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 Abstract

In this article we present the Bayesian decision theoretic setup for design of accelerated
life tests. We review some of the key contributions to the Bayesian design of accelerated
life tests. In so doing, we discuss approximate Bayesian designs based on linear Bayesian
methods and Monte Carlo based methods. We consider computational issues regarding
the evaluation of expectation and optimization steps in the solution of the decision
problem and discuss some recent Monte Carlo approaches that can reduce the
computational effort in the design problem.
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1. Introduction and Overview 
Accelerated life tests (ALT's) involve testing systems in an environment that is

more severe than the use environment and using the data collected in the accelerated
environment for inferring failure behavior in the use environment. The design problem in
accelerated life testing is concerned with specification of the number and magnitude of
the accelerated stress levels, and the number of items to be tested at these stress levels.

Most of the Bayesian literature in ALT's have focused on developing inference
methods; see for example Mazzuchi and Soyer (1992), van Dorp et al. (1996), Mazzuchi,
Soyer and Vopatek (1997), and van Dorp and Mazuuchi (2004a, 2004b). The majority of
the work published on design of ALT's, relied on sample theoretic methods; see for
example the text by Nelson (1990) and the recent bibliography of accelerated testing
plans by Nelson (2005a, 2005b). Exceptions to these are the earlier Bayesian papers by
Martz and Waterman (1978), DeGroot and Goel (1979) and more recent Bayesian
approaches by Menzefricke (1991), Chaloner and Larntz (1992), Polson (1993),
Verdinelli, Polson and Singpurwalla (1993), Soyer and Vopatek (1995), Erkanli and
Soyer (2000) and Zhang and Meeker (2006).

Most of these Bayesian approaches are based on the theory of optimal Bayesian
designs for linear models as in Chaloner (1984). Thus, the results are applicable to ALT
designs when the life model is normal or lognormal. For example, Chaloner and Larntz
(1990) consider Bayesian designs for Type I censored tests when there is uncertainty
about whether the underlying life model is lognormal or Weibull and several fractiles of
the lifelength distribution at the use stress are of interest. The optimality criterion
considered by authors is proportional to the expected asymptotic variance of the fractiles
of interest. Designs satisfying this criterion are identified using numerical methods. This
approach can be considered as a Bayesian version of the sample theoretic methods
considered in Nelson (1990). Menzefricke (1991) formulates a Bayesian approach to the
optimal design of Type II censored ALTs for use when the lifelength model is lognormal.
Verdinelli, Polson, Singpurwalla (1993) identify a design for a complete ALT that
maximizes utility, as represented by Shannon information, given the usual linear model
assumptions. More recent work by Zhang and Meeker (2006) also considers some large
sample results for Bayesian ALT designs as well as simulation based methods.

As noted by Vopatek (1992) and Soyer and Vopatek (1995), if the underlying life
models are exponential or Weibull, nonlinearities arise in the analysis, and then optimal
designs can be obtained by use of either numerical methods or by special techniques such
as linear Bayesian methods. Recent advances in statistical computing, nonparametric
surface estimation and implementation of Markov chain Monte Carlo methods
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contributed to development of computationally efficient methods for optimal designs. For
example, recent simulation based approach of Muller and Parmigiani (1995) and its
extensions presented by Muller (1998) were considered in ALT designs. Erkanli and
Soyer (2000) used this approach for fixed (nonsequential) designs and developed an
extension to sequential designs.

In this article we will review some recent Bayesian approaches in ALT designs.
In so doing, we present the Bayesian decision theoretic setup for the optimal ALT design
problem following Polson (1993) and Erkanli and Soyer (2000). We adopt this setup to a
single point design problem and illustrate difficulties involved in evaluation of
preposterior losses in implementation of the Bayesian paradigm. We present linear
Bayesian methods and Monte Carlo based approaches to alleviate some of these
difficulties. Finally we illustrate the implementation of a simulation-based design
algorithm using the approach of Muller and Parmigiani (1995).

2. Bayesian Decision Theoretic Setup for the Optimal Design Problem
In Bayesian paradigm, the optimal design problem can be viewed as a decision

problem in the sense of Lindley (1985). Thus, the optimal designs are chosen by
maximizing expected utility. As noted by Polson (1993), this provides a formal approach
to the design of experiments. A comprehensive review of Bayesian experimental design
can be found in Chaloner and Verdinelli (1995).

Erkanli and Soyer (2000) point out that the Bayesian approach to the optimal
design problem requires specification of three components:

(i)  a   that reflects the consequences of  selecting a specific  utility (loss) function
design;
(ii)  a probability model;
(iii) a prior distribution reflecting designer's  beliefs about all unknowna priori
quantities.

Let  denote a specific design, that is, the decision variable, , the failure. -?

characteristic of interest (such as the use environment failure rate) and,  an action based+

on data (for example, a prediction for ). We denote the utility function as ( , )- -? ?Y ß . +

and the probability model as ( ) where  is the data observed from experiment .: Hl ß . H .-?

Prior beliefs about  is described by the prior distribution ( ). It is possible that - - -? ? ?:

may be a vector or a function of several parameters. Once the design  is specified and.

the ALT is performed, data  is observed and  uncertainty about  is revised accordingH -?
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to the  laws of probability. Then, the optimal action  is chosen based on the data. This+

process can be depicted by the decision tree in Figure 1.
In Figure 1, the decision node D  represents selection of the Bayes rule given2 +

data. For the case of squared error loss , , the utility function is  ,PÐ ß . +Ñ Y Ð ß .- -? ?

+Ñ œ  Ð  +Ñ +-?
# ‡ and the optimal Bayes rule  is the posterior mean. Then the last two

nodes can be replaced by  ,  which is the posterior varianceYÐ ß .ß + Ñ œ  Z Ð lH .Ñ- -? ?
*

of and the optimal design is chosen by  minimizing the preposterior variance-?

E , , ( ) ( ) d  d . (1)Hl. ? ? ? ? ?ÒZ Ð lH .ÑÓ œ Z Ð lH .Ñ : Hl ß . : H- - - - -(
In other words, the optimal design is given by * argmin E  .. œ Ö Ò Z Ð lHß .ÑÓ×Hl. ?-

D1 R1 R2D2
Dd a ),,( adL uλ

λu

 Figure 1: Decision Tree for the Design Problem.

As pointed out by Erkanli and Soyer (2000), this solution is obtained as a result of
"folding back" the decision tree through taking expectations at random nodes and
maximizing the expected utility at the decision nodes of Figure 1. The above setup can be
adopted for any form of the utility function ( , ). For example, Verdinelli, PolsonY ß . +-?

and Singpurwalla (1993) used the Shannon's information as the utility functiom. Thus, in
general the optimal design is obtained as

. œ Y .ß + lHß .
.

* argmax E ( , ) , (2)š ’ “›Hl. ?-
*

where * argmax E ( , ) . In what follows we will present an+ œ ÒY .ß + lHß .Óš ›
-?lHß.

-?

example of the decision theoretic setup assuming exponential life times.

2.1 Example: Single Stress ALT Designs
An important component of the ALTs is the time transformation function (or the

acceleration function) that describes the relationship between the failure characteristic of
interest and the applied level of  the stress variable.
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Let  denote the failure rate at the accelerated stress environment , assume that-3 3W

life length  is exponential with and the time transformation function is given by the\3 3-  

power law model
- !3 3  . (3)œ W"

Let us consider the design of an ALT where items will be tested until failure at a single8

accelerated stress environment  with the purpose of making inference about ,W œ W3 ? ?- ! "

the failure rate at the use stress environment. Such single point designs have been
considered by Martz and Waterman (1978).

In the above case the design problem is to find the stress level  minimizing theW3

preposterior variance of . In other words, in our setup, we assume that the design-?

variable  and the loss function is given by ( , ) ( ) . Thus, the. œ W P .ß + œ  +3 ? ?- - 2

design problem requires computation of

W œ . œ Ö Ò Z Ð lHß .ÑÓ×3
‡

Hl. ?* argmin E  . (4)-

In other words, our decision problem in Figure 1 reduces to a single stage problem. For
illustrative purposes, we assume that  is known and we specify a gamma prior"

distribution for  with shape parameter and scale . Given  failures ( , , . . .,! + , 8 H œ B B" #

Bn) the posterior distribution of  is given by a gamma density denoted as!

K+77+ Ð+  8Ñ ,  W X X[ ], ( ) , where  is the total time on test at stress environment3 3 3
"

W Þ3 ? Using the power law model, the posterior  variance of  is-

Z Ð lHß W Ñ œ Z Ð W lHß W Ñ œ
Ð+  8Ñ ÐW ÎW Ñ

ÐX  Ñ
- !? 3 3?

? 3
#

3
,

W
#

"
"

3
"

 . (5)

It can be shown that the preposterior variance E  is given byHl. ? 3ÒZ Ð lHß W ÑÓ-

Z Ð l W Ñ œ
+Ð+  "Ñ W

Ð+  8  "Ñ ,
-? 3

?
#

#

"

 , (6)

where the expectation is with respect to the predictive distribution of  given  [ErkanliX W3 3

and Soyer (2000)]. Since (6) is not a function of  the stress , it does not matter at whatW3

stress level the items are tested. This is due to the fact that  is assumed to be known in"

the power law model. This result was also noted by Vopatek (1992) and Verdinelli,
Polson and Singpurwalla (1993) for the special case of the power law with ." œ "

In general, except in few special cases, the optimal designs in (1) and (2) can not
be obtained analytically. In ALT models where the underlying failure distribution is
exponential or Weibull, posterior and or predictive inferences are not in closed form.Î
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Thus, evaluation of the designs in (1) and (2) requires either use of approximation
techniques such as linear Bayesian methods as in Soyer and Vopatek (1995) or Monte
Carlo methods as in Erkanli and Soyer (2000) and Zhang and Meeker (2006).

3. Linear Bayesian Designs for ALTs
In the power law model example of Section 2.1, if the coefficient  is unknown"

then the posterior variance  can not be obtained in closed form for any priorZ Ð lHß W Ñ-? 3

specification for  in the case of exponential lifetimes. One way to deal with this problem"

is to consider approximate Bayesian designs using linear Bayesian methods.
Soyer and Vopatek (1995) considered the power law model (3) with exponential

life times where both  and  are treated as unknown. The authors described their! "

uncertainty about these unknown quantities partially by specifying only the first and
second-order moments. More specifically, they consider the log transformation of the
power law model as

( - ! "3 3 3
w
3œ 691 œ 691  691W œ J ), (7)

where  and . Prior to testing at  distribution of isJ w
3 3 3œ Ð" 691W Ñ œ Ð691 Ñ W) )! "  

partially specified as . Following Mazzuchi and Soyer (1992), the prior) µ Ð ß Ñ7 G! !

moments can be used in (7) to specify a loggamma distribution as the prior for  with(3

parameters and  selected such that+ ,3 3

G GÐ+ Ñ  691, œ Ð+ Ñ œ3 3 ! 3 ! 3
w w w
3 3J 7 J G J  and  , (8)

where •  and •  are the digamma and trigamma functions, respectively. Note thatG GÐ Ñ Ð Ñw

complete specification of the prior for  (and thus for ) enables us to obtain the( -3 3

posterior distribution for  after testing at . Under the assumption of no censoring,(3 3W

standard Bayesian conjugate analysis shows that the posterior distribution of  is a(3

loggamma density with parameters  and ( ), where  is the total number ofÐ+  8Ñ ,  X 83 3 3

items tested under environment  and  is the total time on test.W X3 3

In order to obatin the posterior variance  or , it isZ Ð lHß W Ñ Z Ð lHß W Ñ( -? 3 ? 3

necessary to update . Since prior distribution of is only partially specified) )œ Ð691 Ñ! "  
through moments, one can only update the moments given the data. This updating is done
via using the linear Bayesian methods. Soyer and Vopatek (2005) show that the posterior
moments of are given by) 

7 7 23 ! 3
3 3

3
œ 

IÐ lHÑ  IÐ Ñ

Z Ð lHÑ

( (

(
(9)
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G G 2 23 ! 3
w
3

3 3

3
œ 

"  Z Ð lHÑÎZ Ð Ñ

Z Ð lHÑ
 , (10)

( (

(

where . Thus, the posterior distribution of is partially specified by the two2 G J3 ! 3œ ) 
moments as .Ð lHÑ µ Ð ß Ñ) 7 G3 3

Once such posterior specification is available, we can use the fact that at the use
stress we have , where  and obtain the posterior variance of .( (? ? ?

w w
? ?œ œ Ð" 691W ÑJ J)

We can show that  is given byZ Ð lHß W Ñ(? 3

J G J J G J
J G J

J G J
w w #
? ?! ? ! 3

w w
3 ! 33
w
3 ! 3

 Ð Ñ
"  Ð+  8ÑÎ’ “G

(11)

which implies that as  increases the posterior variance decreases for any level of as8 W3

expected. We note that the posterior variance is not a function of the prior mean  but it7!

depends on prior covariance matrix . Furthermore, the above is not a function of theG!

total time on test . As a result of this the posterior variance is the same as theX3

preposterior variance, that is, . In other words, one can find theZ Ð lHß W Ñ œ Z Ð l W Ñ( (? 3 ? 3

single point optimal design by simply minimizing (11) with respect to .W3

Different forms of the prior covariance matrix  were considered by Soyer andG!

Vopatek (2005) and the corresponding optimal designs were presented. For example in
the special case of the power law model where  is known, say 1, it can be shown! ! œ

that the optimal design is to test all the items the highest possible stress level , that is,WL

W œ W 691‡
3 L !. If  and  are assummed to be independent apriori, that is, if  is a! " G

diagonal matrix, then it was shown by Vopatek (1992) that for large  an optimal design8

can be obtained as

W œ W‡
3

""ÎÒ8Z Ð691 ÑÓ

?

’ “!
. (12)

The above implies that as the number of items to be tested is large then the optimal stress
is closer to the use stress . Similarly, as prior uncertainty about increases, theW 691? !

optimal stress level moves closer to .W?

If the loss function is specified in terms of the posterior variance of rather than-?

of  then it can be shown that  is a function of the total time on test. More( -? ? 3Z Ð lHß W Ñ

specifically in order to obtain , it is necessary to have a distributional formZ Ð lHß W Ñ-? 3

for  and thus for . This is done after updating by specifying a loggamma distribution( -? ?

for  with parameters and  selected such that(? ? ?+ ,
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G GÐ+ Ñ  691, œ Ð+ Ñ œ? ? 3 ? 3 ?
w w w
? ?J 7 J G J  and  . (13)

The above implies a gamma posterior for  implying that .- -? ? 3 ? ?
#Z Ð lHß W Ñ œ + ÎÐ, Ñ

Using this form Vopatek (1992) obtained the preposterior variance .Z Ð l W Ñ-? 3

The linear Bayesian setup can be generalized to multiple point ALT designs
where one considers  different stress levels where  are tested at stress7 8 ß 8 ßá ß 8" # 7

environments . This can be done either in an adaptive manner by solvingW ß W ß á ß W" # 7

7 sequential one point design problems or solving a fixed design problem. Some of
these extensions as well as design of censored tests are considered in Vopatek (1992)
using linear Bayesian methods.

4. Simulation Methods for Bayesian Designs
In the power law model of Section 2.1, if  is unknown then the preposterior"

variance of  can not be obtained in closed form. One way to compute the posterior-?

variance is to use a Markov Chain Monte Carlo (MCMC) method such as the Gibbs
sampler.

The Gibbs sampler requires the full conditional distributions ( and (: l ßHÑ : l! " "

! ! !ß HÑ. Using a gamma prior for  as before the full conditional of  is given by the
gamma distribution [ , ( )]. On the other hand, any priorK+77+ Ð+  8Ñ ,  W X3 3

"

distribution on  does not yield a standard form for the full conditional ( | , ), which" " !: H

is given by

: l H º W /B:Ð  W X Ñ :( , )   ( ). (14)" ! ! "3 3

8
3

" "

Thus, a method such as the rejection sampling needs to be used to draw samples from
: l H( , ). In this particular case, the standard rejection sampling can be easily" !

implemented since the maximum of the conditional likelihood ,  is analytically_ " !Ð à HÑ

available. We can show that maximum of the conditional likelihood is given by

  , (15)"
!s œ

691Ð8Ñ  691Ð X Ñ

691ÐW Ñ
3

3

where . Thus, we can design a rejection sampling algorithm to691Ð8Ñ  691Ð X Ñ  !! 3

generate from ( , ) by using the prior ( ) as the i as in Smith: l H :" ! " mportance function  
and Gelfand (1992). In other words, we can draw  from the prior and accept it with"

probability
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_ " !

_ " !

Ð à HÑ

s H

,
( ; , )

.

Once a sample is obtained from the joint posterior ( , , the posterior: lHÑ! "

distribution and the variance  can be computed from this:Ð lHß W Ñ Z Ð lHß W Ñ- -? 3 ? 3

sample. In finding the optimal design we need to obtain the preposterior variance

E   ( ) ,H ? 3 ? 3 3Ò Z Ð lHß W ÑÓ œ Z Ð lHß W Ñ : HlW .H- -(
which can be written as

E  ( ) ( )  . (16)H ? 3 ? 3 ? 3 ? ?Ò Z Ð lHß W ÑÓ œ Z Ð lHß W Ñ: Hl ß W : . .H- - - - -( (
We note that in the above is evaluated via the GibbsZ Ð lHß W Ñ œ Z Ð l X ß W Ñ- -? 3 ? 3 3

sampler for a given design . Since the integral in (16) is not available in closed. œ W3

form, we can use a Monte Carlo average to evaluate it. More specifically, for each
generated value of (  ), from the prior we can generate and .! " -< < 3 3ß < œ "ßá ßVß X

Based on the each generated value of , using the Gibbs sampler we can obtain theX3

posterior variance   and compute preposterior variance for  using theZ Ò lX ß W Ó W-? 3 33
<

Monte Carlo average

1
 . (17)

V
Z Ò lX ß W Ó"

<œ

V

? 33
<

1
-

Note that optimal one-point design can be obtained by minimizing (17) with respect to
W3. This Monte-Carlo setup can modified for the general ALT design problem as
discussed next.

4.1 Standard Monte Carlo Approach for Bayesian ALT Designs
Erkanli and Soyer (2000) consider a general fixed design for ALTs where 7

distinct stress levels are used and  items are tested at the stress level  such that8 W3 3

8 œ 8!
3œ"

7

3 is a predetermined number. The design problem is then to select

 (i) , the number of  distinct stress levels;7 Ÿ 8

  (ii) the accelerated stress levels , ; andW 3 œ "ß á ß73
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  (iii) the number of items tested at each stress level, , 8 3 œ "ß3

  áß7

in such a way that expected utility is maximized. In the above, a specific design is
given by , . As in Section 2.1, the authors consider. œ Ö7ß W ß 8 3 œ "ßá ß7×3 3

the power law model where one is interested in making inference about , the-?

failure rate at the use stress environment.
As before, we assume that there is no censoring in the ALT and we choose the

design minmizing the preposterior variance of . In other words. the evaluation of the-?

optimal design requires the computation of posterior variance , whereZ Ð lHß .Ñ-?

H œ ÖX ßáX × X œ B W Þ" 7 3 4 3
4œ"

8

 and  is the total time on test at stress environment  As in!3

the previous case evaluation of  requires use of MCMC methods.Z Ð lHß .Ñ-?

The following algorithm has been suggested by Erkanli and Soyer (2000) for
standard Monte Carlo evaluation of  the  preposterior variance E  :H ?Ò Z Ð lHß .ÑÓ-

 
 :  Choose ,  Step 1 . œ Ö7ß W ß 8 3 œ "ßá ß7×3 3

 :  Generate (  ) from the prior  , 1, ,Step 2 ! " ! "< <ß :Ð ß Ñ < œ á V

 : For , generate  from ( ) using the power lawStep 3 3 œ "ßá ß7 X : X l3< 3 3-

  For each  evaluate  using MCMC.Step 4: H œ ÖX ßá ß X × Z Ò lH ß .Ó< "< 7< ? <-

  Compute preposterior variance for  using Monte Carlo averageStep 5: .

1
 (18)

V
Z Ò lH ß .Ó"

<œ

V

? <

1
-

Step 6: Go to  step 1 and repeat the steps 2-5 for a different design ..

The optimal design is selected as the  with the minimum value of (18)..

4.2 A Surface Fitting Algorithm for Bayesian ALT Designs
As noted by Erkanli and Soyer (2000), the implementation of the above Monte

Carlo approach is not computationally efficient. The approach requires, for each level of
the design variable,  draws from the statistical model and, for each draw, evaluation ofV

the posterior variance using MCMC methods that typically requires large number of
iterations. Thus, the approximation in (18) may require a large scale computational effort.
Especially, this will be inefficient for the case of multiple stress designs where we need
to specify  optimal stress environments. To avoid the potential computational burden7
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the authors suggested a curve fitting approach proposed by Muller and Parmigiani (1995)
for finding optimal ALT designs. This approach facilitates preposterior analysis by
replacing the expectation step with a smoothing step. The posterior variance is evaluated
as for each simulated experiment  , ,  and a smooth@ œ Z Ð lH ß . Ñ Ö. ß H ×< ?< < < < < < <- ! "

surface ( is fitted to the points ,  and the optimal design is found by minimizingP .Ñ Ð. @ Ñ< <

the fitted surface ( .P .Ñ

The proposed approach by Erkanli and Soyer (2000) for the ALT design problem
with ,  and is as follows :. œ Ö7ß W ß 8 3 œ "ßá ß7× œ Ð ß Ñ3 3 ) ! "

 Step 1: Select designs , 1, ..., .. < œ V<

 Step 2: Draw  points ( , ) from the density ( ). This is done byV H : Hß l .< < <) )

independently generating from ( , ) for .ÐX ß X ßá ß X Ñ : X l . 3 œ "ßá ß7"< #< 7< 3 3 <-

 Use MCMC to evaluate and record sample points ( , , ).@ œ Z Ð lH ß . Ñ . H @< ?< < < < < <-

 : Fit a surface ( ) to the points ( , ).Step 3  P . . @< <

 Step 4: Find the minimum over  of ( ).. P .

 The above setup assumes that total number of items will be tested in an ALT.8

It is important to note that  consists of both discrete and continuous components. Given.

8ß .ß Ö7ß 8 3 œ "ßá ß7× 8 œ 8the discrete components of  ,  are constrained as  and3 3
3œ"

7!
7 Ÿ 8 7 œ. Erkanli and Soyer (2000) considered the case of 2 point designs which are
shown to be optimal for relationships such as power law model with two parameters [see
for example, Chaloner and Larntz (1992)].

For the case of two-point designs, an alternate design strategy is to consider a
sequential design. The general stage sequential design problem for ALT is shown in7

Figure 2. The surface fitting approach conceptually can be adopted to the sequential
problem, but as the number of stages increasing the dimension of the surfaces that we fit
at each stage also increases and this makes the implementation quite difficult. Thus, the
proposed approach was extended in Erkanli and Soyer (2000) for only two stage design
problems using a setup similar to what is considered in Erkanli, Soyer and Angold (1998)
for prevalence estimation.

…D1 R1
d1 R2 RmD2 Dm

T1 d2 dmT2 Tm ),|( dDV uλ

Figure 2. Decision Tree for the stage Design Problem.7
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4.3 An Illustration of the Curve Fitting Method
In this section we will illustrate the implementation of the curve fitting algorithm

introduced in the last section to a one-point design problem using exponential lifetimes
and a power law model. In the illustration, we used the local regression model  ofLoess
Chambers and Hastie (1992) in Step 3. Any one-dimensional smoothing  method such as
splines can be used for this purpose.

For illustrative purposes, we will assume independent gamma priors for  and ! "

such that (20, 1000) and (3 1). We will assume that at the! "µ K+77+ µ K+77+ ß

optimal stress level, 2 items will be tested and the design space consists of  the stress8 œ

range 1.05, 11  where 1.05 is the use-stress. As previously discussed, our goalW − Ð Ñ W œ?

is to find the optimal stress level  in such a way that the preposterior variance of  isW3 ?-

minimized. In what follows, as an alternative, we will be interested in finding the optimal
stress level minimizing the preposterior variance of  so that our results are( -? ?œ 691

comparable to those of Soyer and Vopatek (1995) where linear Bayesian designs are
obtained.

We note that under the specified form of priors, we still need to use the Gibbs-
rejection algorithm to evaluate the posterior variance  in Step 2 of the curveZ Ð l X ß . Ñ(? 3< <

fitting algorithm for each design point  To find  the optimal stress. œ W ß < œ "ßá ßVÞ< 3

level we choose 1000 design points in the range 1.05, 11  in Step 1 of theV œ Ð Ñ

algorithm. Next 1000 random  vectors  , ,  are simulated using the jointÐ X ×! "< < 3<

distribution ( , , , where ,  and .: Ñ :ÐX l Ñ ÐX l Ñ µ K+77+Ð8ß Ñ œ W! " ! " ! " - - !3< 3< 3< 3< 3
"

After implementing the Gibbs sampler for each generated data point and evaluating the
posterior variance  for 1000, we can fit a nonparametricZ Ð l X ß . Ñ < œ "ßá(? 3< <

regression curve to the points , . As discussed before, this isŠ ‹. œ W @ œ Z Ð l X ß . Ñ< 3 < ? 3< <(

equivalent to taking the expectation of the posterior variance with respect to . InX3<

Figure 3 we present the nonparametric approximation to preposterior variance of , that(?

is,  As can be seen from the figure the minimum of the curve is around 2.4-2.5.Z Ð l W Ñ(? 3

We note the flatness of the fitted curve around the minimum. This is due the fact that the
loss function does not consider any costs associated with testing. Also, we note the
variation in the preposterior variance which is due to the large variance of . These"

results are very similar to the findings of  Vopatek (1992) which are based on linear
Bayesian methods. The results are also pretty robust to the choice of  as long asV

V  &!!.
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Figure 3. Nonparametric Approximation to  with 2.Z Ð l W Ñ 8 œ(? 3
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