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Abstract

In this paper we introduce a discrete time Bayesian state space model with Poisson measure-

ments for intra-day call arrivals. We present the properties of our model and develop Bayesian

inference. In so doing, we provide analytically tractable expressions for sequential updating for

parameters, for smoothing and prediction of call arrivals and discuss how the model can be

used for inter-weekly forecasts. We illustrate the implementation of the model by using actual

intra-day arrival data from a US commercial bank’s call center.
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1 Introduction

Call centers provide vital contact points between firms and their potential and existing customers.

In general, customers who are looking for service are served either by an interactive voice response

unit (IVR) or by agents of the call center. The focus of this paper will be on calls handled by agents.

In recent years, academic research in call center modeling has shown a drastic increase in volume.

In a survey paper by Gans et al. (2003), 164 call center related papers are referenced. A detailed

overview of recent call center related literature can be found in Aksin et al. (2007), where different

research areas such as forecasting, queueing, scheduling and behavioural issues are considered. Call

center management consists of technology and labour intensive operations, where staffing comprise

60-80% of the overall operating budget (Aksin et al. (2007)). Therefore modeling uncertainty in

call center arrivals is an important issue for call center management. In this paper, we address the

issue of modeling daily call volumes in an inbound call center with particular emphasis on intra-day

forecasting and illustrate how inter-week forecasts can be developed from the proposed models.

Due to the increased availability of call center databases, forecasting related studies have been

an active area for academic research. Some of the recent work in this area can be summarized as

follows. Jongbloed and Koole (2001) discuss that the arrival process at a Dutch insurance company

call center follow a non-homogeneous Poisson process where the arrival rate is not constant over

time. Avramidis et al. (2004) develop a model based on the correlation structure of the intra-day

arrivals at a Bell Canada call center using doubly stochastic Poisson processes. Recent work by

Weinberg et al. (2007) and Soyer and Tarimcilar (2008) are the first two known attempts to model

call volumes using a Bayesian point of view. Soyer and Tarimcilar (2008) model the arrival process

at a consumer electronics producer call center via a modulated Poisson process whose rate is a

function of advertising specific characteristics as well as time. Weinberg et al. (2007) consider the

intra-day arrival behaviour of a US commercial bank’s call center and introduce a non-homogeneous

Poisson model whose arrival rates are changing both intra-day and inter-day. A sequential Monte

Carlo algorithm is developed in order to estimate both the latent states and the model parameters.

In order to develop the MCMC algorithm, the arrival count data is transformed into a Gaussian time

series using a square root transformation. As noted by Aksin et al. (2007)the approach proposed

by Weinberg et al. (2007) is computationally intensive especially for intra-day forecast updating.

Intra-day forecasting is an important issue in call center staffing decisions. Whitt (1999) men-
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tions the importance of near term staffing needs of a call center in order to carry out dynamic

staffing with the aim of answering all calls. Near term staffing is usually referred to as the staffing

requirements in the next minute, five minutes or ten minutes. Conventional methods used in the

industry for call center staffing problems require that mean of call volume at any given time in-

terval is forecasted so that the required staffing level is c
√

(m), where c is a constant defined over

1 ≤ c ≤ 10 and m is the predicted mean for a given time interval. Another approach proposed by

Whitt (1999) for dynamic staffing is as follows. Let s(t) be the required number of servers at time

t, then

s(t) = [E(D(t)) + zα

√
(V ar(D(t))) + 0.5] (1.1)

where P (N(0, 1) > zα) = α , [x] is the least integer greater than x, D(t) and V (t) are the respective

mean and the variance of the predicted demand for time t. Therefore, availability of intra-day

updating call enables call center managers adjust their staffing dynamically on a given day. Whitt

(1999) also introduces the idea of flexible staffing where the call center agents have alternative work

on a given day. In other words if the call volume is predicted to be low in the morning they can be

assigned to other tasks, as soon as intra-day forecasts indicate an increase in the call arrivals they

can be reassigned to answering inbound calls. Thus, it is important to able to update forecasts

rather easily at any time period in a given day.

In this paper, we propose an alternative to Weinberg et al. (2007) via modeling the original

count data rather than using the square root transformation and consider a discrete time Bayesian

state space model with Poisson measurements. The attractive feature of our model is that, under

certain conditions, it provides analytically tractable expressions for sequential updating for the

model parameters, for smoothing and predictions of call arrivals. Thus, it can easily be used with

decision models for updating intra-day staffing schedules. Furthermore, the proposed approach is

quite valuable in inferring inter-day as well as intra-day differences in arrival patterns and it can

be extended to obtain for inter-week forecasts.

A synopsis of our paper is as follows: In Section 2, we introduce a Bayesian state space model

for the daily within day call arrivals, show how the sequential updating of the parameters is im-

plemented and discuss the underlying properties of the proposed model. In section 3, we present

an extension of the model to consider interweekly forecasts. In section 4, a numerical example is

illustrated for the model. Finally, in section 5 we conclude with comments and suggestions for
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future extensions of our work.

2 A Discrete Time Poisson Model for Intra-day Call Arrivals

Queuing theory has been commonly used in the call center modelling literature. However, appropri-

ateness of the standard assumptions of queuing models have been questioned by many researchers.

For example, Jongbloed and Koole (2001) and Weinberg et al. (2007) note that the assumption of

Poisson arrivals with a constant rate over time does not apply to call center arrivals. Therefore

they propose a stochastic arrival rate, θt, which evolves over time. Similarly, the independent in-

crements property of Poisson processes has been criticized by Avramidis et al. (2004) who propose

a Poisson processes with stochastic arrival intensities. In this paper, we consider a discrete time

Poisson process with a stochastic arrival rate that evolves over time according to a discrete time

Markov process. Our model and its properties are discussed in the sequel.

Let Nt be the number of call arrivals during the time period t − 1 to t in a given day and θt

be the corresponding arrival rate during the same time period. Note that the length of the time

interval may change depending on the call arrival data at hand. For example, Nt may represent

the call arrivals during the tth minute, tth hour or tth day depending on the nature of the data,

but the proposed model can still be applicable.

Given the arrival rate θt, we assume that the number of call arrivals during period t is described

by a discrete time nonhomogeneous Poisson process with probability distribution

p(Nt|θt) =
θNt
t e−θt

Nt!
. (2.1)

It is assumed that given θt’s, Nt’s are independent. In other words, the model implies that the

independent increments property holds only conditional on θt and Nt’s are correlated. In the above,

(2.1) acts as a measurement equation and is defined over discrete space in time.

For time evolution of θt’s, we assume a Markovian structure where the relationship between the

arrival rates is described by

θt =
θt−1

γ
εt (2.2)

where (εt|N (t−1)) ∼ Beta(γαt−1, (1−γ)αt−1) with αt−1 > 0, 0 < γ < 1, and N (t−1) = (N1, · · · , Nt−1).

In (2.2), γ acts like a discounting term. It follows from the above that θt < θt−1

γ . We can show that
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θt|θt−1, N
(t−1) ∼ Beta(γαt−1, (1− γ)αt−1, 0, θt−1

γ ), that is, a truncated Beta density given by

p(θt|θt−1, N
(t−1)) =

Γ(αt−1)
Γ(γαt−1)Γ((1− γ)αt−1)

(
γ

θt−1
)αt−1−1θ

γαt−1−1
t (

θt−1

γ
− θt)(1−γ)αt−1−1. (2.3)

The state equation (2.2) also implies that E(θt|θt−1, N
(t−1)) = θt−1, that is, a random walk

type of evolution for the arrival rates. We note that a modified version of the evolution model (2.2)

was first introduced in Smith and Miller (1986) where the measurement equation was exponential

and later was used by Morali and Soyer (2003) in the context of software reliability.

A Poisson measurement model has not been considered in the earlier work, but it is possible

to develop an analytically tractable Bayesian analysis for the model if we assume that at time

0, (θ0|N (0)) is a gamma distribution. In other words, before any of the call arrivals have been

observed, we define our prior uncertainty regarding the call arrival rate as

(θ0|N (0)) ∼ Gamma(α0, βo). (2.4)

Following Smith and Miller (1986) we assume that

(θt−1|N (t−1)) ∼ Gamma(αt−1, βt−1) (2.5)

which we can show by induction.

Using (2.3) and (2.5), we can obtain the prior of θt given N (t−1) via

p(θt|N (t−1)) =
∫ ∞

γθt

p(θt|θt−1, N
(t−1))p(θt−1|N (t−1))dθt−1, (2.6)

which reduces to a gamma density as

(θt|N (t−1)) ∼ Gamma(γαt−1, γβt−1). (2.7)

It follows from the above that E(θt|N (t−1)) = E(θt−1|N (t−1)), whereas V (θt|N (t−1)) = V (θt−1|N(t−1))
γ .

In other words, the model implies that as we move forward in time, expected call arrival rate stays

the same but our uncertainty about arrival rate increases as a function of the discount factor γ.

Given the prior (2.5) and the Poisson observation model (2.1) we obtain the posterior distribu-
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tion θt|N (t) using the Bayes’ Rule,

p(θt|N (t)) ∝ p(Nt|θt)p(θt|N (t−1)). (2.8)

The above implies that

p(θt|N (t)) ∝ θ
γαt−1+Nt−1
t e−(γβt−1+1)θt ,

that is, the posterior distribution of the call arrival rate at time t is a gamma density

θt|N (t) ∼ Gamma(αt, βt) (2.9)

where αt = γαt−1 + Nt and βt = γβt−1 + 1.

The one-step ahead predictive distribution of call arrivals at time t given N (t−1) can be obtained

via

p(Nt|N (t−1)) =
∫ ∞

0
p(Nt|θt)p(θt|N (t−1))dθt (2.10)

where Nt|θt ∼ Poisson(θt) and θt|N (t−1) ∼ Gamma(γαt−1, γβt−1). Therefore,

p(Nt|N (t−1)) =
(

γαt−1 + Nt − 1
Nt

)
(1− 1

γβt−1 + 1
)γαt−1(

1
γβt−1 + 1

)Nt . (2.11)

which is a negative binomial model denoted as

Nt|N (t−1) ∼ Negbin(γαt−1, γβt−1). (2.12)

Availability of one-step ahead predictive density in closed form is an attractive feature of the

model from a practical point of view. Given (2.12), one can carry out one step ahead predictions

and credibility interval calculations in a straightforward manner. Further results regarding one step

ahead predictive distributions will be discussed in our numerical example section.

Although the k-step ahead predictive density is not analytically available, the k-step ahead

predictive means can be easily obtained. Using a standard conditional expectation argument one

can obtain E(Nt+k|N (t)) as follows

E(Nt+k|N (t)) = Eθt+k
(E(Nt+k|θt+k, N

(t))) = E(θt+k|N (t)). (2.13)
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Furthermore, using the state equation we have

E(θt+k|N (t)) = E(θt|N (t))
t+k∏

n=t+1

E(εn|N (t))
γ

= E(θt|N (t)) =
αt

βt
(2.14)

where E(εn|N (t)) = γ for any n. Therefore, combining (2.15) and (2.14), we can write

E(Nt+k|N (t)) = E(θt+k|N (t)) =
αt

βt
. (2.15)

Due to the random walk type of structure introduced in (2.3), the above result simply indicates

that k-step ahead forecasts given that we have observed the call arrivals up to time t are equal to

αt/βt.

2.1 Long run behaviour of the call arrival rate

Long run behaviour of the call arrival rate is of interest to call center practitioners. Under the

proposed model we can analyze the long run behaviour of the call arrival rate θt via a study of the

behaviours of αt and βt. In other words, if the call center system has been in operation for a long

time, a steady state type behaviour might have been reached for the arrival rate. We note that the

long run behaviour of αt and βt would determine how the mean and the variance of the arrival rate

θt would change as functions of γ.

We define the steady-state value of βt as β = limt→∞ βt. By taking the limit on both sides of

βt = γβt−1 + 1, we obtain

β =
1

1− γ
(2.16)

For the long run behavior of αt, using αt = γαt−1 + Nt we can show that for a large k

αk = Nk + γNk−1 + · · ·+ γk−1N1 + γkα0 (2.17)

Therefore given (2.16) and (2.17), in the long run E(θt|N (t)) = αt
βt

= (1− γ)αk. That is

E(θk|N (k)) = (1− γ)Nk + (1− γ)γNk−1 + · · ·+ (1− γ)γk−1N1 + (1− γ)γkα0. (2.18)

We note from (2.18) that the posterior mean of θt is an exponentially weighted average of the past
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observed call arrivals up to time t. Similarly, from (2.12) E(Nt|N t−1) = αt−1

βt−1
= (1− γ)αk−1.

E(Nk|Nk−1) = (1− γ)Nk−1 + (1− γ)γNk−2 + · · ·+ (1− γ)γk−1N1 + (1− γ)γkα0 (2.19)

Therefore, we can also conclude that one step ahead predictive mean of the call center arrivals at

time k − 1 is a weighted average of the past arrivals.

It follows from the above that for γ < 0.5 both for E(θk|N (k)) and E(Nk|Nk−1), the model

assigns a relatively larger weight on the most recent call arrival, whereas for γ > 0.5 the weight is

relatively smaller. Following a similar logic, we can also obtain the variance of θt|N (t) and Nt|N (t−1)

in the long run as follows

V (θk|N (k)) = (1− γ)2αk (2.20)

and

V (Nk|N (k−1)) =
(1− γ)

γ
αk−1 (2.21)

where αk is defined as in (2.17) for a large k. A quick note about the initial values of α0 and β0 is

that if the call center system has been in operation for a long time their affect on both the mean

and the variance in the long run becomes negligible.

2.2 Bayesian learning about discount parameter γ

In previous sections, the discount factor γ has been assumed to be known in order for us to obtain

a tractable Bayesian analysis. However, we can also treat γ as an unknown quantity and describe

our uncertainty about it via a prior distribution, say p(γ). Given, N (t), that is, call arrivals up to

time t, the likelihood function of γ is given by

L(γ; N (t)) =
t∏

k=1

p(Nk|N (k−1), γ), (2.22)

where p(Nk|N (k−1), γ) is given (2.12). The posterior distribution of γ can then be obtained via the

Bayes’ rule as

p(γ|N (t)) ∝
t∏

k=1

p(Nk|N (k−1), γ)p(γ). (2.23)
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For any choice of prior p(γ) in (2.23) the posterior distribution can not be obtained analytically.

However, we can always sample from the posterior distribution of γ using a Markov chain Monte

Carlo (MCMC) method such as the Metropolis-Hastings algorithm. Alternatively, a discrete prior

can be used for γ over (0, 1). For example, a discrete uniform prior between 0.01 and 0.99 can be

a reasonable choice and this will be considered in our examples.

2.3 Filtering distribution and retrospective analysis

In the previous sections our focus has been on prediction of call arrivals in the future. For inference

on mean arrival rates at different points in time one is more interested in a retrospective type of

analysis. In other words, given that we have observed the data N (t) at time t, we will be interested

in the distribution of θt−k|N (t) for all k ≥ 1.

We can write

p(θt−k|N (t)) =
∫

p(θt−k|θt−k+1, N
(t))p(θt−k+1|N (t))dθt−k+1 (2.24)

where p(θt−k|θt−k+1, N
(t)) is obtained via the Bayes’ rule as

p(θt−k|θt−k+1, N
(t)) =

p(θt−k|θt−k+1, N
(t−k))p(N∗|θt−k, θt−k+1, N

(t−k))
p(N∗|θt−k+1, N (t−k))

= p(θt−k|θt−k+1, N
(t−k))

with N∗ = (Nt−k+1, · · · , Nt). Here, given θt−k+1, N∗ is independent of θt−k, i.e. p(N∗|θt−k, θt−k+1, N
(t−k)) =

p(N∗|θt−k+1, N
(t−k)). Thus, (2.24) reduces to

p(θt−k|N (t)) =
∫

p(θt−k|θt−k+1, N
(t−k))p(θt−k+1|N (t))dθt−k+1. (2.25)

We can not obtain (2.25) analytically, but it is possible to evaluate it using Monte Carlo methods.

More specifically, we can draw samples from p(θt−k|N (t)). This requires us to develop an efficient

algorithm which would lead us to sample from the joint density, i.e p(θ1, · · · , θt|γ, N (t)), and then

collect the samples corresponding to p(θt−k|γ, N (t)) for all k ≥ 1.

9



Due to the Markovian nature of the state parameters, we can rewrite p(θ1, · · · , θt|γ, N (t)) as

p(θt|γ, N (t))p(θt−1|θt, γ,N (t−1)) · · · p(θ1|θ2, γ, N (1)). (2.26)

We note that p(θt|γ, N (t)) is available from (2.9) and p(θn−1|θn, γ, N (n−1)) for any n can be obtained

as follows

p(θn−1|θn, γ,N (n−1)) ∝ p(θn|θn−1, γ,N (n−1))p(θn−1|γ,N (n−1)) (2.27)

where the first term is available from (2.3) and the second term from (2.7). It would be straight-

forward to show that θn−1|θn, γ, N (n−1) ∼ Gamma((1− γ)αn−1, βn−1 + 1) where γθn < θn−1 < ∞.

Therefore, given (2.26) and the posterior distribution of γ from 2.23, we can sample from

p(θ1, · · · , θt|γ,N (t)) sequentially simulating the individual state parameters as follows:

1. Generate γ(i) from p(γ|N (t)).

2. Using the generated γ(i), sample θ
(i)
t from θt|γ, N (t).

3. Using the generated γ(i), for each n = t−1, · · · , 1 to generate θ
(i)
n from θn|θ(i)

n+1, γ,N (n) where

θ
(i)
n+1 is the value generated in the previous step.

If we repeat the above large number of times, then we obtain samples from p(θ1, · · · , θt|γ, N (t))

which allows us to obtain a density estimate for p(θt−k|γ, N (t)) for all k ≥ 1. Further details about

the filtering distributions are presented in our numerical example section.

3 A Model for Inter-week Call Arrivals

It is possible to extend the model discussed in the previous section to describe arrivals for each

day of the week. In so doing, we consider each day of the week separately and assume that the

behaviour of a given day is the same from one week to another. In other words we assume that

call arrival process for Monday on any week will exhibit similar behaviour to any other Monday in

another week. We consider such a behaviour by assuming the weekly call arrivals for any day are

exchangeable over time, that is, from one week to another.

Such an extension is helpful in providing one week ahead forecasts for staffing decisions. These

forecasts are of interest to call center managers who would like to be able to determine staff schedules

in advance for different time intervals in a given day.
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Let Nt,j,k denote the number of call arrivals during the time interval (t− 1, t] on the kth day of

the jth week. We will refer to the interval (t− 1, t] as the tth within day interval. Also, let θt,k be

the corresponding arrival rate. We assume that for each different day of the week the arrival rates

follow the Markovian evolution

θt,k =
θt−1,k

γk
εt,k (3.1)

where εt,k|D(j)
t−1,k ∼ Beta(γkαt−1,k, (1− γk)αt−1,k) and D

(j)
t−1,k = {N(t−1,k)

1 ,N(t−1,k)
2 , · · · ,N(t−1,k)

j }.
In other words, D

(t,k)
j denotes all call arrivals observed up to time period t for the last j weeks for

day k and N(t,k)
j represents the call arrivals observed up to time period t for the jth week of day k.

In the above, γk acts like a common discounting term for day k. Thus, there is a different Markov

evolution for each day of the week with a different discounting term.

In what follows, we will suppress the index k for notational convenience and focus on a particular

day of the week. Thus, we write (3.1) as θt = θt−1

γ εt. Given the arrival rate θt the distribution for

the number of call arrivals for the jth week during the tth interval for a given day is described via

the discrete time Poisson model

p(Nt,j |θt) =
θ

Nt,j

t e−θt

Nt,j !
(3.2)

where t = 1, · · · , T and j = 1, · · · , J . Here T is the number if time intervals available in a given day

and J is the number of weeks available in the whole data. We assume that given Θ(T ) = (θ1, · · · , θT ),

NT
j ’s are independent of each other, with NT

j = (N1,j , · · · , NT,j). Thus, NT
j ; j = 1, · · · , J form an

exchangeable sequence of random variables. Our objective is to obtain Bayesian updating for call

arrival rates after observing J weeks each with T time intervals and to use this information to

predict the call arrivals in each interval of (J + 1)th week.

To develop Bayesian inference for the model, we will process data in a sequential manner.

Similar to our development in Section 2, prior to observing any data we assume that

(θ0|N (0)) ∼ Gamma(α0, β0). (3.3)

Given D
(j)
t−1, that is, given arrival counts up to time t − 1 for the last j weeks, we can show by

induction that

(θt−1|D(j)
t−1) ∼ Gamma(αt−1, βt−1). (3.4)
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and by combining (3.1) and (3.4), we can obtain

(θt|D(j)
t−1) ∼ Gamma(γαt−1, γβt−1). (3.5)

Furthermore, the posterior distribution θk|D(j)
t can be obtained using the Bayes’ Rule, that is, by

combining the likelihood function (3.2) with the prior (3.5), as

(θt|D(j)
t ) ∼ Gamma(αt, βt) (3.6)

where αt = γαt−1 +
∑j

i=1 Nt,i and βt = γβt−1 + j. In other words, the posterior distribution of the

call arrival rate at time t given that we have observed the call arrivals for the last j weeks up to

time period t is again a gamma density.

An attractive feature of the extended model is that we can now obtain the probability distri-

bution of the call arrivals at time t for the jth week given observed data from previous j− 1 weeks.

The posterior predictive distribution of Nt,j |D(j−1)
t will be

Nt,j |D(j−1)
t ∼ Negbin(γαt, γβt). (3.7)

The predictive distribution (3.7)provides a mechanism to make forecasts for the same day of the

future weeks. For example, given call arrivals data for Monday from the previous j − 1 weeks,

we can make predictions for all the time periods for the next Monday. Similarly if we have the

call arrivals data for all other days, we can provide predictions for the whole next week. This is

a helpful feature for a week-ahead staffing decisions of call center managers. Also, the within day

posterior predictive distribution of Nt,j |D(j)
t−1 can be obtained as

N t,j |D(j)
t−1 ∼ Negbin(γαt−1, γβt−1). (3.8)

Similar to our original model proposed, we can assume that the discount factor γ is unknown

and learn about it based on arrival counts data on different weeks of the given day. We can define

our uncertainty about γ by a prior distribution p(γ) over (0, 1) and obtain the posterior distribution
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p(γ|D(J)
(T )) via

p(γ|D(J)
(T )) ∝

J∏

j=1

T∏

t=1

p(Nt,j |D(j)
(t−1), γ)p(γ) (3.9)

where p(Nt,j |D(j)
(t−1), γ) for any t is given by (3.8). As before we can either use MCMC methods for

drawing posterior samples from the above distribution or alternatively can specify a discrete prior

distribution for γ and evaluate posterior accordingly. Once the posterior distribution is available,

using (3.7) we can obtain one week ahead predictions.

4 Numerical Examples

In this section we use actual data to show the implementation of the proposed models. The available

data is on call center arrivals during different intervals of a day from a US commercial bank. Each

day consists of 170 time intervals each of which is 5 minutes duration. In a given day, the call

center is operational between 7 AM and 9:05 PM. A detailed summary of the data is available in

Weinberg et al. (2007).

In our analysis, we initially focus on the first five days of the first week in the data set. In so

doing, we assume a discrete uniform prior over (0.01, 0.99) for the discounting term γ and study

its behaviour via the posterior distribution. Using the discrete prior, the posterior distribution of

γ given N (t) can be obtained via

p(γ = i|N (t)) =
p(N1, · · · , Nt|γ = i)p(γ = i)∑0.99

j=0.01 p(N1, · · · , Nt|γ = j)p(γ = j)
(4.1)

for i = 0.01, · · · , 0.99.

We investigate the effect of the gamma prior parameters, α0 and β0 on the posterior distribution

of γ. As shown in Figure 1, posterior distribution of γ is not very sensitive to the initial prior values

as long as the prior mean, (α0/β0) is within the same order of magnitude as the actual call arrival

data.

In Figure 2 we present the posterior distributions of γ for different days of the week. We note

that the discount term γ behaves more or less the same for different days of the week. Table 1

shows the posterior means and the standard deviations of γ’s for different days of the week. Again,

we note that there are no large differences between the means and the standard deviations for
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Figure 1: for α0 = 10, β0 = .1 (left) and α0 = 100, β0 = 1 (right)

different days.

Days Means Std
Monday .4628 0.03200
Tuesday .4730 0.03425

Wednesday .5147 0.03477
Thursday .4817 0.03478

Friday .5026 0.03441

Table 1: Posterior means and standard deviations for different days of the week

One step ahead forecasts for call arrivals can be obtained using the conditional posterior predic-

tive distribution given by (2.12) with the posterior distribution of γ given by (4.1). More specifically,

to obtain p(Nt|N (t−1)) for t ≥ 1, we evaluate

p(Nt|N (t−1)) =
0.99∑

i=0.01

p(Nt|N (t−1), γ = i)p(γ = i|N (t−1)) (4.2)

where p(Nt|N (t−1), γ = i) is available from (2.12) and p(γ = i|N (t−1)) is from (4.1). One step

ahead posterior predictive distributions p(N141|N (140)) and p(N142|N (141)), using the first 140 and

141 observations, for Monday are given in Figure 3. Using (4.2) we have obtained one step ahead

forecasts for different days of the week. In doing so, we have used the first 140 time periods of each

day as historical data and sequentially obtained one step ahead forecasts. Based on the one step

14
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Figure 2: Posterior γ for different days of the week

ahead forecasts we have computed mean absolute percentage error for day d as

MAPEd =
170∑

i=141

|Ni − N̂ |
30Ni

, (4.3)

where d =Monday, · · · , Friday. We have also obtained mean absolute percentage errors for each

day using the respective posterior means in 1 as the fixed values of γ. The results are identical as

can be seen from the summary in Table 2.

One way to infer how good the proposed model fits to the actual call arrival data on a given day

is by a comparison of the posterior means, E(θt|N (t)) with the actual values. Figure 4 shows the

posterior means and the call arrivals on the same plot for the whole day on Monday and suggests

that the model provides a reasonably good fit to the data.
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Figure 3: p(N141|N (140)) (left) and p(N142|N (141)) (right)

Days MAPE (γ unknown) MAPE (γ fixed)
Monday .081 .081
Tuesday .093 .094

Wednesday .137 .137
Thursday .117 .117

Friday .098 .099

Table 2: One step ahead MAPE for different days

A comparison of mean arrival arrival rates during different periods of each day can be made

retrospectively by looking at the filtered state means E(θt|N (170))’s based on all observed data in

a given day. As discussed in section 2.3, the forward filtering backward sampling algorithm was

implemented with 1,000 iterations for each day. Figure 5 shows the behaviour of the filtered state

means for different days of the week. We note that, retrospectively, arrival rates on Mondays are

mostly higher than those on the other days. It may be of interest to look at the arrival patterns

during different time periods in the day. As shown in Figure 6, between 7:00 AM and 12:00 noon,

call arrival rates are higher on Monday, but we also note that Friday arrivals are almost as high as

Monday in the morning whereas the lowest rate is observed on Thursday. Similar insights can be

obtained from Figure 7 which illustrates the arrival rate patterns between 2:30 and 9:05 PM.

Our analysis so far has focused on comparison of mean arrival rates during different days and

intra-day call arrival predictions. As noted before, short term predictions are important for dynamic

staffing. An equally important issue is the ability to predict the arrival pattern in future weeks for
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Figure 4: Posterior means and the actual arrivals at different time intervals during Monday.
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Figure 5: Posterior means E(θt|N (170)) versus time t for different days.

long term staffing decisions. As discussed in Section 3, our model enables us to obtain inter-weekly

forecasts as well as the intra-day ones. Using our development in Section 3 and more specifically

using (3.7) we can obtain one week ahead predictions for each day of the week. For illustrative

purposes we have used the first three weeks of call arrivals in order to predict the arrivals during
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Figure 6: Mean arrival rates during 7:00 to 9:30 AM(left) and 9:30 AM to 12: noon (right)
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Figure 7: Mean arrival rates during 2:30 to 5:00 PM(left) and 5:00 to 9:05 PM (right)

all time periods of each day of the following week. In Figure 8 we present a comparison of one week

ahead predictions for Monday and Tuesday arrivals with the actual call arrivals during the whole

170 time periods. In table 3 we present the mean absolute percentile errors (MAPEs) for each day

of the week based on 170 time periods. We note that the daily error rate changes between 7.5 and
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8.5 per cent which is comparable our intra-day predictions given in Table 2.
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Figure 8: One week ahead forecasts for Monday (left) and Tuesday (right) versus actual call arrivals

Days MAPE
Monday 0.0756
Tuesday 0.0759

Wednesday 0.074
Thursday 0.080

Friday 0.0855

Table 3: One week ahead MAPEs

5 Concluding Remarks

In this article we have developed a Bayesian state space model whose measurement equation follows

a discrete time Poisson process and whose rates follow a discrete time gamma process with beta

distributed error terms. We provided closed form updating procedures for the model parameters

under certain conditions, developed one step ahead predictions and introduced a forward filtering

backward sampling algorithm in order to estimate filtered arrival rates for different days of the

week for inference purposes. Our model also allows us to obtain analytically tractable inter-week

forecasts based on the previously observed call arrivals. We applied the proposed model to data

from an anonymous U.S. commercial bank. Based on our comparison of the expected posterior

means of the arrival rates and the actual arrival counts for each period of a given day we have
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shown that the proposed model provided a good fit to the data at hand. Furthermore, the model

provided us with accurate one-week ahead forecasts.

We believe that modeling the call center arrivals using a Bayasian perspective provides addi-

tional insights for call center practitioners. For instance, instead of obtaining just one step ahead

point estimates, now one can talk about the distributions of the estimates, the state parameters

and their respective distributional properties such as the variance, mode and credibility intervals.

Furthermore, the proposed model incorporates managerial insights from call center practitioners

via the prior distribution parameters. From a practical point of view, the fact that state parameter

updating and one step ahead call forecasting is analytically tractable makes the proposed model

attractive. From a staffing point of view, parameter updating efficiency and adaptability of the

proposed model are other features that might be of interest to call center managers.

Our findings led us to believe that further extensions to the proposed model is possible if the

discount term γ were to be treated as a common parameter for different days of the week which

would introduce a dependence structure between the call arrivals of different days. Therefore, if

one can develop a mechanism which can efficiently update the prior parameters of each day based

on past data, the proposed model can be further extended. However we expect that this type

of approach would lead us to lose the analytical tractability of our model and is currently being

investigated as an extension to the problem at hand.
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