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Abstract

In this paper we consider duration type models and their generalizations
for modeling default risk. The models are motivated by noting similarities
between reliability survival analysis and mortgage default risk. WeÎ
present Bayesian modeling strategies used in reliability analysis for
describing time to default data. Our models include proportional hazards
type generalized gamma and mixture models which are capable of
capturing nonmonotonic default rates. We develop Bayesian inference for
our models and illustrate their implementation using actual time to default
data from the US mortgage market.

1. Introduction and Overview

As recent events suggested, performance of the residential mortgage market is a

key to the stability of the U.S. economy and financial markets. Increase of  risk in the

mortgage market, as represented by increase of residential mortgage delinquency and

foreclosure rates, has significant impact on the overall economy.

With the exception of early 1980s the U.S. national homeownership rate has

increased from around 63% to above 68%  in the last four decades. The U.S. residential

mortgage market has developed tremendously in size during this period. The outstanding

debt of single-family mortgage loans in the U.S. has grown from around $2.6 trillion in
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1990 to above $9.8 trillion in the second quarter of  2006,  representing an increase from

about 45%  to 74.5% of its share in the U.S. GDP during the period.

Due to the significant costs to mortgage loan lenders, investors of mortgage

backed securities and borrowers, resulting from default, how to estimate and manage the

default risk is one of  the primary concerns for financial institutions and policy makers.

There are alternate definitions of  mortgage default used in the literature. The legal

definition is given by Giliberto and Houston (1989) as the "transfer of the legal

ownership of the property from the borrower to the lender either through the execution of

foreclosure proceedings or the acceptance of a deed in lieu of foreclosure." Others who

focus on modeling of default risk simply define default as being delinquent in mortgage

payment for 90 days; see for example, Ambrose and Capone (1998). In this paper, we

adopt the latter definition to distinguish default from foreclosure.

There exits a rich literature on morgage default risk. A detailed review is given by

Quercia and Stegman (1992). An overview of more recent developments can be found in

Leece (2004). One of the primary objectives of mortgage default modeling is

identification of  key individual borrower, property and loan characteristics affecting the

likelihood of default.

One class of models is based on the  which states thatruthless default assumption

a rational borrower would maximize his her wealth by defaulting on the mortgage if theÎ

market value of the mortgage exceeds the house value, and by prepaying via refinancing

if the market value of the house exceeds book value of the house. Such models use an

option theoretic approach and assume that the mortgage value and the prepayment and

default options are determined by the stochastic behavior of  variables such as property

prices and the interest rates; see for example,  Kau  (1990). Thus, under the optionet al.

theoretic approach, other factors, such as the transaction costs, borrower's characteristics,

etc., are assumed to have no impact on values of  the mortgage and the property

underlined. The ruthless default assumption is not universally accepted in the literature
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and evidence against the validity of the assumption has been presented by many authors.

Furthermore,  mplementation of this class of models requires availability of i

performance level data on individual loans over time which is typically difficult to

obtain.

The alternate point of view, that does not subscribe to the ruthless default

assumption, favors direct modeling of time to default of the mortgage. This approach

involves hazard rate based models and also considers more direct determinants of

mortgage default. This class of models includes competing and proportional hazards

models of   and duration models of Lambrecht, Perraudin and Satchell (2003) Lambrecht,

Perraudin and Satchell (1997) that take into account individual borrower and loan

characteristics.

In this paper we consider duration type models and their generalizations for

modeling default risk. In so doing, we discuss connections between reliability analysis

and mortgage default modeling and present Bayesian modeling strategies used in

reliability literature for describing mortgage default risk. Use of  Bayesian methods in

residential mortgage default modeling has been limited to few papers such as  Herzog

(1988) who introduced some basic Bayesian concepts, Young and Kazarian (1997) who

considered binary time-series regression models and more recently, Popova, Popova and

George (2008) who proposed Bayesian methods for forecasting mortgage prepayment

rates. Thus, the Bayesian models that are presented in this paper represent contributions

to the literature in mortgage default risk. Our models include proportional hazards type

generalized gamma and mixture models which have not been considered in the mortgage

default literature. These models are capable of dealing with nonmonotonic default rates

that are expected in mortgage time to default data.

A synopsis of our paper is as follows: In Section 2 we note the similarities

between concepts in reliability analysis and mortgage default analysis. In so doing, we

discuss characteristics of mortgage default data and propose models from reliability
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literature that can capture these characteristics. In Section 3 we introduce generalized

gamma proportional hazards models and mixtures of proportional hazards models for

describing behavior early payment defaults. For both classes of models we develop

Bayesian inference using Markov chain Monte Carlo (MCMC) methods .in Section 4

Implementation of the models and the Bayesian methods to actual default data  are1

presented in Section 5.

2. Mortgage Default and Reliability Risk

Relationship between reliability (survival) analysis and financial risk has been

noted by others in the reliability literature. For example, Lynn (2004) points out that

concept of default of a bond in finance is analogous to failure in reliability analysis and

proposes a counting process for describing the number of defaults of bond issuers. More

recently, Singpurwalla (2007) notes the relationship between the survival function in

reliability and the asset pricing formula of fixed income instrument such as a risk-free

zero coupon bond in finance.

Similar to the above, we can see connections between mortgage default risk and

reliability risk. The event of default of a mortgage, that is, being delinquent in mortgage

payment for 90 days, is similar to failure of a system or a component in reliability

analysis. Modeling time to default of a mortgage is analogous to modeling time to failure

of a component. Thus, it is not surprising to find uses for reliability survival analysisÎ

models in the mortgage default literature.

If  denotes time to default of the mortgage loan with density function andX 3 0Ð>Ñ3

distribution function then the failure rate is defined byJÐ>Ñ

-Ð>Ñ œ
0Ð>Ñ

"  JÐ>Ñ
. (2.1)

1The authors would like to thank Dr. Thomas N. Herzog and Teri Hines at FHA for providing the data for
this work.
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In (2.1) -Ð>Ñ is sometimes referred to as the default rate. In the mortgage default literature

it is not uncommon to model the default (hazard) rate using the proportional hazards

model (PHM) of Cox (1972). Thus, for mortgage loan  with covariate vector , the3 Ð>Ñ\3

failure (default) rate is given by

- -3 !
Ð>ÑÐ>Ñ œ Ð>Ñ/"

w\3 (2.2)

where  is the baseline failure rate, and  is the parameter vector. In the above - -! !Ð Ñ Ð>Ñ• "

represents the effect of age of the mortgage on the probability of default whereas /"w\3Ð>Ñ

represents the effects of different covariates. The attractive feature of the PHM is that it

allows for incorporating covariate effects in modeling the hazard rate. Under the PHM,

the ratio of the default rates for two mortgages, say and  at the same age  is given by3 4ß >

-

-
3

4

Ð>Ñ Ð>ÑÓÐ>Ñ

Ð>Ñ
œ /"

wÒ\ \3 4 . (2.3)

Thus, the ratio of default  rates for two mortgages with different risks, as implied by

(2.3), is proportional to a function of the respective covariates. In our development and

data analysis we will be using time independent covariates. Thus, in what follows the

covariate vector will be written as .\3

Duration models have recently got much attention in the literature for modeling

mortgage default. In recognition of the fact that the hazard rate is not monotonic for

mortgage default, Lambrecht  (1997) suggest a generalization of the Weibull failureet al.

rate to describe time to default in the U.K. mortgage market. The authors define the

baseline failure rate as

-!Ð>Ñ œ ! #> /B:Ð  >Ñ!" , (2.4)

which reduces to the Weibull hazard for 0. The proposed failure model implies that# œ

default rate increases in early years of the mortgage and then decreases afterwards. The



6

model also included other determinants of default by introducing a covariate component

/"
w\3Ð>Ñ in the scale parameter in (2.4).

The nonmonotonic failure rate behavior described by (2.4) can be obtained by

using more flexible class of models that are used in reliability literature. In what follows,

we will present the generalized gamma and mixture models and discuss their

characteristics. To the best of our knowledge both classes of models have not been

previously considered in the mortgage default literature.

3. Reliability Models for Time to Default

In view of our discussion of nonmonotonic failure rates of time to default data we

will first present  the class of  that includes many knowngeneralized gamma models

duration models such as exponential, gamma, lognormal and Weibull as special cases.

Our discussion will follow with the  that  are common in the reliabilitymixture models

literature when pooling heterogeneous failure data; see for example Gurland and

Sethuraman (1994). For both classes of models we will consider PHM extensions.

3.1 Generalized Gamma Models

As noted by Dadpay  (2007) the generalized gamma distribution offers lot ofet al.

flexibility in duration modeling as it allows for various hazard patterns. The distribution

is originally introduced by Stacy (1962) in reliability modeling. It has been considered in

the economics [see Jaggia (1991)] and marketing literatures [see Allenby  (1999)].et. al

Zhang  (2001) considered the generalized gamma distribution for modeling theet al.

duration of stock transactions. In what follows, we will consider it as a model for time to

mortgage default.
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As before we denote time to default of loan  by and assume a generalized3 X3 

gamma model with density function

0Ð> ± Ñ œ /B:  >
>

Ð Ñ
! # - -

#-

> !
, ,     , (3.1)

 ! !#
#

1 š ›
where , , 0. An attractive feature of the generalized gamma distribution is that! # - 

many of the well-known duration models are obtained as special cases of  the density

given by (3.1).  For example, exponential model 1 Weibull model 1 ,Ð œ œ Ñß Ð œ Ñ# ! !

gamma model 1  and the half normal model 2, 1 .  The lognormalÐ œ Ñ Ð œ œ Î#Ñ# # !

model is also obtained as . Thus, the generalized gamma model is more general! Ä _

than the generalized Weibull model proposed by Lambrecht  (1997).et al.

The cumulative distribution of  is given byX3

JÐ> ± Ñ œ
Ð Ñ

Ð Ñ
! -

> !

> !
, ,  , (3.2)

 
#

- >#

where

> !-

-
!

 
0

 
1

>

>


#

#

Ð Ñ œ ? /B: Ð  ?Ñ .?( . (3.3)

Thus, the baseline default rate can be obtained as

- #!Ð>à Ñ œ


! -
#- -

> ! > !
, , (3.4)

   ! !# #

-

> /B:  >

Ð Ñ Ð Ñ



>

1

 

š ›
#

.

We note that the numerator of (3.4) is quite similar to the baseline default rate

considered by Lambrecht  (1997) in (2.4). The default rate  in (3.4) iset al. - #!Ð>à Ñ! -, ,

not necessarily monotonic and is capable of representing a wide variety of  failure rate

behavior.  It is shown by Pham and Almhana (1995) that for 1, if# Á

Ð"  Ñ

Ð  "Ñ
 ! !   "

!#

# #
#  and (3.5)
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then the failure rate will be first increasing and then decreasing. If  in (3.5) then the#  "

failure rate takes a . I 1.95, 0.55 and 0.1, then thebathub shape f we specify ! # -œ œ œ

default (failure) rate takes the nonmomotonic behavior is shown in Figure 1 below.

The effect of other determinants of default rate can be incorporated into the model

and a PHM type representation can be obtained for the generalized gamma model. If we

write the default rate as

-3Ð>ß Ñ œ /B:Ð Ñ\ \3 3
w- #!Ð>à Ñ! -, ,  ." (3.6)

where , ,- #!Ð>à Ñ! -  is given by (3.4), then it can be easily shown that the density

function is

0Ð> ± ß Ñ œ /B:ÒÐ >
>

Ð Ñ
! # - -

#-

> !
, , ,    . (3.7)

 
"  \ \ \3 3 3

w w
! !#

#
1

/B:Ð Ñ /B:Ð ÑÓ!" "

Figure 1. Failure Rate of Generalized Gamma Distribution for Specified Parameters.

3.2 Mixture Models

An alternate strategy to generalize the duration models  is to use finite mixture

models. As noted by Dieboldt and Robert (1994), "Mixture models provide an interesting
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alternative to nonparametric modeling, while being less restrictive than the usual

distributional assumptions." The mixture models are commonly used in the reliability

literature and more specifically in  testing where the population is assumed toburn-in

consist of two subpopulations referred to as  and ; see for example, weak strong Lynn and

Singpurwalla (1997).

Relevance of mixture models in mortgage default is due to the recent increase in

subprime  mortgages in the US market. Krinsman (2007) points out that as a result of this2

increase,  have become common in the market. Early paymentearly payment defaults

defaults (EPDs) are usually characterized as those loans that defaulted within 12 months

of their origination. The  and  composition which is seen in burn-in testing isweak strong

also applicable to EPDs. Figure 2 below illustrates the histogram and the density plot of

time to default for a randomly selected sample of EPDs originated during 2001. From the

figure, we can  clearly see the presence of mixtures in the data.

 

Figure 2. Distribution of Early Default Data from 2001.

2Subprime mortgages are loans given to borrowers with bad credit scores.
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By using mixtures of increasing failure rate (IFR) distributions one can reflect

nonmonotonic failure rates. Mi (1993) notes that mixtures of IFR distributions can be

used to measure what he refers to  failure rate, which seems to be theupside down

expected behavior of mortgage default rate.

For example, we can define a two component mixture model for  asX3

0 Ð>Ñ œ 0 Ð>Ñ  Ð"  Ñ0 Ð>ÑX " #3
1 1 (3.8)

where  is the mixing probability (or the mixing weight). If we choose 0.5 and 1 1 œ both

0 Ð>Ñ 0 Ð>Ñ Ð Ð" # and as Weibull distributions with parameters ! # !
" #
œ "ß œ "Ñ œ "ß"  and 

## œ #Ñ respectively, then we can obtain a nonmonotonic failure (or default) rate as

shown in Figure 3.

Figure 3. Failure Rate of Mixture of Two Weibull Densities

In general we can define a component mixture model for O  X3 as

0Ð>Ñ œ 0 Ð>l Ñ"
5œ"

O

5 5 51 9 (3.9)
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where !
5œ"

O

5 51 9œ 5>21 and  are the parameters of the component in the mixture. For

example, for mixture of  Weibull densities

0 Ð>l Ñ œ5 59 ! # !5 5 5
"> /B:Ò  > Ó# #5 5 (3.10)

we have . It is important to note that when we are given default times from95 œ Ð Ñ! #
5
ß 5  

8 3>2 > different loans, we do not know from which distribution default time  is coming3

from. Thus, we can consider this as a missing data problem and introduce latent variables

W 5 œ "ßá ßO35  for of each observation such that

W œ
" > µ 0 Ð>l Ñ

35
3 5 5œ if 

0 otherwise, (3.11)9

and for each  we have .3 W œ "!
5œ"

O

35

If we define the latent vector for the observation as , then3>2 œ ÐW á W ÑW3 3" 3O

given the above setup, we can assume that 's are independent multinomially distributedW3

vectors denoted as

W3 " O " Ol ßá ß µ Q?6>Ð ßá ß Ñ1 1 1 11; . (3.12)

Note that (3.12) implies that only one of the components of W3 is 1 and the remaining are

0's.  It follows from the above that

> l µ 0 Ð>l Ñ3 3 5 5W , (3.13)9 9

where .9 œ Ð Ñ9 9" Oßá ß

A PHM type of mixture model can also be developed. The PHM setup is

conceptually similar to mixtures of normal regression models that are considered in Hurn,

Justel and Robert (2003) and mixtures Weibull regression models that are used by

Attardi, Guida and Pulcini (2005). In our development we will consider mixtures of

Weibull PHMs. In so doing, we take the failure rate of the Weibull density5>2

component  (3.10), that is,! #5 5
">#5 and rewrite it as
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- ! #5 5 5
"Ð>ß Ñ œ > /B:Ð Ñ\ \#5  ."5

w (3.14)

Thus, we can write the mixture model (3.9) as

0Ð>Ñ œ 0 Ð>l Ñ"
5œ"

O

5 5 51 9 , , , (3.15)"5 \

where the  component density is given by5>2

0 Ð>l Ñ œ5 59 , , (3.16)" " "5 5 5\ \ \! # !5 5 5
" w w> /B:Ð Ñ/B:Ð  > /B:Ð ÑÑ# #5 5 .

Similar to (3.13) we can write

> l µ 0 Ð>l Ñ3 3 5 5W , , , , , (3.17)9 " \ \3 5 39 "

where" œ Ð Ñ" "" Oßá ß .

Note that we can consider different type of mixture models by assuming some of

the elements of , are common to all components. Such alternative models will beÐ Ñ95 "5

analyzed in Section 5 for EPD data.

4. Bayesian Inference for Time to Default Models

We next present Bayesian inference for the generalized gamma PHM and the

mixtures of Weibull PHM using time to default data on  loans. In the case of the8

mixture models we assume the data is on EPDs. Since in the time to default data of

Section 5 all covariates are at the time of initiation of the mortgage, we denote the

covariates by in our development.\3  

4.1 Bayesian Analysis of the Generalized Gamma PHM

Bayesian analysis of PHMs using MCMC methods has been considered by

Dellaportes and Smith (1993) for the Weibull failure model. A similar approach can be

used for the generalized gamma PHM.
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Given time to default data and covariate information ; , ,H œ Ð> ßá ß > á Ñ" 8 \ \" 8

on  loans, the joint likelihood function of , , can be written as8 Ð ß Ñ! # - "  

P /B:Ð Ñ /B:Ð ÑÓÐ ß àHÑ œ /B:ÒÐ >
>

Ð Ñ
! # - -

#-

> !
, ,    .

 
" $

3œ"

8
3



3

! !#
#

1

!" "w w\ \3 3 (4.1)

For any choice of a prior, the joint posterior distribution , ,  can not be:Ð ß lHÑ! # - "

obtained analytically, but a Gibbs sampler, similar to considered by Dellaportes and

Smith (1993), can be used  for developing posterior and predictive inferences. It can be

shown that assuming independent logconcave priors for , , and  and a multivariate! # -

normal prior for independently, all the full conditionals are logconcave and therefore" 

the adaptive rejection sampling method can be used to draw from the full conditional

densities. In our analysis we specify gamma priors on  and  and a lognormal prior on! #

-.

Given posterior samples š ›! # -Ð1Ñ Ð1Ñ Ð1Ñ Ð1Ñ
K

1œ"
ß ß ß"   from the joint posterior

distribution, the posterior predictive distributions for default rates and time to default, can

be obtained. Note that the baseline default rate function for the generalized gamma PHM

is given by (3.4) which is a function of  . ! # -, , and As pointed out by Lynn and

Singpurwalla (1997), one can  obtain the posterior predictive baseline default ratenot

-!Ð>lHÑ Þ by integrating out (3.4) using The posterior predictive baseline , ,:Ð lHÑ! # -

default rate is given by

-
! #

! #
!Ð>lHÑ œ Ð Ñ

0Ð>l Ñ . . .

Ò"  JÐ>l ÑÓ . . .

'' ! # - ! # - -

! # - ! # - -

, , , ,
, , , ,

:Ð lHÑ

:Ð lHÑ

 
 

, 4.2

where 0Ð>l Ñ J Ð>l Ñ! # - ! # -, , , , and  are given by (3.1) and (3.2), respectively. Note that

due to use of time independent covariates, (4.2) does not depend on the covariate terms.

Using the posterior samples from the joint distribution, we can approximate the posterior

predictive default rate (4.2) as
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-

! #

! #

!

1 1

1 1

Ð>lHÑ

0Ð>l ß Ñ

Ò"  JÐ>l ß ÑÓ

¶

  

  

"
K

1œ"

K

"
K

1œ"

K

!
!

 

 

,

,
. (4.3)

-

-

1

1

The posterior predictive distribution for time to default of any loan  with3

covariate information is given by\3 

0Ð> lHß Ñ œ3 \ \3 3( 0Ð> ± ß Ñ .T Ð ß lHÑ! # - ! # -, , , , ," " , (4.4)

where 0Ð> ± ß Ñ! # -, , ,  is given by (3.7). We can approximate the above using the"  \3

Monte Carlo average

0Ð> lHß Ñ 0Ð> l ß ß Ñ3 3
1 1\ \3 3¶

"

K

  
,"

1œ"

K

! # , . (4.5)-1 1"

4.2 Bayesian Analysis of the Mixtures of Weibull PHM

As in the previous case we assume that we have  time to default data and

covariate information  on  EPD loans. Following H 8 Section 3.2, we consider mixtures of

Weibull PHMs where each component of the mixture has the density (3.16). Bayesian

analysis of mixtures of Weibull distributions has been considered in Tsionas (2002), but,

to the best of our knowledge, Bayesian analysis of finite mixtures of Weibull PHMs has

not been developed.

Bayesian modeling of mixtures requires specification of prior distributions for all

the unknown parameters. The mixing probabilities 1 œ Ð1 1" Oßá ß Ñ can be assumed to

have a Dirichlet prior distribution as

:Ð Ñ º1 $
5œ"

O
"

51
<5  (4.6)
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with specified parameters 's. We can assume independent priors for elements of <5 9 and

" 9 "    vectors, and also assume that are independent of each other as well as of .and 1

Thus, we can write

:Ð Ñ œ ß9 ", .$
5œ"

O

5:Ð Ñ:Ð Ñ! #
5

"5 (4.7)

Furthermore, we  and  and a multivariatespecify independent gamma priors for ! #
5 5

normal prior for  in (4.7)."5

Given the data , the joint likelihood function of , where H Ð ß ß Ñ œ Ö à9 ", W W W1 3

3 œ "ßá8×, is given by

P ß ß HÑ º Ò0Ð> lW ß ß ÑÓ ÐÐ Ñ9 ", .W \1 "; (4.8)$$
3œ"

8 O

5œ"

3 35
W W9 15 55 3ß 35 35

The joint posterior distribution of  can not be obtained analytically, but: ß ß lHÑÐ9 ", W 1

a fully Bayesian analysis can be developed using MCMC. Following a development

similar to what is presented in Diebolt and Robert (1994) and Hurn, Justel and Robert

(2003), we can use a Gibbs sampler.

Using independent gamma priors for 's with parameters and and defining!5 5 5+ ,

Q œ ÐW œ "Ñß5 35 5
3œ"

8!" the full conditional distribution of  can be obtained as a gamma!

distribution with parameters  and The full conditionalÐQ  + Ñ Ò> /B:Ð Ñ 5 5 3
w#5 "5 3\ , Ó5 . 

distribution of mixing probability vector  can be obtained as a Dirichlet distribution1

with parameters . The full conditionals of 's can be shown toÖQ  À 5 œ "ß ÞÞÞßO×5 5 3< W

be multinomial as Q?6>Ð Ð> Ñßá ß Ð> ÑÑ1; , 1 1" 3 O 3 where

1
1

1 9

5
5 3

4œ"

O

4 3 4

Ð> Ñ3
5

œ
0Ð> l ß Ñ

0Ð> l ß Ñ

9 "

"

5 3

4 3

ß

ß

\

\! . (4.9)
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The full conditionals of 's and 's are not of known forms, but they can be shown to#5 5"  

be log-concave and therefore adaptive rejection sampling methods can be used to draw

from these distributions.

Once posterior samples are obtained for all unknown quantities we can obtain

posterior predictive densities for time to default as in the generalized gamma PHM. To

obtain the predictive distribution generate0Ð>lHÑ, for each posterior sample of  we 1 1Ð1Ñ 

the vector { ; which has only one component with value 1 and the restW 5 œ "ßá ßO×5
Ð1Ñ

with 0's  After repeating this  times we computeÞ K

0Ð>lHÑ ¸ "ÐW Ñ 0 Ð>lHÑ
"

K
Š ‹"

5œ"

O

5 5
1 (4.10)

where

0 Ð>lHÑ ¸ 0 Ð>l Ñ
"

K
5 5

<œ"

K
1
5

" 9 , . (4.11)"1
5ß\

4.3 Bayesian Model Comparison and Fit Measures

Assume that we are considering two alternative models  and  for time toQ Q" #

default data. Computation of  Bayes factor ÐFJÑ

FJ œ
:ÐHlQ Ñ

:ÐHlQ Ñ
"

#
(4.12)

is a challenging task since the marginal likelihood for model  can not be:ÐHlQ Ñ 33

obtained analytically in our case. One alternative comparison measure is the "posterior

Bayes factors" suggested by Aitkin (1991) which evaluates marginal likelihood using the

posterior distribution instead of the prior distribution. This provides us with the posterior

mean of the marginal likelihood term which has been suggested as a fit measure by others

in the literature including posterior mean of the marginalDempster (1974). The 

likelihood term  can be evaluated using Monte Carlo method by drawing samples from

the posterior. More specifically, we can approximate



17

:ÐHlQ Ñ ¸ :ÐHl ßQ Ñß
"

K
3 3

1œ"

K
1" @ (4.13)

where  is a generic parameter vector and  are samples from @ @ @Ö ×1 K
1œ" :Ð lHÑ. We note

that (4.13) provides us with a retrospective measure and therefore we will refer to the

posterior Bayes factors as  ( in Section 5. The posteriorretrospective Bayes factors VFJÑ

mean of the marginal likelihood term is also related to the deviance concept [see for

example, Spiegelhalter et al. (2002)].

An alternative comparison can be based on predictive performance of the models.

If data  can be decomposed into two parts then original  H H œ ÐH ßH Ñ H! J !data can be

used to update the parameters of each model and future data can be used to evaluateHJ

the posterior predictive density. In other words, for each model we can obtain the

marginal likelihood as

:ÐH lH ßQ Ñ œ :ÐH l ßQ Ñ:Ð lH Ñ . ßJ ! 3 J 3 !( @ @ @ (4.14)

which we can approximate using a Monte Carlo average as

:ÐH lH ßQ Ñ ¸ :ÐH l ßQ Ñß
"

K
J ! 3 J 3

1œ"

K
1" @ (4.15)

where  are samples from . Note that we can compute Bayes factorsÖ × :Ð lH Ñ@ @1 K
1œ" !

using predictive marginal likelihoods based on (4.15). We will refer to these as the

:< .3->3@/e Bayes factors ( in Section 5.TFJÑ

 5. Illustrations Using Actual Time to Default Data

Mortgage default data used in this section is from FHA's regional office at

Atlanta. The data in Section 5.1 consists of default times on FRM 30-year loans

originated during 1994 period. Besides loan endorsement and default dates, other

information provided in the dataset includes loan amount, interest rate, borrower's
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effective household income, loan to value ratio (LTV), borrower's marital status and age,

all recorded at loan origination time.

 For analysis of generalized gamma PHM we randomly select 400 samples from

defaulted mortgage loans originated in 1994. Our data is similar to what is considered by

Lambrecht, Perraudin and Satchell (1997) in that we have only defaulted loans and all

covariates are at the time of initiation of the mortgage.

The data that we use in Section 5.2 for the analysis of mixtures of PHMs consists

of  default times on FRM 30-year EPD loans originated during 2001. In this case we

randomly select 200 sample loanss from all EPD loans originated in 2001. Again we have

the same covariate information available on each EPD loan.

5.1 Analysis of  Regular Default Data

In our analysis of the sample of 400 loans, we consider the generalized gamma

PHM and we compare its performance with the Weibull PHM. In so doing, we will use

the retrospective and predictive Bayes factors of Section 4.3. We will be using proper but

diffused priors for all parameters in the analysis.

In Table 1 we present posterior summaries of the parameters of the model

including the 95% Bayesian central credibility intervals (CCI). We note from the table

that the effects of mortgage interest rate and loan amount on failure rate are consistent

with what is expected, that is, higher initial interest rate and higher loan amount would

leave borrower with heavier financial burden, resulting in a higher propensity to default.

Furthermore, income, marital status and LTV do not seem to have clear effects on the

default. This may due to the fact that the default risk is more influenced by changes in

these covariates rather their initial levels at loan origination. Similar findings are obtained

for the Weibull PHM.
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 Parameter Mean StDev 95% CCI
1.318 0.444 (0.718, 2.392)
1.422 0.260 (0.953,1.981)
1.449 0.531 (0.526, 2.624)
0.8

!
#
"
"

interest-rate

loan-amount 46 0.264 (0.391,1.423)
-0.454 0.435 (-1.373, 0.3284)
0.146 0.487 (-0.845, 1.077)
-0.820 0.467 (-1

"
"
"

annual-income

marital-status

borrower-age .782,0.026)
0.031 0.419 (-0.791,0.850)"LTV

Table 1. Posterior Summaries from the Generalized Gamma Model

We can also see from Table 1 that most values of  are greater than 1 which!

suggests that the failure rate behaves different than that of the Weibull model. We can

compute the posterior probability that  is greater than 1 as 0.762. We can also see the!

potential deviation in the data from the Weibull model by looking at the posterior failure

rate of the model. In Figure 4 we present the plot of expected baseline failure rate from

the generalized gamma model based on (4.3). The plot provides evidence in favor of a

nonmonotonic default behavior.
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Figure 4. Expected Posterior Baseline Failure rate under the Gamma Model.

Comparison of the generalized gamma PHM with the Weibull PHM using the

retrospective BF suggests a 1.7 value in favor of the generalized gamma model. Note that

this value is not considered as an indication of strong evidence; see Kass and Raftery
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(1995). To assess the out of sample predictive performance of the models we next

compared them using predictive BFs. In so doing, we used 100 randomly selected

samples of size 10 from the defaulted loans and compute PBFs. Out of 100 samples 63 of

them favored the generalized gamma PHM based on the PBF.

 5.2 Analysis of  EPD Loan Data

In our analysis of the sample of 200 EPD loans from 2001 we will use the

mixtures of Weibull PHMs discussed in Sections 3.2 and 4.2.  In our analysis we define

EPD's as loans defaulted within 12 months of their origination. We have presented the

probability histogram and the density plot of the sample in Figure 2 of Section 3.2.

In what follows, we will fit two-component mixtures of Weibull PHMs. In so

doing, we will consider different types of mixture models. Our first model considers a

mixture with different shape parameters but common scale and covariate coefficients. In

other words, in section 3.2, we have ( ) and ( ) as the parameters of the two! # ! #ß ß" ", ," #

components.

In our analysis we use diffused but proper priors for all parameters of the model.

In Figure 5 we present  the posterior distributions of  covariate coefficients. We note that

the initial interest rate of the loan causes an increase in the default rate. For all other

cases except the marital status the posterior distributions are assigning a high density

value to zero.  Again, this may be due to the fact the covariates represent values at the

loan origination. In Figure 6 we present the posterior distributions of shape parameters

# #" #and . We clearly see from the figure that the first posterior distribution has a mean

around 6 whereas the second one has mean around 4. Based on the joint posterior

distribution we can compute T<9,Ð  lHÑ ¸ "Þ# #" #

The posterior distribution of the mixing probability  is given in Figure 7. We can1

see from the figure that the expected value of  is in the vicinity of 0.2, implying that on1
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average 20% of the time we will observe defaults coming from the first component of the

mixture.

Figure 5. Posterior Distributions of Covariate Parameters in the Mixture Model.

Figure 6. Posterior Distributions of  the Shape Parameters
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We also analyzed the early default data using a Weibull PHM without a mixture.

We have found that the fit provided by the mixture model is lot superior to the Weibull

PHM. The retrospective  in favor of the mixture model was much larger than 150.BF

Thus, the evidence in favor of the mixture model is very strong for the early default data.

 Figure 7 Posterior Distribution of Mixing Probability  for EPD Data.1

In our second model we considered a mixture with different covariate coefficients

but common shape and scale parameters for the components. Thus, in section 3.2, we

have ( ) and ( ) as the parameters of the two components. Again we used! # ! #ß ß ß ß" "" #

diffused but proper priors for all coefficients. The posterior summaries including 95%

Bayesian central credibility intervals for ,   and are shown in Table 2. From the# 1, " "" # 

table we see that there is evidence of two components with regards to the effect of

interest rate on default rate. In both cases higher mortgage interest rate implies higher

probability of default but in one group this effect is stronger. Also, in one of the groups

there is evidence of the negative effect of borrower's age on default rate, that is, the older

the person the less likely the default. Similarly, for one of the groups, the marital status

has a clear negative effect on the default rate.



23

Parameter Mean StDev 95% CCI
8.720 3.425 (2.569, 15.820)
3.096 1.626 (0.005, 6.387)
0.415 0

"

"

"

interest-rate, 1

interest-rate, 2

loan-amount,1 .917 (-1.163, 2.437)
0.185 0.343 (-0.475, 0.859)
2.247 2.040 (-2.116, 5.882)
-0.603 0.906 (-

"

"

"

loan-amount,2

annual-income,1

annual-income,2 2.401, 1.151) 
2.405 3.322 (-4.844, 8.433)
-1.88 0.955 (-3.681, -0.050)
-4.047 2.134 (-8

"

"

"

marital-status,1

marital-status,2

borrower-age,1 .028, 0.381)
0.422 1.058 (-1.702, 2.431)
-0.948 3.42 (-7.725, 5.903) 
0.662 1.231 (-1.722, 3.120)
4.787 0.393 (4

"

"

"

#

borrower-age,2

LTV,1

LTV,2
.001, 5.548)

0.285 0.047 (0.196, 0.379)1

Table 2. Posterior Summaries from the Mixtures of Weibull PHM.

We made a comparison of the two mixture models, that is, the model with

different shape parameters but common covariate coefficients (Model 1) and the model

with different covariate coefficients but common shapes (Model 2). The retrospective

FJ  in favor of Model 2 was much larger than 150. We also obtained predictive  basedBF

on a randomly selected additional 20 EPD loans. This was 28 to 1 also in favor of Model

2. When we analyzed the data using a mixture model where both shape parameters and

covariate coefficients were different, the results were very similar to those obtained under

Model 2 with shape parameters did not seem to differ between the two groups. Thus,  the

evidence suggests that the mixture may be due to the different covariate effects on default

rate in the two groups.
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