n = 1, . . . , N (5c)

∑
i∈Ie

M∑
m=1

cimqim +
∑
j∈τ

N∑
n=1

djnrjn ≤ β, (5d)

ln

[
pi

1− pi

]
= ai0 −

M∑
m=1

aimqim, ∀i ∈ Ie (5e)

lj = b0j −
N∑

n=1

bjnrjn, ∀j ∈ τ (5f)

∑

d∈Jk

φd =
∏

d∈Bk

φd, ∀k ∈ K (5g)

(p, l) ∈ Ω ≡

(p, l) :
0 < pl

i ≤ pi ≤ pu
i < 1, ∀i ∈ Ie

0 < llj ≤ lj ≤ luj < ∞, ∀j ∈ τ

, (5h)

(q, r) ∈ P (5i)

φd binary, ∀d = 1, . . . , D. (5j)

In this formulation, the objective function (5a) seeks to minimize the total cost of

implementing decisions plus the consequent expected loss or overall risk. (Note that the first

term in the objective function is equivalent to the polynomial term
∑

k∈K

∑

d∈Jk

cdφd

[∏

d′∈Bk

φd′
]

because of Constraints (5g) and (5j)). Constraints (5b) and (5c) impose the resource avail-

ability restrictions; Constraint (5d) enforces the budgetary limitation; Constraints (5e), (5f),

and (5g) follow from (3), (4), and (2), respectively; (5h) requires the (p, l)-variables to sat-

isfy the specified bounding restrictions; and P in (5i) is a polyhedron (embedded in the

nonnegative orthant) that includes any additional suitable constraints and variables in order

to further restrict the (q, r)-variables, or to relate them to other influencing technological or

operational decisions that are not explicitly stated in the above model. In the simplest case,

P ≡ {(q, r) : (q, r) ≥ 0}. Observe that the nonconvexity in Problem DTO arises due to the

9

polynomial function in (5a) and (5g), the logarithmic (factorable) term in (5e), as well as

the binary decision variables in (5j).

Remark 3. There is another related model that can be formulated to study a sensitivity

analysis issue in the context of decision trees, which is also of interest and can be handled

by the algorithmic process discussed below. Consider a decision tree in which the event

probabilities and loss values are not known with certainty, but might vary within intervals

as designated in (5h) (while not being strategically controllable). Given such variabilities

in the probabilities and the consequences, we might be interested in ascertaining the least

expected consequence or risk value, along with the maximum possible deviation from this

value that could occur due to the inherent uncertainties in the problem. Hence, we could

first minimize (5a) subject to (5g), (5h), and (5j), and then fixing the resulting φ-variable

values, we could next determine the maximum of (5a) subject to (5h) in order to resolve

these two respective issues. Furthermore, as an alternative approach for making decisions

that hedge against this uncertainty, we could formulate and solve a corresponding robust

optimization problem in the spirit of Mulvey et al. (1995), or minimize the maximum risk

by solving

min
φ:(5g),(5j)

max
(p,l)∈Ω

{(5a)}. ¤

We next define the following auxiliary variables, along with their implied bounds, in

order to conveniently reformulate Problem DTO. To begin with, we transform the objective

function by denoting

θj ≡ lj
∏

i∈S1j

pi

∏
i∈S2j

(1− pi), ∀j ∈ τ. (6a)

Thus we have,

θl
j ≤ θj ≤ θu

j ,

10

where,

θl
j = llj

∏
i∈S1j

pl
i

∏
i∈S2j

(1− pu
i)

θu
j = luj

∏
i∈S1j

pu
i

∏
i∈S2j

(1− pl
i)

, ∀j ∈ τ. (6b)

Furthermore, noting (1), (5a), and (6a), we denote

ψj ≡ θjwS3j
,∀j ∈ τ, (6c)

where

wS3j
≡

∏

d∈S3j

φd,∀j ∈ τ. (6d)

Noting that the binariness of the φd-variables implies that of the wS3j
-variables, ∀j ∈ τ , we

can linearize (6c) by replacing it with the restrictions:

θl
jwS3j

≤ ψj ≤ θu
j wS3j

and θl
j(1− wS3j

) ≤ θj − ψj ≤ θu
j (1− wS3j

), (6e)

by which it is readily verified that (6c) holds true whenever wS3j
takes on binary values,

∀j ∈ τ . In fact, because of the positive (unit) objective coefficients on ψj, this relationship

will hold true even if we retain just the inequalities ψj ≥ θl
jwS3j

and ψj ≥ θj − θu
j (1− wS3j

)

from (6e) for each j ∈ τ .

In the same spirit as wS3j
, j ∈ τ , we define a new variable wJ to represent

∏

d∈J

φd

for some specific sets J ⊂ {1, . . . , D} as described below, which will be used in the sequel

for linearizing (5g). Here, whenever |J | = 1 with J = {d}, we will take the corresponding

wJ ≡ φd itself, and whenever J = ∅, we will take wJ ≡ 1. Now, consider any set S3j for

j ∈ τ (in general, wS3j
might be replicated for different j ∈ τ), and assume that the indices

in S3j are arranged according to the order in which the corresponding decisions d (with

associated variables φd) occur along the path from the root node to node j. If |S3j| ≥ 2,

this will generate wJ -variables via sets J defined by taking the first two indices from S3j, the

11

first three indices from S3j, and so on, up to all the indices from S3j (finally yielding wS3j

as denoted above). Letting J denote the resulting distinct sets J generated, we define the

following identities:

wJ =
∏

d∈J

φd,∀J ∈ J . (7)

Note that (7) subsumes (6d) since S3j ∈ J , ∀j ∈ τ .

Next, to linearize (5e), we introduce the variables

y1i = ln(pi) and y2i = ln(1− pi), ∀i ∈ Ie. (8a)

Note that,

yl
1i ≤ y1i ≤ yu

1i and yl
2i ≤ y2i ≤ yu

2i,

where yl
1i = ln(pl

i), yu
1i = ln(pu

i), yl
2i = ln(1− pu

i), and yu
2i = ln(1− pl

i),∀i ∈ Ie. (8b)

Similarly, to linearize (6a) itself, we denote

zj ≡ ln(θj), ∀j ∈ τ, (9a)

where, based on (6b), we impose

zl
j ≤ zj ≤ zu

j , with zl
j = ln(θl

j) and zu
j = ln(θu

j), ∀j ∈ τ. (9b)

Likewise, to accommodate the term ln(lj) generated by taking logarithms in (6a), define

ξj ≡ ln(lj),∀j ∈ τ, (10a)

and impose the related bounds:

ξl
j ≤ ξj ≤ ξu

j , where ξl
j = ln(llj) and ξu

j = ln(luj), ∀j ∈ τ. (10b)

12

Using the foregoing transformations and substitutions, we obtain the following equiv-

alently reformulated problem DTO(Ω), which is predicated on the hyperrectangle Ω.

DTO(Ω): Minimize
D∑

d=1

cdφd +
∑
j∈τ

ψj (11a)

subject to

ψj ≥ θl
jwS3j

and ψj ≥ θj − θu
j (1− wS3j

), ∀j ∈ τ (11b)

wJ =
∏

d∈J

φd, ∀J ∈ J (11c)

∑
i∈Ie

qim ≤ sm,∀m = 1, . . . , M (11d)

∑
j∈τ

rjn ≤ tn, ∀n = 1, . . . , N (11e)

∑
i∈Ie

M∑
m=1

cimqim +
∑
j∈τ

N∑
n=1

djnrjn ≤ β, (11f)

y1i − y2i = ai0 −
M∑

m=1

aimqim,∀i ∈ Ie (11g)

lj = b0j −
N∑

n=1

bjnrjn,∀j ∈ τ (11h)

∑

d∈Jk

φd = wBk
,∀k ∈ K (11i)

zj = ξj +
∑
i∈S1j

y1i +
∑
i∈S2j

y2i,∀j ∈ τ (11j)

y1i = ln(pi),∀i ∈ Ie (11k)

y2i = ln(1− pi),∀i ∈ Ie (11l)

zj = ln(θj),∀j ∈ τ (11m)

ξj = ln(lj),∀j ∈ τ (11n)

(p, l) ∈ Ω (11o)

(q, r) ∈ P (11p)

θl
j ≤ θj ≤ θu

j , zl
j ≤ zj ≤ zu

j , and ξl
j ≤ ξj ≤ ξu

j , ∀j ∈ τ

yl
1i ≤ y1i ≤ yu

1i and yl
2i ≤ y2i ≤ yu

2i, ∀i ∈ Ie

(11q)

13

φd binary, ∀d = 1, . . . , D, and 0 ≤ wJ ≤ 1,∀J ∈ J . (11r)

Here, Ω is as specified in (5h), and we note that the bounds in (11q) depend on Ω

(even as Ω will be modified via a partitioning process in our proposed algorithmic approach

below) and are given by (6b), (8b), (9b), and (10b), respectively. For the sake of convenience

in discussion, we shall denote the set of variables in Problem DTO(Ω), with obvious vector

notation, as:

x ≡ (p, l, q, r, φ, w, ψ, θ, y1, y2, z, ξ),

where, in particular, y1 ≡ (y1i, ∀i ∈ Ie) and y2 ≡ (y2i,∀i ∈ Ie). Observe that DTO(Ω) is, in

general, a mixed-integer 0-1 factorable program (see Sherali and Wang (2001) for continuous

factorable programs). However, in our case, DTO(Ω) is linear except for the complicating

identities (11c) and (11k) - (11n).

We next discuss some suitable polyhedral outer-approximation mechanisms to handle

the univariate, monotone logarithmic functions in (11k) - (11n). Toward this end, generically

denote any identity in (11k) - (11n) as:

f = ln(γ), where 0 < γl ≤ γ ≤ γu < ∞. (12)

We then replace each such constraint (12) by the following affine convex envelope:

f ≥ ln(γl) +
(γ − γl)

(γu − γl)
[ln(γu)− ln(γl)], (13a)

along with some H ≥ 2 tangential supports:

f ≤ ln(γh) +
(γ − γh)

γh

, for h = 1, . . . H, where γl ≡ γ1 < γ2 < . . . < γH ≡ γu. (13b)

In order to prescribe some judicious alternatives for selecting the points of tangency

{γ2, . . . , γH−1} (other than the interval end-points) in (13b), consider the following result:

14

Proposition 1. Consider any 0 < γ̄ < γ̂ such that ln(γ̂)− ln(γ̄) = ∆. Then, for γ ∈ [γ̄, γ̂],

the maximum error, E, between the function ln(γ) and its piecewise linear approximation

defined by the tangential supports at γ̄ and γ̂ depends on ∆ alone and is given by

E = ln[e∆ − 1]− ln(∆) +
∆

e∆ − 1
− 1. (14)

Proof. By the monotonicity of both the logarithmic and the affine tangential support-

ing functions, the stated maximum error, E, occurs at the point of intersection γ∗ of the

tangential supports as given by γ∗ = γ̄γ̂∆/(γ̂ − γ̄), with

E =
γ̂ln(γ̂)− γ̄ln(γ̄)

(γ̂ − γ̄)
− 1− ln(γ∗). (15)

Substituting for γ∗ in (15), and writing ln(γ̂) = ln(γ̄) + ∆, we get

E = ln

(
γ̂

γ̄
− 1

)
− ln(∆) +

∆

[(γ̂/γ̄)− 1]
− 1,

which, upon using γ̂/γ̄ = e∆, yields (14). ¤

Corollary 1. Given any ε > 0, let ∆ = ∆ε be the solution to (14) when we set E = ε. Now,

suppose that we approximate the function f ≡ ln(γ) on [γl, γu] ⊆ (0,∞) by H tangential

supports constructed at points uniformly distributed along the f -axis including the end-

points, where

H =

⌈
ln(γu)− ln(γl)

∆ε

⌉
+ 1. (16)

Then, the maximum approximation error will be bounded above by ε.

Proof. By Proposition 1 and since ∂E/∂∆ > 0 for ∆ > 0 in (14), the maximum approxi-

mation error will be bounded above by ε provided

ln(γu)− ln(γl)

H − 1
≤ ∆ε,

15

which yields (16). ¤

Accordingly, we define the Bounded Error Strategy (BES) for selecting points for

generating the tangential supports (13b) as that prescribed by Corollary 1, given any error

tolerance ε > 0. For example, utilizing (14), the maximum approximation error will be

bounded above by ε = 0.01 (respectively, 0.001), if we select ∆ε = 0.28 (respectively, 0.09).

The number of tangential supports generated would then further depend on the bounding

interval [γl, γu] as given by (16). Alternatively, in order to control the number of tangential

supports generated, we shall also apply BES with a prespecified value of H. In this case,

we generate (13b) at some H uniformly distributed points along the f -axis, including the

interval end-points. This yields

γh = exp

{
ln(γl) +

(
h− 1

H − 1

)
ln

[
γu

γl

]}
, for h = 1, . . . , H.

We shall refer to this strategy as BES(H). We recommend the value H=4 based on our

computational results reported in Section 4, where we investigated using H=4,. . . , 20.

Next, in order to generate a linear programming relaxation LP(Ω) for computing lower

bounds in a branch-and-bound framework, we additionally adopt the following alternative

linearization strategies for (11c) as identified in Section 2.1 below:

2.1 Linearization of (11c)

In this section, we shall discuss two alternative schemes for linearizing (11c) that differ in

their size or complexity and the relative tightness of the resulting LP relaxation. These

are respectively denoted as linearization methods LM1 and LM2, and, together with the

polyhedral outer-approximation (13) applied to (11k)-(11n), produce corresponding LP re-

laxations LP1(Ω) and LP2(Ω), respectively. We shall also use the terminology LP(Ω) to

refer generically to either of the foregoing relaxations LP1(Ω) and LP2(Ω).

16

2.1.1 Linearization Method LM1:

This is a standard linearization technique that utilizes the following constraints for each

J ∈ J such that |J | ≥ 2 (noting (11r)):

wJ ≤ φd,∀d ∈ J , and wJ ≥
∑

d∈J

φd − |J |+ 1. (17)

Note that as portended by (11c), and using (11r), when φd = 0 for any d ∈ J , then (17)

implies that wJ = 0, whereas when φd = 1, ∀d ∈ J , then (17) implies that wJ = 1 as well.

2.1.2 Linearization Method LM2:

In this method, consider any decision-point node k ∈ K. Recall that Bk denotes the ordered

set of decision indices that occur on the path from node 0 to node k. If Bk = ∅, then no

additional constraints are generated for this node k. Else, suppose that |Bk| ≥ 1. Then, we

generate the restrictions:

wBk+d = φd,∀d ∈ Jk (for each k ∈ K : Bk 6= ∅), (18)

where we denote wBk+d ≡ wBk∪{d}, with the index d appearing last in the resulting set

Bk ∪ {d},∀d ∈ Jk.

Proposition 2. The constraints (18) are valid and together with (11i) and (11r), imply that

(11c) holds true.

Proof. First of all, note that (18) is valid since if φd = 0 for any d ∈ Jk, then we must have

wBk+d = 0 by its interpretation, and if φd = 1 for any d ∈ Jk, then by (11i) and (11r), we

must have wBk
= 1, so that again the interpretation of wBk+d implies that we must have

wBk+d = 1.

Next, let us establish that (11c) holds true by induction on |J |. Consider any k ∈ K

such that Bk = {d′} and d ∈ Jk so that |J | = 2 with J ≡ {d′, d} (the case |J | = 1 is trivial

17

by definition). Now, if φd′ = 0, then (11i) implies that φd = 0, so that (18) yields wd′d = 0.

On the other hand, if φd′ = 1, then (11i) implies that φd = 0 or 1, which respectively yields

wd′d = 0 or 1 via (18).

Inductively, to complete the proof, consider J = {d1, . . . , dh}, where h ≥ 3, and

assume that (11c) holds true for any strict subset of this set. Hence, there exists k ∈ K such

that Bk = {d1, . . . , dh−1}, with dh ∈ Jk. Let us show that (11c) is satisfied for any such J . If

φd = 0 for any d ∈ {d1, . . . , dh−1}, then by the induction hypothesis, we have that wBk
= 0,

which implies by (11i) that φd = 0, ∀d ∈ Jk. Therefore, φdh
= 0, which implies by (18) that

wJ = 0. Else, if φd1 = . . . = φdh−1
= 1, then wBk

= 1 by the induction hypothesis, and so

by (11i), φdh
= 0 or 1, which respectively yields wJ = 0 or 1 via (18), and so (11c) is again

satisfied in either case. ¤

The next result demonstrates that LM2 yields a tighter representation than LM1 in

the continuous (LP) sense.

Proposition 3. The constraints represented in (18), (11i), and φ ≥ 0 of LM2 imply those

in (17) of LM1.

Proof. Consider any J ′ ∈ J and assume without loss of generality that J ′ = {1, . . . , h},
with φ1, . . . , φh occurring in this order along the path from node 0 to some node j. Hence,

by (17), LM1 generates the constraints

wJ ′ ≤ φd, ∀d = 1, . . . , h, (19a)

wJ ′ ≥
h∑

d=1

φd − (h− 1). (19b)

Now, by (18) applied to the node from which the arc having φh emanates, LM2

directly produces wJ ′ = φh and (11i) yields φh ≤ wJ ′−{h}, which, by (18) applied at the node

from which the arc having the variable φh−1 emanates, produces wJ ′−{h} = φh−1. Hence,

wJ ′ ≤ φh−1 as well. Continuing in this fashion along the chain from node j to node 0 yields

that (19a) is implied.

18

To complete the proof, we next show that (19b) is implied as well. Note that (18)

yields for any j1 ∈ Jk, k ∈ K, that

wBk+j1 = φj1 ≥ wBk
+ φj1 − 1, (20)

where the last inequality follows from the fact that wBk
≤ 1 in (11r). Hence, applying (20)

at the node from which the arc having the variable φh emanates with Bk + j1 ≡ J ′ and

j1 ≡ h we get,

wJ ′ ≥ wJ ′−{h} + φh − 1. (21)

Repeating this at the node from which the arc having the variable φh−1 emanates yields

wJ ′−{h} ≥ wJ ′−{h,h−1} + φh−1 − 1, which, together with (21), implies that

wJ ′ ≥ wJ ′−{h,h−1} + φh + φh−1 − 2. (22)

Continuing (22) along the chain from node j to node 0, we get

wJ ′ ≥ wJ ′−{h,h−1,...,2} + φh + φh−1 + . . . + φ2 − (h− 1) =
h∑

d=1

φd − (h− 1),

where the last equality follows by noting that wJ ′−{h,h−1,...,2} = w1 ≡ φ1. Hence, (19b) is also

implied. ¤

Now, for any j ∈ K ∪ Ie ∪ τ , let d(j) be the first decision index that is encountered

in the (reverse) path from node j to the root node (whenever d(j) does not exist, we define

φd(j) ≡ 1). Then, we can simplify LM2 by eliminating the wJ -variables upon using (18),

which effectively equates wS3j
= φd(j),∀j ∈ τ in (11b) and wBk

= φd(k),∀k ∈ K in (11i).

Hence, by Proposition 2, LM2 can be equivalently written by using these substitutions in

(11b) and (11i), and eliminating (11c) and the wJ-inequalities in (11r). The following result

reveals a partial convex hull representation inherent within LM2.

19

Proposition 4. Consider the following polyhedral set defined by the constraints of LM2.

Λ ≡ {φ ≥ 0 :
∑

d∈Jk

φd = φd(k), ∀k ∈ K}. (23)

Then, Λ is nonempty and compact with binary-valued extreme points.

Proof. The compactness of Λ follows readily by noting that the constraints in Λ imply that

0 ≤ φd ≤ 1,∀d = 1, . . . , D, recalling that φd(k) ≡ 1 whenever d(k) is null. Now, to complete

the proof, let us show that for any arbitrary objective vector (Cd, d = 1, . . . , D), the linear

program

Minimize

{
D∑

d=1

Cdφd : φ ∈ Λ

}
(24)

has an optimal solution for which φd is binary-valued.

We solve (24) sequentially as follows. Consider any decision node k ∈ arg max{|Bk|},
and notice that the variables φd for d ∈ Jk appear only in the single corresponding constraint

for k in (23). Hence, there exists an optimal solution in which φd̂ = φd(k), where d̂ ∈
arg min

d∈Jk

{Cd}, and φd = 0, ∀d ∈ Jk − {d̂}. This eliminates the variables φd for d ∈ Jk from

(24) along with the associated constraint for this k in (23), where, whenever Bk 6= ∅ (so

that d(k) exists), we also update the objective coefficient Cd(k) for the upstream (toward the

root node) variable φd(k) according to Cd(k) ← Cd(k) +Cd̂. Repeating this step, we will finally

solve separable problems for decision nodes k ∈ K having Bk = ∅, for which the reduced

linear program is given as follows for some transformed objective coefficients (Ĉd, d ∈ Jk):

Minimize

{∑

d∈Jk

Ĉdφd :
∑

d∈Jk

φd = 1, φd ≥ 0,∀d ∈ Jk

}
,

and for which there exists an optimal binary solution for φd, d ∈ Jk. By back-substituting

these binary values for the recorded solutions for the downstream decision nodes, we will get

a binary optimal solution for φd, d ∈ Jk,∀k ∈ K. ¤

20

2.1.3 Illustrative Example

Consider the illustration of the decision tree in Figure 1 that contains the restrictions (5g):

φ1 + φ2 + φ3 = 1, (25a)

φ4 + φ5 = φ1, (25b)

φ6 + φ7 = φ3, (25c)

φ8 + φ9 = φ3φ7, (25d)

along with product terms of the type (7) for J ∈ J as given by:

φ1φ4, φ1φ5, φ3φ6, φ3φ7, φ3φ7φ8, and φ3φ7φ9. (26)

For this situation, the methods LM1 and LM2 will produce the following additional con-

straints and variables to replace (11c) in Problem DTO:

LM1 (Equation (17)):

For d = 4: {w14 ≤ φ1, w14 ≤ φ4, w14 ≥ φ1 + φ4 − 1}
d = 5: {w15 ≤ φ1, w15 ≤ φ5, w15 ≥ φ1 + φ5 − 1}
d = 6: {w36 ≤ φ3, w36 ≤ φ6, w36 ≥ φ3 + φ6 − 1}
d = 7: {w37 ≤ φ3, w37 ≤ φ7, w37 ≥ φ3 + φ7 − 1}
d = 8: {w378 ≤ φ3, w378 ≤ φ7, w378 ≤ φ8, w378 ≥ φ3 + φ7 + φ8 − 2}
d = 9: {w379 ≤ φ3, w379 ≤ φ7, w379 ≤ φ9, w379 ≥ φ3 + φ7 + φ9 − 2}.

LM2 (Equation (18), where these identities are substituted into (11b) and (11i)):

For k = 11: {w14 = φ4, w15 = φ5}
k = 12: {w36 = φ6, w37 = φ7}
k = 13: {w378 = φ8, w379 = φ9}.

21

Remark 4. Observe that the size of the decision tree can be reduced whenever there ex-

ist consecutive decision-point nodes. If a decision-point node k1, having the variable φd1

associated with an emanating arc is immediately followed by another decision-point node

k2 having Jk2 ≡ {d2, d3, . . . , dn}, we can collapse node k2 into k1 and define new variables

φd1d2 , φd1d3 , . . . , φd1dn associated with corresponding arcs emanating from k1 to replace the

variables φd1 , φd2 , . . . , φdn . Compared to the original decision tree, we reduce the number of

decision-point nodes and the number of decision alternatives by one for each such step. To

illustrate this for the decision tree of Figure 1, note that we can collapse both nodes 12 and

13 (sequentially adopting the foregoing step) into node 10, and generate path-based arcs

connecting node 10 to nodes 21, 22, and 23, having respective associated variables φ36, φ378,

and φ379. The constraints (5g) in this case would then be written as follows:

φ1 + φ2 + φ36 + φ378 + φ379 = 1, (27a)

φ4 + φ5 = φ1, (27b)

and the product terms of the type (7) for J ∈ J would be given by

φ1φ4 and φ1φ5. ¤ (28)

2.2 Structure of optimal solutions

Let x̄ = (p̄, l̄, q̄, r̄, φ̄, w̄, ψ̄, θ̄, ȳ1, ȳ2, z̄, ξ̄) represent an optimal solution to LP(Ω). To reduce the

size of this relaxation, we a priori identify constraints that would be inactive at optimality

by analyzing the structural behavior of optimal solutions. In this spirit, Proposition 5 below

establishes that the affine convex envelope for the constructed outer-approximation of the

functional form zj = ln(θj), j ∈ τ can be omitted without affecting optimality.

Proposition 5. In Problem LP(Ω), the affine convex envelope of ln(θj), for any j ∈ τ , will

not be active at optimality unless if the optimal θj-value is at its lower or upper bound.

22

Moreover, at least one of the tangential supports will be active.

Proof. Given a feasible solution x′, let the variables (p, l, q, r, φ, w, y1, y2, ξ, z) be fixed in

LP(Ω) according to x′. The resulting linear program in ψ and θ effectively bounds θj as

θj ≤ θj ≤ θj,∀j ∈ τ , where θj and θj are respectively determined by some tangential

support (13b) and the affine convex envelope (13a), corresponding to the left-hand side in

(13a, 13b) fixed at z′j. By the nature of the objective function (11a) and the constraints

(11b), we would therefore have θj = θj, ∀j ∈ τ , at an optimal solution. Hence, for each

j ∈ τ , some tangential support is active at optimality and the affine convex envelope is

inactive at optimality unless z′j, and therefore θj, equals its original lower or upper bound.

¤

Remark 5. By the nature of the objective function (11a) and the constraint relationships

(11b), (11g), (11h), and (11j) in LP(Ω), the y1-, y2-, and ξ-variables tend to be at their

lower/upper bounds at optimality. Although removing the tangential supports associated

with the corresponding functional forms (11k), (11l), and (11n) other than those at the

interval end-points might worsen the lower bound obtained via the relaxed problem, the

total computational time may improve as a result of the decrease in the size of LP(Ω) that

is solved at each node of the branch-and-bound tree. Hence, in our computations, we shall

experiment with this reduced modeling strategy. ¤

2.3 Further Properties of LP(Ω)

The next set of results lay the groundwork for composing our proposed global optimization

strategy for solving Problem DTO. Henceforth, for any Problem P, we shall denote its optimal

value as v[P].

Proposition 6. v[LP(Ω)] gives a lower bound for v[DTO(Ω)]. Moreover, if x̄ solves LP(Ω)

and satisfies (11k) - (11n) and (11r), then x̄ also solves DTO(Ω) with the same objective

23

value.

Proof. Follows from the construction of LP(Ω), noting that under the hypothesis of the

proposition and the validity of LMr, r=1,2, we also then have that (11c) holds true. ¤

Proposition 7. Let x̄ solve LP(Ω). Let (l̂, q̂, r̂) ≡ (l̄, q̄, r̄) and let p̂ be computed by (5e),

i.e., p̂i = ḡi/(1 + ḡi) where ḡi = exp{ai0 −
∑M

m=1 aimq̄im}, ∀i ∈ Ie. Furthermore, set θ̂j ≡
l̂j

∏
i∈S1j

p̂i

∏
i∈S2j

(1−p̂i),∀j ∈ τ , and let φ̂ be a binary optimal solution to the linear program

composed in Proposition 4 as given by:

L̂P : Minimize

{
D∑

d=1

cdφd +
∑
j∈τ

θ̂jφd(j) : φ ∈ Λ

}
. (29)

Then, (p̂, l̂, q̂, r̂, φ̂) is a feasible solution to Problem DTO with objective value v[L̂P].

Proof. From (11q) (as in (8b)), we have ln(pl
i) ≤ ȳ1i ≤ ln(pu

i) and ln(1−pu
i) ≤ ȳ2i ≤ ln(1−

pl
i). Thus, from (11g), ln(pl

i)− ln(1− pl
i) ≤ ȳ1i− ȳ2i = ai0−

M∑
m=1

aimq̄im ≤ ln(pu
i)− ln(1− pu

i).

Hence, since p̂ has been computed by using the constraint (5e), we have

ln
(pl

i

1− pl
i

)
≤ ln

(p̂i

1− p̂i

)
= ai0 −

M∑
m=1

aimq̄im ≤ ln
(pu

i

1− pu
i

)
,

which results in pl
i ≤ p̂i ≤ pu

i . Thus, from the constraints of LP(Ω), we have that (p̂, l̂, q̂, r̂) is

feasible to (5b)-(5f), (5h), and (5i). Furthermore, by the structure of LM2 and Propositions

2 and 4, L̂P defined by (29) then yields a binary optimal solution φ̂ that represents the best

optimal completion (p̂, l̂, q̂, r̂, φ̂) to the foregoing partial solution. ¤

Proposition 8. Let x̄ solve LP(Ω) with objective value v[LP(Ω)]. If each of the variable

values p̄i, l̄j, and θ̄j equals either its corresponding lower or upper bound and φ̄ is binary-

valued, then x̄ solves DTO(Ω) with objective value v[DTO(Ω)] = v[LP(Ω)].

Proof. From the construction of LP(Ω), it is sufficient to show that x̄ satisfies (11c) and

(11k) - (11n). For the generic case (12), if γ equals either of its bounds, then Constraints

24

(13a) and (13b) imply that f = ln(γ). Likewise, if each of the variable values p̄i, l̄j, and θ̄i

equals either of its corresponding bounds, then (11k) - (11n) are satisfied. Moreover, as

established for LMr, r=1,2, in Section 2.1.2 and Proposition 2, if φ̄ is binary-valued, then,

(11c) is satisfied. Thus, x̄ is feasible to DTO(Ω). ¤

Proposition 9. Let Ω be such that pl
i = pu

i , ∀i ∈ Ie, and llj = luj ,∀j ∈ τ . If x̄ solves LP(Ω)

with φ̄ being binary-valued, then x̄ also solves DTO(Ω).

Proof. If pl
i = pu

i and llj = luj , we have that θl
j = θu

j by (6b). The proof now follows from

Proposition 8. ¤

2.4 Optimality-Induced Valid Inequalities

In order to further tighten the model representation, we introduce in this section certain

valid inequalities (denoted VIs) that are implied by optimality (rather than feasibility)

considerations.

Proposition 10. There exists an optimal solution to Problem DTO satisfying the following

inequalities:

qim ≤ smφd(i), ∀i ∈ Ie, m = 1, . . . ,M, (30a)

rjn ≤ tnφd(j), ∀j ∈ τ, n = 1, . . . , N. (30b)

Proof. First of all, note that Problem DTO has an optimal solution since it is bounded and

feasible (the solution (q, r) = (0, 0), with pi = pu
i ≡ p

u(3)
i , ∀i ∈ Ie, lj = luj ≡ l

u(4)
j , ∀j ∈ τ,

and any φ satisfying (5g) and (5j) gives a feasible solution). Now, for any i ∈ Ie, if φd(i) = 0,

then event i is inconsequential to the problem, and so, we need not allocate any event-related

resources to reduce pi below pu
i in (5e). Hence, we can set qim = 0, ∀m = 1, . . . , M, i.e.,

(30a) is valid. On the other hand, if φd(i) = 1, then (30a) is again valid because it is implied

by (5b). Likewise, (30b) is satisfied at an optimal solution because for any j ∈ τ , if φd(j)=0,

then consequence j ∈ τ does not arise (or does not impact the objective function), and we

25

can therefore set rjn = 0, ∀n = 1, . . . , N, while if φd(j) = 1, then (30b) is implied by (5c). ¤

Henceforth, we shall assume that the inequalities (30a) and (30b) are incorporated

within Problem DTO, and hence, within DTO(Ω) and LP(Ω), ∀Ω. In addition, we shall

perform the following variable fixings in Problem DTO(Ω) and LP(Ω) as prompted by Propo-

sition 11 below. This strategy will become relevant in the sequel when we revise the bounds

on the p- and l-variables in a branch-and-bound framework. Naturally, if any such fixings

render a particular node subproblem infeasible, then we can fathom this node.

Proposition 11. Consider any (node subproblem) DTO(Ω) predicated on a set of imposed

bounds Ω (and incorporating the VIs (30a) and (30b)). Then,

pu
i < p

u(3)
i ⇒ φd = 1, ∀d ∈ Bi, for each i ∈ Ie, (31a)

luj < l
u(4)
j ⇒ φd = 1, ∀d ∈ Bj, for each j ∈ τ. (31b)

Proof. Consider any i ∈ Ie, and suppose that the currently imposed upper bound pu
i on

pi satisfies pu
i < p

u(3)
i . Then, by (11g), (11k), and (11l), we have that qim > 0 for some

m ∈ {1, . . . , M}, and so, (30a) and (11r) imply that φd(i) = 1. But since the constraints

(11c, 11i, 11r) imply (18), we hence have φd = 1,∀d ∈ Bi. Similarly, for any j ∈ τ, if the

currently imposed upper bound luj on lj satisfies luj < l
u(4)
j , then (11h) implies that rjn > 0

for some n ∈ {1, . . . , N}, and then (30b) and (18) yield φd = 1, ∀d ∈ Bj. ¤

2.5 Upper Bounding Scheme: Procedure UB

In this subsection, we use Proposition 7 to develop a method for computing upper bounds

on Problem DTO based on the solution of any lower bounding relaxation LP(Ω). (If any

optimization problem is detected to be infeasible in this process, we abort the procedure.)

Procedure UB:

Step 1: Solve LP(Ω) (including Constraints (30)) and obtain an optimal solution x̄. Apply

Proposition 7 to obtain the solution (p̂, l̂, q̂, r̂, φ̂).

26

Step 2: Fix φ = φ̂, resolve LP(Ω) to obtain an optimum x̄, and apply Proposition 7 to

derive a possibly revised solution (p̂, l̂, q̂, r̂, φ̂). Repeat this step until no further improvement

is obtained in the objective function value for Problem DTO.

Step 3: Fix φ = φ̂, and use a nonlinear programming (local search) solver to optimize

DTO(Ω), starting with the solution obtained at Step 2 as an initial solution. (We used

SNOPT Version 7 (Gill et al. (2005)) for this purpose.) Output the resulting solution value

as an upper bound on Problem DTO, and update the incumbent solution x∗ and its objective

value v∗, if necessary.

2.6 Range Reduction

The imposed range for each φ-, p-, l-, and θ-variable can be tightened by sequentially solving

a pair of linear programs that minimize and maximize each variable in turn over the feasible

region of LP(Ω), while additionally restricting the original objective function to take on

values lesser than or equal to the best known upper bound v∗ obtained by Procedure UB.

Starting with the φ-variables, note that if the minimum value of φd is positive for any

d ∈ {1, . . . , D}, then we can fix φd ≡ 1, and likewise, if the maximum value is less than one,

we can fix φd ≡ 0. Next, considering the p-variables, the foregoing pair of associated linear

programs is used to update the lower and upper bounds on each pi-variable in turn, where

we also update the bounds on the affected θj-variables using Equation (33), for each j such

that i ∈ S1j ∪ S2j. Moreover, noting that the bounds on the p- and θ-variables define the

bounds on the y1-, y2-, and z-variables according to (8b) and (9b), if any of the bounds on

the former variables are revised, then the bounds on the corresponding latter variables are

also updated. The same procedure is followed for lj, j ∈ τ , during which the bounds on θj

along with the bounds on the corresponding z- and ξ-variables are also updated using (33),

(9b), and (10b). Finally, a pair of linear programs is solved to directly tighten the bounds on

θj, ∀j ∈ τ . Following this range reduction process, the polyhedral outer approximations for

the logarithmic relationships are constructed based on the revised bounds on the variables.

27

Next, LP(Ω) is (re-)solved and the lower and upper bounds on Problem DTO are updated

as possible. Note that at each node of the branch-and-bound tree, we invoke range reduction

only once.

3 Global Optimization Branch-and-Bound Algorithms

We now design three alternative approaches to solve Problem DTO via DTO(Ω) and its

relaxation LP(Ω). In Algorithm A, we utilize a specialized branch-and-bound process based

on partitioning the hyperrectangle Ω, where the bounds on the variables (ψ, θ, y1, y2, z, ξ)

are accordingly computed by (6e), (6b), (8b), (8b), (9b), and (10b), respectively. For any

node subproblem DTO(Ω) that is associated with a particular Ω, we construct the relaxation

LP(Ω) and solve it to compute a lower bound. Let x̄ solve LP(Ω). If the conditions of

Proposition 6 hold, we will have also solved subproblem DTO(Ω). Otherwise, we apply

Procedure UB to find a feasible solution to Problem DTO and update the incumbent solution

and the associated upper bound if possible, perform range reductions to update Ω and (11q),

and as necessary, we branch at this node by partitioning Ω as follows:

Branching Rule A: While selecting the branching variable, priority is given to the φd-

variables. Thus, we first check if φ̄ is binary-valued. If not, then we define the set K ′ = {k ∈
K : (φ̄d, d ∈ Jk) is not binary-valued} and find k̂ ∈ arg lexmin

k∈K′
{|Bk|, min

d∈Jk

|φ̄d−0.5|}. We then

branch on φd̂, where d̂ ∈ arg min
d∈Jk̂

{|φ̄d − 0.5|}, by using the dichotomy that φd̂ = 1 ∨ φd̂ = 0.

Note that Constraints (11b) and (11i) together with Equations (17) and (18) are invoked

to fix additional (φ,w)-variables as possible whenever we branch on a φ-variable. On the

other hand, if φ̄ is binary-valued, then we find a variable pi or lj having the largest bounding

interval according to:

max{(pu
i − pl

i), (l
u
j − llj),∀i, j}, (32a)

28

where ties are broken by favoring the variable that gives the largest discrepancy in

max{|ȳ1i − ln(p̄i)|, |ȳ2i − ln(1− p̄i)|, |ξ̄j − ln(l̄j)|,∀i, j}, (32b)

where the first two terms in (32b) relate to pi and the third term to lj. If the identified term

in (32) relates to pi, then we branch on this variable by partitioning its interval according

to the dichotomy that pi ∈ [pl
i, (p

l
i + pu

i)/2] ∨ pi ∈ [(pl
i + pu

i)/2, p
u
i]. If the identified

term corresponds to lj, then we partition its interval according to the dichotomy that lj ∈
[llj, (l

l
j + luj)/2] ∨ lj ∈ [(llj + luj)/2, luj]. ¤

Algorithm B is the same as Algorithm A, except that we also include θj in the

partitioning process, as motivated by Proposition 8. In this case, given any imposed bounds

[θl
j, θ

u
j] on the variable θj, ∀j ∈ τ , we update these bounds based on the implied bounds

derived via (6b) according to:

θl
j ← max{θl

j, llj
∏

i∈S1j
pl

i

∏
i∈S2j

(1− pu
i)}

θu
j ← min{θu

j , luj
∏

i∈S1j
pu

i

∏
i∈S2j

(1− pl
i)}

 , ∀j ∈ τ. (33)

Now, define Ω′ as

Ω′ ≡ {(p, l, θ) : pl
i ≤ pi ≤ pu

i ,∀i, llj ≤ lj ≤ luj ,∀j, θl
j ≤ θj ≤ θu

j ,∀j}, (34)

and let DTO(Ω′) be identical to DTO(Ω), except that we primarily impose the bounds

(p, l, θ) ∈ Ω′, and then compute the bounds on the variables (ψ, y1, y2, z, ξ) using (6e),

(8b), (8b), (9b), and (10b), respectively. Whenever range reduction is performed, all these

bounds are updated accordingly.

At each node of the branch-and-bound tree for Algorithm B, we proceed exactly as in

Algorithm A except that we now solve the relaxation problem LP(Ω′) for computing lower

bounds, and also, for the partitioning scheme, the Branching Rule A is substituted by the

following, where x̄ solves LP(Ω′):

29

Branching Rule B: We apply the same scheme as in Branching Rule A in case φ̄ is not

binary-valued. Else, we find a variable that yields the maximum discrepancy according to:

max{|ȳ1i − ln(p̄i)|, |ȳ2i − ln(1− p̄i)|, |ξ̄j − ln(l̄j)|, |z̄j − ln(θ̄j)|,∀i, j}, (35)

where ties are broken by favoring the variable having the largest bounding interval. If the

maximum is attained by one of the first two terms, then we branch on the corresponding

variable pi by partitioning its interval according to [pl
i, p̄i] ∨ [p̄i, p

u
i]. Similarly, if the maximum

is attained by the third or fourth term, we branch with respect to lj or θj, partitioning their

intervals as [llj, l̄j] ∨ [l̄j, l
u
j], or [θl

j, θ̄j] ∨ [θ̄j, θ
u
j], respectively. ¤

The third alternative, called Algorithm C, can be viewed as a combination of Al-

gorithms A and B. Motivated by Propositions 8 and 9, we adopt the following partitioning

scheme:

Branching Rule C: If φ̄ is not binary-valued, then we apply Branching Rule A as before.

Else, we select a variable having the largest bounding interval among the set of variables

having at least a δ-deviation from their associated logarithmic functions, where 0 ≤ δ ≤
10−1. The value of δ changes through the optimization process depending on the number of

variables that violate the exact corresponding logarithmic relations. Specifically, we select a

variable pi or lj having the largest bounding interval according to:

max{(pu
i − pl

i), (l
u
j − llj),∀i ∈ I ′, ∀j ∈ τ ′}, (36)

where the index sets I ′ and τ ′ are defined by

I ′ ≡ {i : |ȳ1i− ln(p̄i)| > δ}∪{i : |ȳ2i− ln(1− p̄i)| > δ} and τ ′ ≡ {j : |ξ̄j − ln(l̄j)| > δ}. (37)

If both I ′ and τ ′ are empty, we set δ ← δ/10v for the smallest integer v ≥ 1 such that

at least one of these index sets becomes nonempty, and then apply (36). For the selected

30

branching variable, we split its interval at the geometric mean, i.e., if the identified term in

(36) corresponds to some pi-variable, then we partition its interval according to [pl
i,

√
pl

ip
u
i]∨

[
√

pl
ip

u
i , p

u
i], and if it corresponds to some lj-variable, then we partition its interval according

to [llj,
√

lljl
u
j] ∨ [

√
lljl

u
j , luj]. ¤

Remark 6. Note that, for a function f = ln(γ), 0 < γl < γ < γu < ∞, splitting the

γ-interval at its geometric mean corresponds to bisecting the implied bounds on the f -

variables at its arithmetic mean, i.e., at [ln(γl) + ln(γu)]/2. Figure 2 displays this feature,

and exhibits the evident potential for generating improved bounds via the child-nodes by

using the geometric mean splitting technique. For the sake of comparison, we shall also

implement the interval partitioning technique predicated by Branching Rules A and B within

Branching Rule C. ¤

Now, we formally describe the branch-and-bound procedure Algorithm A for solving

Problem DTO. At each stage s of this algorithm, s = 0, 1, . . . , we define As as the set of

non-fathomed, or active nodes. Each active node a ∈ As is associated with a hyperrectangle

Ωa. A lower bound LBa on an active node is obtained by solving the linear programming

relaxation LP(Ωa) to yield LBa = v[LP(Ωa)]. At each stage s, we define the global lower

bound on Problem DTO by

LB(s) ≡ min{LBa : a ∈ As}.

Whenever LP(Ωa) is solved for a node a ∈ As, we apply Procedure UB to possibly find

a feasible solution for updating the upper bound for Problem DTO, and perform range

reductions as necessary. These bounds are used in concert with a least lower bound node

selection rule and the aforementioned partitioning schemes as detailed below.

31

3.1 Branch-and-Bound Algorithm A for Problem DTO

Step 0: Initialization. Set s = 0, As = {0}, a(s) = 0, a = 0, and Ω0 = Ω. Solve LP(Ω0)

and let x0 be the optimal solution obtained. Set LB0 = v[LP(Ω0)]. Apply Procedure UB

of Section 2.5 with x̄ ≡ x0 to derive an incumbent solution x∗ with objective value v∗.

Invoke the range reduction scheme of Section 2.6 to revise LB0 and (x∗, v∗) as possible. If

LB0 ≥ v∗(1− ε) for some optimality tolerance ε ≥ 0, then stop with the incumbent solution

as (ε)-optimal to Problem DTO. Otherwise, proceed to Step 1.

Step 1: Partitioning Step. Invoke the Branching Rule A to partition the selected node

a(s) into two subnodes a + 1 and a + 2 with associated hyperrectangles Ωa+1 and Ωa+2,

respectively. Replace As ← As ∪ {a + 1, a + 2} − {a(s)}.
Step 2: Bounding Step. Solve the relaxed problems LP(Ωa+1) and LP(Ωa+2) after fixing

φ-variables as possible using Proposition 11. Apply Procedure UB to the solutions found at

each node and update the incumbent solution if possible, and perform range reductions as

necessary.

Step 3: Fathoming Step. Fathom any non-improving node and update As+1 ← As−{a ∈
As : LBa ≥ v∗(1− ε)}. Increment s by 1.

Step 4: Termination Check and Node Selection Step. If As = ∅, stop with the

incumbent solution as an ε−optimum. Otherwise, select a node a(s) ∈ arg min{LBa : a ∈
As} and return to Step 1.

Proposition 12. (Main Convergence Result)

Algorithm A (with ε = 0) either terminates finitely with the incumbent solution as an

optimum to DTO, or else, an infinite sequence of stages is generated such that along any

infinite branch of the tree, any accumulation point of the (p, l, q, r, φ)-variable part of the

sequence of linear programming relaxation solutions solves Problem DTO.

Proof. The case of finite termination is clear. Hence, suppose that an infinite sequence

of stages is generated. Consider any infinite branch of the tree having a nested hyper-

32

rectangle sequence Ωa(s) for s belonging to some index set S. For each stage s, we have

LB(s) = LBa(s) = v[LP(Ωa(s))], ∀s ∈ S. For each node a(s), let xa(s) solve LP(Ωa(s)). By the

compactness of the feasible region, there exists a convergent subsequence for {xa(s), Ωa(s)}s∈S.

Without loss of generality, assume that {xa(s), Ωa(s)}s∈S → (x∗, Ω∗). We must show that the

(p∗, l∗, q∗, r∗, φ∗)-variable part of x∗ solves Problem DTO.

Note that LBa(s) = min{LBa : a ∈ As} ≤ v[DTO],∀s ∈ S, which is also preserved in

the limit:

v∗ ≡ lim
s→∞,s∈S

LBa(s) ≤ v[DTO]. (38)

Since we can only branch on the φ-variables finitely often, we have that φa(s) is binary-

valued for all s ∈ S sufficiently large. Hence, along the infinite branch, at least one of the

pi- or lj-variables is chosen as the branching variable infinitely often. Since we bisect the

corresponding interval at each step, the length of the interval for a such variable converges

to 0. Therefore, according to Branching Rule A, we have in the limit as s →∞, s ∈ S that

p∗li = p∗ui ,∀i, and l∗lj = l∗uj ,∀j. By Proposition 9, we thus have that x∗ is feasible to DTO

with objective function value v∗ ≡ lim
s→∞,s∈S

LBa(s), and so, v∗ ≥ v[DTO]. Together with (38),

we have that x∗ solves DTO with objective function value v∗. ¤

3.2 Branch-and-Bound Algorithm B for Problem DTO

This alternative branch-and-bound procedure is the same as Algorithm A, with the excep-

tion of the branching variable selection at each stage s along with the partitioning of the

hyperrectangle Ω′ associated with each active node a ∈ As, where Ω′ is defined by (34). The

following result establishes the global convergence of Algorithm B.

Proposition 13. Similar to the main convergence result of Algorithm A stated in Proposi-

tion 12, Algorithm B (with ε = 0) solves Problem DTO.

Proof. The case of convergence in a finite number of steps is clear. For the case of infinite

stages, taking any infinite branch of the tree where the stages s are indexed by a set S, we

33

have as in the proof of Proposition 12 that {xa(s), Ω′a(s)}s∈S → {x∗, Ω′∗}, and that LB(s) =

LBa(s) = v[LP(Ω′a(s))] ≤ v[DTO],∀s ∈ S, which also holds true in the limit:

v∗ = lim
s→∞,s∈S

LBa(s) ≤ v[DTO]. (39)

We now show that x∗ is feasible to Problem DTO. Along the convergent subsequence, for s

large enough, φa(s) = φ∗ is binary-valued, and so some pi-, lj-, or θj-variable is partitioned

infinitely often at stages s ∈ S1, say, where S1 ⊆ S. From Branching Rule B, this variable

equals one of its bounds in the limit, and therefore, the discrepancy related to it in (35)

approaches zero. Since this variable has the maximum discrepancy in (35), ∀s ∈ S1, the

discrepancies related to the other p-, l-, and θ-variables also approach zero as s →∞, s ∈ S1.

Consequently, by Proposition 8, x∗ satisfies Constraints (11c), and (11k)-(11n) with φ∗d ∈
{0, 1},∀d ∈ D. Hence, x∗ is feasible to DTO with objective value v∗, so that v∗ ≥ v[DTO].

Together with (39), we have that x∗ solves DTO with objective value v∗. ¤

3.3 Branch-and-Bound Algorithm C for Problem DTO

As described earlier in the section, this procedure follows the same scheme as that of Algo-

rithms A and B, while adopting a combination of these two methods for selecting a branching

variable and partitioning its interval, and including the alternative option of splitting the

interval of the selected variable at its geometric mean. As such, its global convergence proof

follows identically to that in Propositions 12 and 13 above, and is omitted for the sake of

brevity.

4 Computational Results

In this section, we study the effectiveness of the proposed branch-and-bound procedures for

solving Problem DTO. We begin by considering the gas-line rupture application illustrated

in Figure 1, and solve it using the proposed algorithms as well as the commercial global

34

optimization software BARON, Version 8.1.5 (Sahinidis (1996)). We further analyze the

sensitivity of the solution with respect to the budget and resource availability restrictions.

Next, using a suitable experimental design, we explore the best combination of algo-

rithmic features including the various branching variable selection schemes and partitioning

strategies. We also investigate the performance of the different proposed linearization meth-

ods and techniques for generating tangential supports, and assess the effect of incorporating

range reductions and VIs on CPU time. In addition, we explore the direct implementation

of the software BARON to solve the original problem formulation DTO (given by (5)) as

well as its transformed version DTO(Ω) (given by (11)), in comparison with our best pro-

posed procedure. Finally, the special case of the event tree optimization problem (ETO)

introduced by Sherali et al. (2008) is solved using the best proposed algorithmic strategy,

and the results are compared with the solutions generated by BARON (which was used to

solve ETO by Sherali et al. (2008)). Runs with BARON have been made on a remote 1.6

GHz Intel Pentium M processor running Linux (courtesy of N. V. Sahinidis), whereas the

proposed procedures have been implemented on a local 2.33 Ghz Intel Pentium M processor

running Windows.

4.1 Gas-Line Rupture: Illustrative Hypothetical Case Study

Consider the scenario in which, in the aftermath of a gas leak (represented by node 0), cas-

cading sequences of probabilistic events and decisions result in consequences as depicted in

Figure 1. For this specific gas-line rupture application, we assume that five event-related

and five consequence-related resources are available to prevent failures and to alleviate con-

sequences.

The model coefficients aim and bjn were generated uniformly in the respective inter-

vals [0.5, 1] and [1000, 5000]. Additionally, we set ai0 = ln(0.01/(1−0.01)),∀i, and generated

bj0,∀j, randomly on [100000, 200000]. The total available event-related and consequence-

related resources were set to sm = 10,∀m and tn = 50,∀n, respectively, where the corre-

35

sponding per-unit costs of allocating resources, cim and djn, were generated uniformly on

[20, 40]. The total available budget for resource allocation was initially taken as β = 3000.

The lower bound on lj, ∀j ∈ τ , was determined depending on the scenario produced by

the unique path connecting the root node to the leaf node j. More specifically, a contribution

to llj of 1000(k)(2.5) was set to be incurred for each failure event on the path from node 0 to

the leaf node, where k is the nodal-distance between the failed event and the leaf node. The

lower bound on lj for any leaf node that has no failure event along the path to it from node

0 was set to 10. The upper bound was determined as l
u(4)
j ,∀j ∈ τ , whereas the lower and

upper bounds on pi were set to 0.0001 and p
u(3)
i , respectively, ∀i ∈ Ie. Moreover, the direct

cost for each selected decision alternative d = 1, . . . , D = 9 was generated randomly on [2,

4]. (The online supplement provides the complete data set.)

We solved the gas-line rupture problem with 10 randomly generated decision cost

vectors (on the interval [2, 4]) using ε=0.001. Table 1 displays the results obtained. The

proposed algorithm solved all 10 problem instances to optimality exploring 9-23 nodes within

1.1-2.6 CPU seconds. On the other hand, using default settings, BARON (Version 8.1.5)

optimized four of these 10 problems within 0.9-1.9 CPU seconds and yielded the same ob-

jective value as given by the proposed algorithm, while for four other problem instances,

it terminated with a slightly worse (3-8 %) objective value as well as with different binary

decisions. (Table 1 provides the ratio z∗BARON/z∗ of the best solution values produced by

BARON and the proposed algorithm.) Moreover, when we re-ran BARON after fixing the

binary decisions as given by the proposed algorithm, it found exactly the same optimal solu-

tion value. For the remaining two problems, BARON terminated with the maximum limiting

CPU time (1000 seconds) without satisfying the specified optimality gap restriction.

Using five levels of the budget, β ∈ {1000, 2000, . . . , 5000}, and four levels of event-

related resources, s ∈ {1, 2, 3, 4}, we computed the optimal objective function value as

plotted in Figure 3. As expected, the objective function value improves significantly with

initial additional event-related resources, but further resource increases result in diminishing

36

marginal returns. On the other hand, the relation between the number of nodes explored

and the budget level is not readily evident. Analyzing the optimal solution for s=3, it was

observed that for β =1000, 2000, and 3000, we obtained the same optimal (p, q)-values,

and the additional budget increments were used to acquire and allocate consequence-related

resources. Concomitant with the budget increase, the state space of the q-variables increased,

which resulted in a higher number of nodes explored. However, for β = 4000 and 5000, the

failure probabilities of critical events and loss amounts at critical outcomes were readily

minimized to their lower bounding values, thus resulting in fewer enumerated nodes.

4.2 Random Test Cases

We next generated random decision tree problem instances to assess the effectiveness of the

proposed solution techniques as well as that of the global optimization software BARON.

The two inputs provided to the tree generation process are the desired decision node density,

as defined by the ratio of the number of decision nodes to the total number of nodes, and the

size of the tree as measured by its depth. Each tree was accordingly generated by initially

constructing nodes 0 and 1 as in Figure 1. Then, while sequentially generating additional

nodes (including the case of node 1), we first checked whether the node was at the maximum

depth, in which case it was labeled as a leaf node. Else, we determined the type (event or

decision) of the node randomly, depending on the desired and current ratios of the number

of event and decision nodes. If the node turned out to be a decision node, we randomly

determined the number of decision alternatives emanating from it. Finally, the leaf node

representing the direct consequence of a failure at node 1 was created.

To complete the instance specification, we randomly generated the logit coefficients

aim and bjn, the cost coefficients cim and djn, and the decision costs cd as explained in Section

4.1. We set bj0 equal to the sum of the lower bound on lj and a uniformly generated random

variable over the interval [100000, 150000]. The budget and the decision node density were

respectively 3000 and 0.2-0.4 (specified desired value = 0.3) for the first five instances, and

37

1500 and 0-6-0.7 (specified desired value = 0.7) for the last five instances.

In the following runs, we define the base case approach as the one that incorporates

the linearization scheme LM2 (Section 2.1.2), the valid inequalities VIs (Section 2.4), and

invokes range reduction (Section 2.6) while generating four tangential supports for each

functional form f = ln(γ) using the BES (H = 4) strategy, and utilizes an optimality gap

tolerance of ε = 0.001.

Using the base case approach, we first studied the efficiency of the three branching

variable selection rules (A, B, and C) together with the three splitting rules (arithmetic mean,

geometric mean, and the current optimal value), for a total of eight combinations as displayed

in Table 2. (Note that Rule A combined with the current optimal value partitioning strategy

is not included because the current optimal value could be at the lower or upper bound of

the selected branching variable, which would consequently not produce valid child-nodes.)

Observe also that Algorithm A is defined by the branching variable selection rule A and

the arithmetic mean splitting rule (Combination 1), whereas Algorithm B is defined by the

branching variable selection rule B and the current optimal value splitting rule (Combination

5). Algorithm C is (principally) defined by the branching variable selection rule C and the

geometric mean splitting rule (Combination 7).

The branching variable selection rule C and the arithmetic mean splitting rule out-

performed the other combinations and was used for further evaluating various algorithmic

variants as discussed next. (Algorithm C defined by Combination 7 comes a close second,

and is also further evaluated in subsequent runs. In fact, with BES(H=5) used in lieu of

BES(H=4), the mean CPU times for Combination 6 and 7 were 26.4 and 26.0 CPU seconds,

respectively.) In each of the ensuing experiments, one of the features in the base case was

varied and its best setting was determined with respect to CPU time using the randomly

generated problem instances. Tables 3-7 provide results for the following experimental stud-

ies:

• Table 3: Comparison of linearization methods LM1 versus LM2.

38

• Table 4: Effect of the number of tangential supports: BES with ε = 0.01, 0.05, 0.1, and

0.2 versus BES(H) with H=4, 5, 10, and 20.

• Table 5: As in Remark 5 in Section 2.2, the y1-, y2-, and z-variables tend to be at their

lower/upper bounds at optimality. Hence, we tested generating only H=2 tangential

supports at the two interval end-points for these variables, but used BES(H=4) for

the remaining variables.

• Table 6: Effect of implementing range reductions.

• Table 7: Effect of incorporating the valid inequalities VIs (30) of Proposition 10 and

conducting the related tests (31) of Proposition 11.

The results displayed in Tables 3-7 indicate that utilizing the linearization method

LM2, generating H=4 tangential supports via BES(H=4), and invoking range reduction and

valid inequalities outperformed other alternatives. Note that the relative efficiency of the

linearization methods depends on the decision node density as indicated in Table 3. Whereas

both linearization schemes were comparable for the first five instances (low decision node

density - LM2 consumed 2.5% lesser effort), we observed a 13% improvement in the CPU

time for the last five instances (high decision node density) with LM2 over LM1. This is to be

expected because higher decision node density instances involve more complex binary sub-

structures in the model, which therefore benefit more substantially by using the improved

representation LM2 over LM1. We use these settings in further runs with our proposed

algorithm, hereinafter referred to as Algorithm Best. We also explore the efficiency of

Combination 7 (Algorithm C) along with Algorithm Best since the difference in performance

between these two algorithms is not significant as displayed in Table 2.

The decision tree optimization problem can alternatively be directly solved by us-

ing off-the-shelf commercial software on the original model (5) or on the better-structured,

equivalently transformed formulation (11). The global optimization software BARON was

therefore used to solve problem instances modeled alternatively as in (5) or (11) using LM2,

39

as well as via (11) while using both LM2 and the proposed VIs (30), in order to assess their

direct solvability. Table 8 displays the results obtained, and also includes the performance of

Algorithm Best for comparison purposes. Using the original DTO formulation (5), BARON

terminated prematurely for four of the 10 problems (with optimality gaps of 98.8%, 1%,

1.2% and 0.3%, respectively), whereas the proposed algorithm optimized all the problems

within the maximum limiting CPU time. On average, it took 79 CPU seconds for BARON to

solve Problem DTO (excluding the early termination cases), while the same set of problems

were optimized in 15.5 CPU seconds with the proposed algorithm. We also mention here

that Algorithm C solved these instances in 23.6 CPU seconds on average, where this value

decreases to 15 CPU seconds when the same two premature termination cases are excluded

(detailed results are not displayed for the sake of brevity). Moreover, we observed premature

termination for all problem instances using BARON on the transformed DTO formulation

(11) with LM2, which may be due to the increase in the number of variables as well as the

number of nonlinear constraints. However, when we further invoked the valid inequalities

VIs, BARON managed to solve eight of the 10 problem instances using this transformed

formulation.

Finally, we solved some 15 random instances of Problem ETO (having event nodes

only) as a special case of Problem DTO using the proposed algorithm (Algorithm Best), and

compared the results against applying BARON to solve Model DTO(Ω) as given by (11),

which is tantamount to the strategy utilized by Sherali et al. (2008). The experimental design

and results are presented in Table 9. We set the budget equal to 3000, 4000, and 5000 for the

instances having 17, 33, and 65 leaf nodes, respectively. Algorithm Best successfully solved 13

out of 15 random instances of Problem ETO, whereas BARON solved only one of them within

the maximum allowable time limit. Although the final upper bounds derived by BARON

were very close to those obtained by Algorithm Best, the quality and the convergence rate of

the lower bounds resulted in its relatively poor performance. As the problem size increased,

the optimality gap produced at termination using BARON steadily increased. For the two

40

instances that remained unsolved using the proposed algorithm within the 1000 CPU seconds

time limit, the optimality gaps at termination were respectively 0.7 % and 0.8%, versus gaps

of 2.9% and 3.4% for these same two problems when implementing BARON. Furthermore, we

explored the efficiency of Algorithm C for these test cases. The performance was comparable

to Algorithm Best, where the CPU times consumed for the three sets of instances were 20,

187, and 749 CPU seconds, as compared with 23, 188, and 736 CPU seconds, respectively

for Algorithm Best.

5 Summary and Conclusions

This paper addresses the strategic reduction of risk by allocating certain resources to reduce

failure probabilities of system safety components and subsequent losses related to final out-

comes, as well as by selecting optimal strategic decisions or system design alternatives in

the context of a hazardous event. Using a novel decision tree approach, the problem was

modeled as a nonconvex mixed-integer 0-1 factorable program. We developed a specialized

branch-and-bound algorithm in concert with polyhedral approximations, valid inequalities,

alternative linearization schemes, and range reduction strategies, and established its theo-

retical convergence to global optimality.

Among the various algorithmic variants tested, we advocate the strategy that imple-

ments branching variable selection rule C along with the arithmetic (or geometric) mean

splitting rule, while utilizing the linearization method LM2 (6% CPU time reduction over

LM1 on average, but 13% reduction on average for relatively higher decision node density

problems); generating tangential supports via the BES(H=4) scheme; invoking the range

reduction mechanism (all instances are solved to ε-optimality with range reduction com-

pared to 100% early termination without range reduction), and incorporating the derived

valid inequalities (13% CPU time reduction on average). In our computational experience,

this proposed algorithmic approach outperformed the commercial software BARON (Version

41

8.1.5). We also solved random instances of Problem ETO, introduced by Sherali et al. (2008),

for which the performance of the proposed algorithm greatly surpassed BARON (which was

the solver adopted in Sherali et al. (2008)).

This research can be extended in several directions. For instance, instead of mini-

mizing the overall risk, we could minimize the maximum risk in the system. Additionally,

as explained in Remark 2, we can use a diminishing marginal return loss function in lieu of

the linear correspondent given by (4), as well as replace Bernoulli events with more general

multistate events. Furthermore, as an algorithmic extension, we could explore a GUB-based

partitioning whenever we branch on a φ−variable. Finally, it is of interest to investigate spe-

cific applications of the proposed generic DTO problem framework in event-decision contexts

that arise in various areas such as homeland security and health-care.

Notes:

[1]:Algorithm terminated with the maximum limiting number of explored nodes with-

out satisfying the specified optimality gap restriction.

[2]:The optimality gap is computed as (UB−LB)
UB

where UB and LB are the upper and

lower bounds on the optimal objective function value at termination.

Acknowledgement: This research has been supported by the National Science

Foundation under Grant No. CMMI-0552676.

42

References

Acosta, C., N. Siu. 1993. Dynamic event trees in accident sequence analysis: Application to
steam generator tube rupture. Reliability Engineering and System Safety 41 135–154.

Andrews, J. D., L. M. Bartlett. 2003. Genetic algorithm optimization of a firewater deluge
system. Quality and Reliability Engineering International 19 39–52.

Andrews, J. D., S. J. Dunnett. 2000. Event-tree analysis using binary decision diagrams.
IEEE Transactions on Reliability 49(2) 230–238.

Beim, G. K., B. F. Hobbs. 1997. Event tree analysis of lock closure risks. Journal of Water
Resources Planning and Management 123(3) 169–178.

Dillon, R. B., M. E. Pate-Cornell, S.D. Guikema. 2003. Programmatic risk analysis for
critical engineering systems under tight resource constraints. Operations Research 51(3)
354–370.

Dugan, J. B., K. J. Sullivan, D. Coppit. 2000. Developing a low-cost high-quality software
tool for dynamic fault-tree analysis. IEEE Transactions on Reliability 49 49–59.

Dutuit, Y., A. Rauzy. 1996. A linear-time algorithm to find modules of fault trees. IEEE
Transactions on Reliability 45(3) 422–425.

Furuta, H., N. Shiraishi. 1984. Fuzzy importance in fault tree analysis. Fuzzy Sets and
Systems 12 205–213.

Gill, P. E., W. Murray, M. A. Saunders. 2005. SNOPT: An SQP algorithm for large-scale
constrained optimization. Siam Review 47(1) 99–131.

Hayes, K. R. 2002. Identifying hazards in complex ecological systems - Part 1: Fault tree
analysis for biological invasions. Biological Invasions 4 235–249.

Huang, D., T. Chen, M. J. Wang. 2001. Fuzzy set approach for event tree analysis. Fuzzy
Sets and Systems 118(1) 153–165.

Jiang, Y., J. D. McClley, T. Van Voorhis. 2006. Risk-based resource optimization for trans-
mission system maintenance. IEEE Transactions on Power Systems 21(3) 1191–2000.

Kenarangui, R. 1991. Event-tree analysis by fuzzy probability. IEEE Transactions on Reli-
ability 40(1) 120–124.

Khan, F. I., S. A. Abbasi. 2000. Analytical simulation and Profat II: A new methodology and
a computer automated tool for fault tree analysis in chemical process industries. Journal
of Hazardous Materials 75(1) 1–27.

Mehr, A. F., I. Y. Tumer. 2006. Risk-based decision-making for managing resources during
the design of complex space exploration systems. Journal of Mechanical Design 128 1014–
1022.

43

Mulvey, J. M., R. J. Vanderbei, S. A. Zenios. 1995. Robust optimization of large-scale
systems. Operations Research 32(2) 264–281.

Rauzy, A. 1993. New algorithms for fault tree analysis. Reliability Engineering and System
Safety 40 203–211.

Sahinidis, N. V. 1996. BARON : A general purpose global optimization software package.
Journal of Global Optimization 8(2) 201–205.

Sherali, H. D., J. Desai, T. S. Glickman. 2008. Optimal allocation of risk reduction resources
in event trees. Management Science 54(7) 1313–1321.

Sherali, H. D., H. Wang. 2001. Global optimization of nonconvex factorable programming
problems. Mathematical Programming 89 459–478.

Sinnamon, R. M., J. D. Andrews. 1997a. Improved accuracy in quantitative fault tree
analysis. Quality and Reliability Engineering International 13 285–292.

Sinnamon, R. M., J. D. Andrews. 1997b. Improved efficiency in qualitative fault tree analysis.
Quality and Reliability Engineering International 13 293–298.

Ulerich, N. H., G. J. Powers. 1988. On-line hazard aversion and fault diagnosis in chemical
processes: The digraph + fault-tree method. IEEE Transactions on Reliability 37(2)
171–177.

44

Figure 1: A decision tree representing a gas-line rupture.

LEGEND:

• Event-points:1,…,9

• Decision-points:10,…,13

• Final outcome (leaf nodes): 14,…,28

• Binary variables:

1

2

3

:

:

:

φ

φ

φ

Activate only valve B

Activate valves B and BD

Activate neither of valves B and BD

1 2 3 1φ φ φ

+ + =

4

4 5 1

5

6

6 7 3

7

8

8 9 3 7

9

:
Emergency response choices, with

:

:
Primary cleaning options, with

:

:
Secondary cleaning options, with + =

:

φ
φ φ φ

φ

φ
φ φ φ

φ

φ
φ φ φ φ

φ

+ =

+ =

F(p9)

F(p8)

F(p6)

S(1-p6)

S(1-p8)

S(1-p9)

S(1-p7)

5φ

4φ

9φ

8φ

7φ

6φ
3φ

2φ

1φ

F(p3)

F(p5)

F(p4)

S(1-p5)

S(1-p4)

7

6

9

8

10

5

4

3

2

10

12

13

11

14

18

17

16

15

19

24

23

22

20

26

25

21

27

28

Gas

leak

Gas

detection

Close

valve A

Close valve B

Close

valve B

Open BD valve

Open BD valve

Open BD valve

F(p1)

S(1-p1)

S(1-p2)

F(p2)

S(1-p3)

Open BD valve

Close

valve B

F(p7)

45

Figure 2: Partitioning at the arithmetic mean versus the geometric mean.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

0.0001 ≤ p ≤ 0.01

geometric
mean

arithmetic
mean

tangential
approximations

46

Figure 3: Sensitivity of the objective function value and the number of nodes explored with
respect to budget and resources.

47

Table 1: Results for BARON and the proposed algorithm for the gas-line rupture problem.
Proposed Algorithm BARON (Version 8.1.5)

Problem
Instance CPU Time CPU Time z∗BARON/z∗

1 2.59 1.62 1.08
2 2.63 1.68 1.03
3 1.14 0.89 1
4 2.56 1.38 1
5 2.31 1.63 1
6 2.61 1000 1
7 2.47 1.88 1
8 1.7 1.36 1.03
9 1.64 1.42 1.06
10 1.28 1000 1

48

Table 2: Performance of the eight combinations.
Branching Variable Problem Instance

Selection Splitting 1 2 3 4 5 6 7 8 9 10 Mean
1 (Alg. A) Rule A Arith. 10.8 150 8.6 31.4 5.2 16.3 11.9 8.8 22.9 15.3 28.1

2 Rule A Geom. 10.4 139.8 8.2 27.4 5.1 16.4 10.7 9 22.6 14.8 26.4
3 Rule B Arith. 11.6 132.8 9.8 71.3 11.3 16.6 11.8 8.8 22.9 14.8 31.2
4 Rule B Geom. 10.9 187.7 12.1 142.8 9.8 16.3 11.4 8.9 22.8 15 43.8

5 (Alg. B) Rule B Current 14.4 215.2 12.3 124.2 10.6 15.9 11.7 9.1 22.6 14.9 45.1
6 Rule C Arith. 10.1 115.1 8.4 26.4 5.1 16.3 11.3 8.8 23 14.8 23.9

7 (Alg. C) Rule C Geom. 10.4 125 8 25.7 5 16.3 10.7 8.9 22.8 14.6 24.7
8 Rule C Current 10.5 157.5 8.2 27.5 4.9 16.6 11.4 8.8 22.6 15 28.3

49

Table 3: Performance of the two proposed linearization methods LM1 and LM2.
LM1 LM2

Problem CPU # of Nodes CPU # of Nodes
Instance Time Explored Time Explored

1 9.6 57 10.1 57
2 119.5 587 115.1 587
3 8.3 63 8.4 65
4 26.8 201 26.4 201
5 5.3 45 5.1 41
6 15.6 145 16.3 151
7 10.4 107 11.3 105
8 17.5 113 8.8 57
9 27.4 175 23 155
10 14.7 97 14.8 97

Mean 25.5 159 23.9 152
Mean (1-5) 33.9 191 33 190
Mean (6-10) 17.1 127 14.8 113

50

Table 4: Effect of the number and placement of tangential supports on CPU time.
Problem BES
Instance (H=4) (H=5) (H=10) (H=20) (ε=0.01) (ε=0.05) (ε=0.1) (ε=0.2)

1 10.1 9.7 11.8 18.5 21.9 13.6 12.2 11.0
2 115.1 143.1 125.8 192.5 161.2 145.7 155.5 289.6
3 8.4 7.5 9.5 14.6 15.9 10.8 9.4 9.6
4 26.4 28.5 34.3 49.2 44.8 35.0 35.2 39.4
5 5.1 5.3 6.2 9.1 8.9 6.0 6.6 7.1
6 16.3 11.0 20.2 30.5 27.5 16.9 16.7 15.9
7 11.3 11.1 13.9 21.1 20.7 14.1 13.2 12.4
8 8.8 6.5 9.8 11.6 15.7 9.3 9.9 10.7
9 23.0 25.0 24.5 40.9 35.2 26.6 22.8 25.6
10 14.8 15.8 21.8 31.7 33.5 18.7 17.5 18.6

Mean 23.9 26.4 27.8 42 38.5 29.7 29.9 44

51

Table 5: Two versus four tangential supports for the y1-, y2-, and ξ-variables.
Two BES

tangential supports (H=4)
Problem CPU # of Nodes CPU # of Nodes
instance time explored time explored

1 9.6 57 10.1 57
2 108.1 587 115.1 587
3 8.3 65 8.4 65
4 26.0 201 26.4 201
5 4.8 41 5.1 41
6 15.6 145 16.3 151
7 10.8 103 11.3 105
8 9.7 61 8.8 57
9 21.4 155 23.0 155
10 15.2 97 14.8 97

Mean 23 151 23.9 152

52

Table 6: Effect of the range reduction strategy.
With Without 1

range reduction range reduction
Problem CPU # of Nodes CPU # of Nodes Optimality 2

instance time explored time explored Gap (%)
1 9.6 57 226.4 2000 3.2
2 108.1 587 209.2 2000 10
3 8.3 65 215.8 2000 6.1
4 26.0 201 194.8 2000 4.1
5 4.8 41 212 2000 6.3
6 15.6 145 169.9 2000 1.1
7 10.8 103 169.5 2000 2.7
8 9.7 61 223 2000 0.6
9 21.4 155 202.9 2000 11.8
10 15.2 97 262.5 2000 0.6

Mean 23 151 208.6 2000 4.7

53

Table 7: Effect of implementing the proposed valid inequalities VIs.
With VIs Without VIs

Problem CPU # of Nodes CPU # of Nodes
instance time explored time explored

1 9.6 57 7.9 43
2 108.1 587 153.2 587
3 8.3 65 5.7 47
4 26.0 201 14.6 89
5 4.8 41 2.8 21
6 15.6 145 7.5 45
7 10.8 103 11.3 81
8 9.7 61 10.7 53
9 21.4 155 29.3 155
10 15.2 97 21.5 77

Mean 23 151 26.4 120

54

Table 8: Results for BARON using the original and the transformed DTO formulations,
versus Algorithm Best.

Original Transformed DTO (11) Transformed DTO (11) Algorithm
DTO (5) with LM2 with LM2 and VIs (30) Best

Problem CPU Obj. value CPU Obj. value CPU Obj. value CPU Obj.
instance time (Opt. Gap (%)) time (Opt. Gap (%)) time (Opt. Gap (%)) time value

1 11.8 29.00 1000 44.01 (50.2) 99.5 29.00 9.6 29.00
2 1000 2968.61 (98.8) 1000 65.49 (60.0) 1000 67.64 (61.2) 108.1 64.59
3 1000 38.1 (1.0) 1000 44.16 (33.8) 481.7 38.10 8.3 38.10
4 35.0 34.78 1000 48.1 (59.1) 512.2 34.82 26.0 34.78
5 1000 31.8 (1.2) 1000 37.69 (25.2) 56.2 31.80 4.8 31.80
6 1000 39.76 (0.3) 1000 39.66 (29.5) 238.7 39.27 15.6 39.24
7 10.5 40.62 1000 42.36 (39.6) 166.6 40.62 10.8 40.62
8 162.3 33.79 1000 34.0 (27.9) 125.7 33.84 9.7 33.79
9 212.3 69.83 1000 72.91 (52.2) 1000 71.22 (49.8) 21.4 69.82
10 42.4 32.57 1000 35.20 (38.6) 172.4 32.59 15.2 32.57

Mean 447 1000 385.3 23

55

Table 9: Results for the BARON and the proposed algorithm for Problem ETO.
BARON Algorithm Best

of CPU Objective value CPU Objective value
leaf nodes time (Opt. Gap(%)) time (Opt. Gap(%))

3 43.26 24 43.26
1000 43.54 (1.4) 16 43.54

24+1 1000 61.29 (1) 9 61.29
1000 54.46 (1) 18 54.46
1000 51.6 (0.9) 47 51.58

Mean 801 23
1000 72.92 (2.1) 32 72.92
1000 67.23 (1.8) 58 67.23

25+1 1000 58.07 (2) 50 58.07
1000 58.12 (2.4) 552 58.12
1000 54.25 (2.5) 249 54.25

Mean 1000 188
1000 78.26 (2.9) 1000 78.26 (0.7)
1000 78.72 (3.3) 347 78.72

26+1 1000 99.23 (2.5) 564 99.23
1000 79.82 (2.8) 765 79.82
1000 74.10 (3.4) 1000 74.10 (0.9)

Mean 1000 736

56

