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This paper addresses the question of how promotions work across categories. Promotions

in one product category can affect sales of products in another category either directly or

indirectly. Given a set of product categories and market basket data, we analyze the presence

of cross category impacts using Bayesian Networks. We model the occurrence of a product

category, and not the number of units (of a product category) in a basket. The data set we

employ is an IRI market basket data set that contains transactions including 22 categories

over 2 years for 500 panelists. Bayesian networks are learned from this data and are used to

identify the underlying dependencies across product categories. Specifically, we study how

the associations across categories vary based on marketing mix activities, and also based

on demographics. The results from such an analysis can help in 1) identifying clusters

of categories wherein associations exist primarily between categories within a cluster and

not across clusters, and 2) in making predictions on basket choices given a set of specific

marketing mix activities. The ability of Bayesian networks to learn based on new evidence

also makes such an approach possible in an online context when customers’ choices can be

observed, and marketing activities can be dynamically customized.
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1. Introduction

An area of considerable interest among marketing research practitioners and scholars in

recent years has been the nature of consumer behavior as reflected in their shopping baskets

at the retail level. A number of studies (Russell and Kamakura, 1997; Manchanda, Ansari

and Gupta, 1997; Russell and Peterson, 2000) have explored the patterns of occurrence

of product categories in individual market baskets and the implications of the category

relationships for retailer decisions in the areas of pricing, promotion, store displays etc. These
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studies have generally looked at the product categories in pairs based on some predetermined

relationship between them ex. complements (ex. detergent and fabric softener) or substitutes

(ex. butter and margarine). While these efforts have led to an interesting set of implications

for retailer decisions it would appear that a more generalized approach which considers

relationships across a wide range of product at the retail level that would uncover pairs of

categories that would empirically be of interest and the consequent effects of retailer decisions

(pricing, promotion etc.) and consumer demographics on those category pairs would be very

useful for retailers in optimizing the effect on sales and profits. In an earlier paper (Li,

Mazvancheryl, Prasad and Rau, 2008) we have undertaken an approach to uncovering such

product category pairs using a data mining approach where a number of possible category

pairs can be arrayed by lift value on a continuum from complements to substitutes with the

intervening pairs displaying intermediate levels of relationship based on a large number of

shopping baskets. We have argued there that a large number of category pairs may have

a moderate level of relationship (based on their lift value) in shopping baskets that could

then form the basis for a number of retailer decisions that could optimize the sales/profit

performance of those pairs. In a related manner, we have also considered how household

(consumer) demographics and shopper decisions impact the likelihood of those product pairs

occurring jointly in shopping baskets.

To the best of our knowledge, what has been lacking in most of the existing research

described above is a generalized approach to actually picking the product pairs of interest

occurring jointly in shopping baskets rather than on a priori criteria such as pairs that are

substitutes or complements etc. In this paper, we attempt to develop an algorithm to uncover

such pairs of interest using a Bayesian network approach. While such an approach has been

employed by at least one recent study (Bezawada, Balachander, Kannan and Shankar, 2009)

it was once again designed to uncover the effects of aisle and display placements on pre-

selected pairs of categories (ex. cola and chips etc.) whereas our recommended approach

involves the market basket data itself suggesting pairs of categories of interest for which the

effects of store promotion and consumer demographics could be explored so as to maximize

the effectiveness of retailer decisions. As a possible illustration of the usefulness of such an

approach, category pairs such as bananas and cereal (which are interestingly being displayed

together recently in some supermarkets) could be uncovered and retailer decisions on these

pairs could then be made for maximum effectiveness of retailer outcomes.
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1.1. Cross-Category Models

Consumers typically purchase multiple products from multiple categories in one shopping

trip. Advances in information technology have made the collection and storage of basket

level transaction data economically and technically feasible. It is in the retailers’ interest to

leverage information hidden in these data so as to increase store profit. One useful piece of

information is how promotions work, and in particular how they work across categories.

A broader definition of promotion includes not only price discount and couponing, but

also display and feature advertising activities, etc. Marketing researchers have found that

promotions can either change the magnitude of consumers’ purchases and/or enhance store

traffic. A thorough review of how promotions work can be found in Blattberg, Briesch, and

Edward (1995). One important finding from past research is that promotion in one category

affects sales in complementary categories and substitute categories. This would suggest that

retail pricing strategy should incorporate demand interdependencies such as complementary

and substitute to maximize store profitability (Mulhern and Leone 1991).

Two product categories can be use complements such as cake mix and frosting, substi-

tutes such as butter and margarine, or just independent. Since it is hard to observe use

complements by a retailer, we use the idea of purchase complements. A pair of categories

are defined to be purchase complements “if marketing actions (price and promotion) in one

category influence the purchase decision in the other category”(Manchanda et al. 1999).

A more detailed explanation of complements and substitutes is given in (Manchanda et al.

1999, Russell et al. 1999).

According to consumers’ purchasing decisions, Seetharaman et al. (2005) classify cross-

category models into incidence models, brand choice models, and quantity models. Incidence

models can be further classified into “whether to buy” models, “when to buy” models, and

“bundle choice” models. This essay extends the “whether to buy” models to explicitly

identify category clusters.

Both statistical and data mining models have been proposed to understand promotions

among multiple categories. Approaches to measure cross category effects in the marketing

literature have been theory driven, and typically based on utility theory models. These

utility theory based models usually decompose the utility of a category into its own effects

and cross-category effects. Some models go further to isolate cross-category marketing mix

effects from cross-category co-incidence effect, examples being multinomial logistic models
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(Russell and Peterson, 2000) and multivariate probit models (Manchanda et al. 1999, Chib

et al. 2002). These researchers all agree that promotions in one category have impacts on its

own sales. However they differ in how to model the cross category promotion effects. There

are three paradigms in modeling cross category promotion effects. One is marketing actions

effects choices of other categories directly (Manchanda et al. 1999). In this type of model,

the consumers’ decision process is viewed as a black box. The final choices in a basket are

modeled as a function of marketing mix variables. A second paradigm is that promotions in

a category only effect its own sales, but presence of this category affects decisions in other

categories (Russell et al. 1999, Hruschka et al. 1999). Therefore, marketing mix activities

impact indirectly across categories. The last paradigm attempts to model category choices

using both promotions and presence of other categories.

The quality of these statistical approaches depends on the practitioner’s choice of mod-

eling paradigm. In this essay, we propose a data mining paradigm which learns the cross

category promotion effects based on data. We use Bayesian networks to learn the depen-

dencies among variables suggested by the data. Advances in Bayesian network make it

possible to learn the multivariate relationship from data. Model uncertainty is also consid-

ered using Bayesian networks. Bayesian networks were first introduced as an expert system

tool. Because they have both causal and probabilistic semantics, Bayesian networks can

represent causal relationships in a problem domain. They can also be used to predict the

consequences of intervention. Bayesian networks have several other advantages as a research

tool(Heckerman 1996). For example, they can handle missing data readily and avoid over-

fitting of data.

Bayesian networks have been used to model association among products in past re-

search(Giudici and Passerone 2002, Giudici and Castelo 2003). Note however that our re-

search differs in that we model not only co-occurrence but also how marketing mix works

across multiple categories using transaction level market basket data as opposed to aggre-

gated basket data used in earlier research (Giudici and Passerone 2002).

This essay is organized as follows. Section 2 is a brief introduction on Bayesian networks.

Section 3 discusses the details of learning a Bayesian network of discrete data. Section 4

applies the Bayesian network to retailing data and summarizes the research.
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2. Bayesian networks

Intuitively, a Bayesian network is a graphical representation of conditional independence

and dependence among variables regardless numerical or functional details. Also known as

Directed Acyclic Graph (DAG) or belief network, a Bayesian network is a type of graphical

model that combines the science of statistics and graph theory. As shown in Figure 1, a

Bayesian network consists of:

• A directed graph with nodes representing variables and edges representing dependen-

cies.

• A set of probability distributions associated with the edges.

In this figure, A is called the parent of B, and B is parent of C. A and C are said to be

conditionally independent given B since p(C|A ∩ B) = p(C|B).

A B C 

 
Figure 1: An example of Bayesian network

More rigorously, let X = x1, ..., xn represent a set of variables and S represents a network

structure. S needs to encode a set of conditional independence statements about X . P

represents the set of local probability distribution of each variable in X, p(xi|Pai, ξ) . Pai

denotes the parents of node xi in structure S and the corresponding variable in X . An

important property of Bayesian network is the chain rule, which means the joint probability

distribution for X is

p(X) =
n
∏

i=1

p(Xi|Pai, ξ) (1)

As we see, a Bayesian network can be viewed as a collection of local probabilistic/regression

models. As we observe the state of some nodes in the network, we can update the probability

of other nodes’ states.

2.1. Graphical Representation of Cross-Category Effects

To represent cross category marketing effects, we need to define two types of nodes in the

network. They are:
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1. Xi : Marketing mix variable for product i. It is a binary variable with Xi = 1 meaning

there is a promotion for the product. We do not need to estimate p(Xi) , which is up

to the retailer.

2. Yi : Purchase decision of product i. It is a binary variable with Yi = 1 meaning product

purchase.

In this study, we have partial knowledge about the underlying network structure.

• A category node’s parents can be either marketing variables or other category nodes.

• A marketing variable does not have any parent node.

Thus, the three cross-category effects modeling paradigms mentioned earlier can be rep-

resented as in

1. Figure 2: Direct Paradigm. Sales of category B is directly dependent on category A’s

promotions.

2. Figure 3: Indirect Paradigm. Sales of category B is dependent on the purchase decision

of category A.

3. Figure 4: Mixed Paradigm. Sales of category B is dependent on category A’s both

promotions and purchase decision.

 

PA 

A B 

 Figure 2: Direct Paradigm
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PA 

A B 

 Figure 3: Indirect Paradigm

 

PA 

A B 

 Figure 4: Mixed Paradigm

2.2. Learning Bayesian Networks

A Bayesian network can be constructed based on an expert’s knowledge. In sch a context,

both statistical parameters and network structure are specified by domain experts. Once

actual values of some variables are observed, the Bayesian network updates the posterior

probabilities of other variables by an inference process. For example, one can use Bayes’

rules to reverse the arcs step by step in the network until the requested probabilities are

answered (Shachter 1988). However, either exact inference or approximate inference is NP-

hard (Cooper 1990,Dagum and Luby 1993). For Bayesian networks of discrete variables, the

most commonly used algorithm is the junction tree algorithm(Lauritzen and Spiegelhalter

1988, Jensen and Lauritzen 1990, Dawid 1992).Probabilistic inference is performed using

several mathematical properties of the junction tree.

So far we have assumed the network structure is known. In domains where we have little

knowledge, machine learning techniques are enlisted to help learn structures from data. The

most straightforward approach is to compare all possible networks based on some measure.

The network that optimize this measure will be selected as the best Bayesian network. The

challenge in this approach is the number of possible networks given n nodes explodes as

n increases.Table 1 gives examples of candidate network counts. There is no closed form

formula known for the number of structures. Robinson (1977) gives the following recursive
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formula

f(n) =
n
∑

i=1

(−1)i
n!

(n− i)!i!
2i(n−i)f(n− i)

number of variables number of possibleDAGs
2 3
3 25
4 543
5 29, 000
10 4.2× 1018

Table 1: Number of Network Structures

Given a number of competing networks, we need both a measure and a search strategy

to find the most promising network. Measures used include maximum likelihood, predictive

assessment, and posterior probabilities. As Chickering (1996) shows, it is NP-hard to learn

the structure of a Bayesian network. A variety of heuristic search algorithms has been

introduced, such as greedy search, greedy search with restarts, best-first search, and Monte-

Carlo methods (Heckerman 1996). The most straightforward search and scoring approach is

greedy search. Here is a brief introduction of the greedy search algorithm. Let E represents

all eligible changes to a Bayesian network and use log of relative posterior probability as the

network score.

logP (D,Sh) = logP (Sh) + logP (D|Sh)

Let δ(e) represent the changes of the network score caused by change e.

• Choose an initial network.

• Change one edge in the network at a time and evaluate the change. Pick the one with

maximum δ(e).

• Stop the search when no e can make a positive contribution.

This approach may hit a local maximum. To escape from local maxima, we need to

restart the search process randomly with a new initial network. Another way to find a

global maxima is to use approximation approach such as Markov Chain Monte Carlo Model

Composition, or MC3 (Madigan and York 1995).
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If one has some partial knowledge of causal relations among variables, the search space

can be reduced by ruling out unlikely models or by placing a restriction that a node can

have at most u parents (u < n − 1) (Cooper and Herskovits 1992). It is very likely there

is no single dominant model learned. In this case, instead of selecting a single true model,

model uncertainty is accounted by averaging all the models.

Let ∆ be the quantity of interest. Its posterior distribution conditional on data D is ,

pr(∆|D) =
K
∑

k=1

pr (∆|Mk, D) pr(Mk|D) (2)

To find the Mk and their posterior probability pr(Mk|D), an algorithm called Markov

Chain Monte Carlo Model Composition (MC3) (Madigan and York 1995) can be used.

Markov Chain Monte Carlo (MCMC) is a simulation method that generates samples from

complex and nonstandard distributions. Developed by Metropolis et al. (1953), and gener-

alized by Hasting, the Metropolis-Hastings algorithm is an implementation of the Markov

Chain Monte Carlo method.

A brief introduction of the Metropolis-Hastings algorithm follows - for a more detailed

introduction, see Chib and Greenberg (1995). A MCMC algorithm draws samples of a

target probability density π(x) by constructing a Markov chain, which converges to the

target probability distribution. Define the candidate generating density as q(x, y), from

which a value y is generated when the process is in state x. When π(x)q(x, y) > π(y)q(y, x),

the process moves from x to y more often than from y to x. Thus we need to specify a

probability of move α(x, y) to meet the requirement of reversibility,

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)

Given an initial state X(0),

• Repeat for j = 1, ..., N

• Generate y from q(x(j), ·) and u from U(0, 1)

• IF u ≤ α(x(j), y), set x(j+1) = y

• ELSE set x(j+1) = x(j)

• return the values
{

x(1), x(2), . . . , x(N)
}
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MC3 is a Metropolis-Hastings based method, which build a Markov chain of graphs

that will converge to the distribution of the model that generates the data. MC3 has been

successfully used for linear regression models (Raftery et al. 1997).

3. Bayesian Network of Discrete Data

This section introduces the technical details of learning Bayesian networks of discrete data

using the MC3 algorithm. We assume all variables in the network are discrete and follow

Dirichlet distribution (Heckerman 1996). More discussion of the Markov Chain Monte Carlo

Model Composition algorithm can be found in Madigan and York (1995), and Giudici and

Castelo (2003).

3.1. Network Specifications

Now let g be a Bayesian network of variables X. Each variable Xi ∈X is discrete, Xi =

x1
i , ...x

ri
i . Denote Xi’s parents as Pai

p(xk
i |Paji , θi, g) = θijk > 0 (3)

Assume data completeness and parameter independence, the joint probability of the

parameters is

p(θg|D, g) =
n
∏

i=1

qi
∏

j=1

p(θij |D, g) (4)

For discrete variables, we will assume Dirichlet prior distribution:

p(θij |g) = Dir(θij|αij1, ..., αijri) (5)

where ri is the number of realizations under such a configuration. Assume a uninfor-

mative assignment with equivalent sample size, αijk = 1/(ri × qi), qi being the number of

configurations of parents. The Posterior distribution is:

p(θij |D, g) = Dir(θij|αij1 +Nij1, ..., αijri +Nijri) (6)

where Nijk is the number of observations in dataset D with Xi = xk
i and Pai = Paji

Following the four assumptions given in Cooper and Herskovits (1992):

10



1. All the variables are discrete.

2. Given the Bayesian network model, the observed cases are independent.

3. There is no missing value.

4. Before observing data set D, we are indifferent regarding the numerical probabilities

to assign to a given network structure.

Based on the above, Coopers and Herskovits (1992) show that the marginal likelihood of a

discrete DAG model is given by

L(g) =
n
∏

i=1

qi
∏

j=1

Γ(αij)

Γ(Nij + αij)

ri
∏

i=1

Γ(Nijk + αijk)

Γ(αijk)
(7)

where i is the index of nodes in the network, j is the index of its parents’ configurations..

αij =
∑

αijk. and Nij =
∑ri

k=1Nijk.

3.2. Learning network structure using MC3

Learning the network structure is accomplished by constructing a Markov chain of DAG’s.

The irreducibility of a DAG is guaranteed in the case of a DAG. However,acyclicity needs to

checked for each graph. Define the neighborhood of a given graph g as nbd(g), which is the

collection of graphs that can be reached from g in one step by adding or deleting one edge,

including itself. There are three types of moves, addition, deletion, and reversal. Reversal

of an arc can be viewed as to perform a removal move first followed by an addition move.A

move can not generate directed cycles. One way to guarantee no directed cycle is to traverse

the whole network.

When the chain moves from g to g′, g′ ∈ nbd(g), the acceptance probability of the move

is

min{1,
#(nbd(g))p(g′|D)

#(nbd(g′))p(g|D)
}

where #(nbd(g) represents the cardinality of graph g’s neighborhood. If the move is not

accepted, the chain stays in state g.

Since g and g′ are neighbors, it is reasonable to assume that

# (nbd (g))

# (nbd (g′))
≈ 1
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Since p(g|D) ∝ p(D|g)p(g), the acceptance ratio relates only to the Bayes factor p(D|g′)
p(D|g)

. The

Bayes factor in case of addition and deletion is

L(g′, i)

L(g, i)
(8)

where i is the variable whose parent set is different in g and g′. Bayes factor in case of

reversal is
L(g′, i)L(g′′, j)

L(g, i)L(g, j)
(9)

Recall that

L (g, i) =
qi
∏

j=1

Γ
(

α′
ij

)

Γ
(

Nij + α′
ij

)

ri
∏

k=1

Γ
(

Nijk + α′
ijk

)

Γ
(

α′
ijk

) (10)

3.3. Average Network

As the number of nodes increase, the result of MC3 learning are many DAGs with small

likelihood. We can apply Bayesian model averaging to present the relation among the nodes

in one overall network (as in Giudici and Castelo, 2003). Let e be an edge in a graph. P (e|D)

measures the probability of its presence given data D. Only those edges whose P (e|D) > µ

will be drawn in an aggregate graph.

P (e|D) =
∑

i

I(e|gi) ∗ P (gi|D)

where

I(e|gi) =

{

1 if e ∈ g
0 if e /∈ g

These edges can be plotted to create an average network. The average network can be used

to identify clusters of variables. Note that the average network constructed in this manner

may not be a valid DAG.

4. Application in Marketing

There are two goals in this application. First, we want to identify product clusters using

Bayesian network given presence of other products, promotions, or customer demographics.

We believe once these clusters are identified, they can provide a retailer with useful informa-

tion on planning marketing activities or segmenting customers. Second, we specifically want
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to evaluate pairwise cross-category relationship given presence of other products, promo-

tions, or customer demographics. This is more in line with traditional marketing research.

We build three Bayesian network models. They are:

• Model 1: Using Bayesian network to map the relationship of the products only. This

is an equivalent model of (Giudici and Passerone 2002, Giudici and Castelo 2003).

• Model 2: Using Bayesian network to model product relationship with marketing mix

variables included.

• Model 3: Using Bayesian network to model product relationship with customer demo-

graphics variables included.

The data set include sales data from multiple grocery stores in a Metropolitan area. Also

included are marketing data and consumer demographic data. Twelve categories are chosen

for the analysis. They are detergent, softener, towel, tissue, yogurt, cereal, soap, cleanser,

hotdog, egg, cookie, and cracker. These categories include products which have different

functions or closely related.

Section 4.1 introduces implementation and validation the MC3 algorithm. Section 4.2 and

4.3 discusses details of product clustering and pairwise assessment. Section 4.4 summarizes

findings and discusses managerial implications of Bayesian network in marketing research.

4.1. Algorithms Implementation and Validation

The analytic software used is developed on the basis of Bayesian Network Inference with Java

Objects or BANJO, which is an open source software originally developed by Duke University

researchers. Here is a brief description of the implementation of the MC3 algorithm.

1. Given an initial network.

2. Randomly propose a move. It can be addition, deletion, or reversal of an edge.

3. Check whether the proposed move leads to cycles. If it does, repeat from step 2.

4. Evaluate the move according to the criteria given in last chapter.

5. Decide if the move is accepted so that Markov chain gets into a new state. Otherwise

it stays in the same state. Repeat from step 2 until the chain converges.

6. Maintain a database of Bayesian networks. Two key pieces of information, structure

of the network, and its frequency, are kept for calculation of the average network.
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As the number of nodes increases, the number of legal networks increases exponentially.

The Markov chain will converge very slowly. To speed up, instead of starting the Markov

Chain from a random generated network, we start it from a network structure learned using

greedy search algorithm. We find that this speeds up the convergence by more than a factor

of two.

In this research, we use two random samples to validate the MC3 algorithm. Two mea-

sures are used to validate the algorithm. Let eij be the edge from node i to node j. Given

two datasets D1 and D2, E1 represents all edges learned in D1 and E2 represents all edges

learned in D2.

The first measure is on the difference of each edge’s posterior probability. Let P (eij|D)

represents the probability of edge eij being present in data set D. The difference of the

two datasets is captured in δij = P (eij|D2) − P (eij|D1). Using sales data of the twelve

categories, there are 41 edges learned from the two networks. Figure 5 is the histogram of

the differences, from which we can see there is no major difference between the two edge

sets.
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Figure 5: Difference between edge sets

We now present some validation statistics based on the similarity of edges generated in

the network structures learned from the two random data sets. At a given cutoff point,

suppose the average network from data set D1 has a set of edges E1. The size of E1, which

is the number of edges in it, is m1. Average network from dataset D2 has a set of edges E2

with a size m2. Let m12 represent the size of E1
⋂

E2. Define validation rate r = m12

m1

. r is a
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number between 0 and 1. Set cutoff point at 0.9, 0.7, and 0.5, the validation rate is 0.9, 0.9,

and 0.91. Based on the above, we can reasonably conclude that the MC3 learning algorithm

generates valid network structures.

4.2. Product Clusters Identification

4.2.1. Results of Model 1

We start with 12 category sales data only. Based on the average network with a cutoff value

0.9, there are one large network with most categories involved, and several one-category clus-

ters. They are (tissue, towel, cleanser, detergent, softener, cereal, cookie, hotdog, cracker),

(egg), (yogurt), and (soap), see Figure 6. This result is different from Giudici and Castelo

(2003). In Giudici and Castelo (2003), there are two-category, three-category, and five-

category clusters. The difference might be due to two facts. First, their sales data are

weekly aggregate data. Second, they use 1 to indicate the weekly sale of some category is

greater than median, otherwise 0. The possible explanation for the absence of clusters in

our findings can be that most product categories are related to each other at the transaction

level.
 

towel 

tissue 

softener 

detergent 

cereal 

cracker 

cookie 

cleanser 

hotdog 

 
Figure 6: Product cluster

4.2.2. Results of Model 2

We now add promotion information in the learning process. There are three types of mar-

keting activities available in the IRI data. They are price discount, display, and feature. In

this application, these three variables are combined into one binary promotion variable to
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indicate if there is at least one marketing activity for the category. We set a limit on the

MC3 learning process in this model. That is, there should be no parents for any promotion

variable. At cutoff point 0.9, we identify three clusters, which are shown in Figure 7, 8, and

9.

 

soap 

towel 

tissue 

hotdog 

soap 
promoted 

towel 
promoted 

tissue 
promoted 

hotdog 
promoted 

 
Figure 7: Product cluster one with promotions included, cutoff at 0.9

 

softener detergent 

softener 
promoted 

detergent 
promoted 
 

 
Figure 8: Product cluster two with promotions included, cutoff at 0.9

We find that cross category promotions work through indirect effects primarily. That

means, promotions in category A impacts sales of A. In turn the sale or no-sale decision of

category A will influence sales of its complement (or substitute) category B. Thus promotions

in category A indirectly impact sales of category B. Using a cutoff value 0.9, there are three

multi-category clusters. They are (towel, tissue, soap, hotdog), (softener, detergent), and

(cereal, cracker, cookie). Using a cutoff value 0.6, the three clusters are merged into two

cluster,which are shown in Figure 10, and Figure 11.

16



  

cereal 

cracker 

cookie 

cereal 
promote 

cracker 
promoted 

cookie 
promoted 

 

Figure 9: Product cluster three with promotions included, cutoff at 0.9

4.2.3. Results of Model 3

The two types of demographic information used are family size and income. Here is the

definition of the two variables. If there are more than two members in a family, the “family

size” variables equals to one, otherwise zero. If the family income is over 35 thousand dollars,

the “income” variable equals to one, otherwise zero.

Figure 12 illustrates the average network of the model. Family size is related to more

categories than income. The possible explanation is that the categories in our data set are

most staples. Despite income, most families needs to buy products from these categories.

Like model 1, there is one large multi-category cluster. However, the direction of some edges

differs, indicating customer segments whose shopping behavior is different from the mass.

These models show Bayesian network learned from data can capture the multi-product

relationship. It also shows that with promotion data, Bayesian network can capture a model

that is closer to the underlying mechanism.

4.3. Pairwise Assessment

We can see that with more information, Bayesian networks are better able to learn the

presence of multi-category relationships. We can identify different typology of complements

using Bayesian network combined with localized rule discovery. Table 2 gives examples of

category pairs and contrasts each pair’s strength of association with the corresponding edge

probabilities in the three models.

These results are summarized in Table 3, and show that true use complements always
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Figure 10: Product cluster one with promotions included, cutoff at 0.6

Assoc. Rule Prob. in Prob. in Prob. in
Pair lift Model 1 Model 2 Model 3
(Soap, Cleanser) 3.98 0.83 0.63 0.89
(Detergent, Softener) 3.55 0.99 0.99 0.99
(Towel, Tissue) 1.86 0.99 0.99 0.99
(Cracker, Cookie) 1.63 0.99 0.96 0.80
(Cereal, Yogurt) 1.68 0.84 0.62 0.99

Table 2: Comparison across different approaches

have a strong relationship. For example, detergent and softener have both high lift and

high presence probability. Spurious complements such as soap and cleanser will disappear

when promotion effects are considered. Findings such as towel and tissue, and cracker and

cookie can be utilized to cross sell. Another benefit of pairwise assessment is identification

of primary and secondary categories in a pair of use complements. For strong complements

detergent and softener , three Bayesian networks were learned with their sales data and

their promotion data. Figure 13 has a probability of 98% and Figure 14 has a probability of

1%. There is less than 1% probability that the two categories are independent, which is not

Pair Strong BN Presence Moderate BN Presence
High lift (Detergent, Softener) (Soap, Cleanser)
Moderate lift (Towel, Tissue)

Table 3: Comparing Lift to probability of presence in BN
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Figure 11: Product cluster two with promotions included, cutoff at 0.6

shown here. We may conclude that softener is the primary item in the Detergent-Softener

relationship.

4.4. Summary and Conclusions

There are three interesting findings in this application. First,the promotion variable is found

to be more useful in identifying product clusters than just sales data. Second, family size

is found to be more important than income in determining product relationships. Finally,

complements such as (detergent, softener) and (towel, tissue) can be identified when we

compare all the three models. Such findings are useful to retailers in that they enable them

to coordinate marketing activities and target specific customers accordingly. We would

further extend this research to a multi-period model. In such a model, customers’ purchase

decisions in current week impact their purchase decisions the following week. In summary,

this paper illustrated the use of Bayesian Networks with Market Basket Data. The ability of

BNs to identify associations across multiple product categories makes them a powerful tool

in being able to better predict buyer behavior in retail contexts. Extensions of the proposed

approach would be consider Dynamic BNs that would allow us to model buyer behavior over

time. These are being currently investigated.
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