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Abstract

This paper shows that multivariate distributions can be characterized as Maximum Entropy
(ME) models based on the well-known general representation of density function of the ME
distribution subject to moment constraints. In this approach, the problem of ME characteriza-
tion simplifies to the problem of representing the multivariate density in the ME form, hence
the need for case-by-case proofs by calculus of variations or other methods are eliminated. The
main vehicle for the ME characterization is the the information distinguishability relationship,
which easily extends to the multivariate case. Results are also formulated that encapsulate
implications of the multiplication rule of probability and the entropy transformation formula
for ME characterization. The dependence structure of multivariate ME distribution in terms of
the moments and the support of distribution is studied. The relationships of ME families with
the exponential families and with conditional exponential families are explored. Applications
include the ME characterizations of more than twenty five bivariate families.

KEY WORDS: Bivariate distribution; Characterization; Dependence; Exponential family;
Kullback-Leibler information; Mutual information.

1 Introduction

Maximum entropy (ME) methods produce probability models for random prospects that incorpo-

rate given information [26, 27, 40, 41]. Many well known univariate parametric families of distribu-

tions and several multivariate families have been characterized as ME models [6, 7, 29, 42, 44, 45].

In statistics, numerous diagnostics and tests of distributional hypotheses have been developed based

on ME characterizations [11, 14, 18, 19, 20, 21, 22, 25, 32, 35, 37, 38, 39, 42, 43].

Shannon entropy of a distribution F is defined as

H(F |S) = −
∫

S
f(x) log f(x)dν(x). (1)

In most parts of this paper the density is with respect to the Lebesgue measure and subscript

ν is omitted. In one case (Example 1a) we use the product measure, Lebesgue×counting. In

a few other cases (in Table 3) where the distributions do not have density with respect to the



Lebesgue measure, we include subscript ν to identify the densities. The support S will be included

in information quantities as needed to emphasize its key role for some results.

For information characterization of multivariate distributions we consider a moment class of

distributions

ΩF = {F : EF [Tj(X)] = θj, j = 1, · · · , J}, (2)

where Tj(x) are real-valued integrable functions with respect to dF (x), and θj, j = 1, · · · , J are

specified moments. The ME model in the moment class ΩF is the distribution that maximizes (1).

The set of linearly independent moments

T = {Tj(X), j = 1, · · · , J}, (3)

that generates ΩF will be referred to as the moment information set. If the expected value of

elements of one moment set T1 can be obtained from the expected value of elements of another

moment set T2, the two sets will be referred to as congruent, denoted as T1
∼= T2.

This paper provides some results for the ME characterizations of multivariate distributions.

These results, which are formulated from some well-known relationships of information theory,

eliminate the need for laborious proofs like Lagrangian and isoperimetric formulation of calculus of

variations often used for ME characterizations of parametric families on case-by-case basis for each

family.

The main vehicles for the ME characterization are the well-known general representation of

density function of the ME distribution in ΩF , and the information distinguishability relationship,

which easily extends to the multivariate case. In this approach, the problem of ME characterization

simplifies to the problem of representing the multivariate density in the ME form, similar to the

identification of distributions with densities in exponential families.

Results are also formulated that encapsulate implications of the multiplication rule of probability

and the well-known entropy transformation formula for ME characterization.

The dependence structure of multivariate ME distribution in terms of the moment information

set (3) and the support of distribution is studied. It is noted that, given the marginal distributions,

the ME model in ΩF is also the minimum dependence model. The concept of nested ME distri-

butions is introduced and results are formulated for measures of information dependence for ME

models.

The relationship and lack of equivalence between ME families of distributions and exponential

families are explored. The relationship between families of ME distributions and distributions

with conditional in exponential families is also explored. Numerous examples are presented. For

simplicity, all examples are bivariate. Applications to ME characterizations of more than twenty

five bivariate families are presented.
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This paper is organized as follows. Section 2 presents the results for ME identification, and

explores the relationships of ME families with the exponential families and with conditional expo-

nential families. Section 3 presents ME characterizations of numerous bivariate families. Section 4

gives a result on ME transformation and its application to ME characterizations of several bivariate

families. Section 5 discusses dependence structure of ME distributions.

2 Maximum Entropy Identification

The Kullback-Leibler information between two distributions F and G for a random vector X is

K(F : G|S) =
∫

S
log

f(x)
g(x)

f(x)dν(x), (4)

where f and g are densities with respect to measure ν over the support S. It is assumed that F is

absolutely continuous with respect to G.

Kullback-Leibler information have many desirable properties for developing probability and

statistical methodologies. Two properties utilized in this paper are: (a) K(F : G) ≥ 0, where the

equality holds if and only if f(x) = g(x) almost everywhere; and (b) for a given g, K(F : G) is

convex in f . K(F : G) is also referred to as relative entropy, cross-entropy, and directed divergence,

and G is referred to as the reference distribution. However, unlike the Kullback-Leibler information,

−∞ ≤ H[F (x|S)] ≤ ∞.

The MDI model in ΩF relative to G, when F ∈ ΩF is absolutely continuous with respect to G,

is defined by

F ∗ = arg min
F∈ΩF

K(F : G).

The MDI Theorem and its extension to multivariate and multiparameter case ([30], pp. 38, 48)

give the solution. If

C(λ,S) =
[∫

S
e−λ1T1(x)−···−λJTJ (x)g(x)dν(x)

]−1

> 0 (5)

exists, then

K[F : G|S)] ≥ K[F ∗ : G|S)] = logC(λ,S) − λ1θ1 − · · · − λJθJ , ∀F ∈ ΩF , (6)

and F ∗ is unique and has density function in the form of

f∗(x|S) = C(λ,S)g(x)e−λ1T1(x)−···−λJTJ (x), (7)

where λ = (λ1, · · · , λJ) is the vector of Lagrange multipliers given by θj =
∂

∂λj
logC(λ,S).

We will consider two reference distributions which give equivalent MDI solutions. In our first

case the reference distribution G is uniform (proper or improper) and the solution is the ME model.
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The second case that we consider in Section 4 is when the reference distribution G is the product

of a set of marginal distributions.

When (5) exists for the uniform G, the MDI Theorem gives the ME model

f∗(x|S) = C(λ,S)e−λ1T1(x)−···−λJTJ (x). (8)

The entropy of ME model is given by

H[F (x|S)] ≤ H[F ∗(x|S)] = − logC(λ,S) + λ1θ1 + · · · + λJθJ , ∀F ∈ ΩF . (9)

The density (8) can be obtained directly by calculus of variations (see, e.g., [27, 12]). It should

be noted, however, that the ME (or MDI) model may not exist for a class of distributions, a

reference distribution, or for a support. When it exists, the ME model is unique due to the fact

that the entropy is concave in f . The calculus of variations solution suggest the form (8) as

the solution, but does not show the uniqueness ([12], p. 267) without the additional burden of

examining second-order variation.

The following multivariate information distinguishability relationship between Kullback-Leibler

function and entropies is the key to the simple proof of ME characterization of a distribution.

Lemma 1 For any F ∈ ΩF ,

K(F : F ∗|S) = H(F ∗|S) −H(F |S) ≥ 0, (10)

where F ∗ is the ME model in ΩF . The equality holds if and only if f(x|S) = f∗(x|S) almost

everywhere.

The proof is the same as the univariate case given in [42]. Note that

K(F : F ∗|S) = −H(F |S) −Ef [log f∗(X)].

Use (8) for f∗ and note that since F ∗ ∈ ΩF , Ef [Tj(X) = θj]. Then the result is given by (9). The

equality K(f : f∗|S) = 0 is attained if and only if f(x) = f∗(x) almost everywhere.

Proofs for ME characterization of particular families of distributions frequently appear in the

literature. The information distinguishability relation is a simple but sufficiently general result that

alleviates the burden of proof for particular families of distributions by calculus of variations and

other mathematical techniques. Only identifying the moment conditions is needed. The following

result encapsulates this ME characterization approach. Proof is given in [12], pp. 267-268.

Lemma 2 (Maximum Entropy Identification) Any distribution with a density function in

form of (8) is the unique ME model in the moment class of distributions (2) generated by the

moment information set T = {Tj(x), j = 1, · · · , J} shown in exponent in (8).
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Some sufficient conditions for finiteness of multivariate entropy can be drawn from some well-

known results.

(a) Boundedness of f(x) implies H(F ) > −∞.

(b) If F is absolutely continuous with respect to the product of marginals F1 · · ·Fd, then finiteness

of marginal entropies implies H(F ) <∞. This is seen by noting that H(F ) ≤
d∑

i=1

H(Fi), where

Fi denotes the marginal distribution.

(c) If F is absolutely continuous with respect to the product of marginals F1 · · ·Fd, then finiteness

of marginal variances implies H(F ) <∞. Let σ2
i denote the variance of Fi. It is well-known that

H(Fi) ≤ 1
2

log(2πe) +
1
2

log σ2
i , since the right-hand-side is entropy of the normal distribution

which is ME for given variance.

A sharp upper bound for the multivariate entropy is given when F has finite variances and

covariances. If the covariance matrix Σ is nonsingular, then

H(F ) ≤ d

2
log(2πe) +

1
2

log |Σ|, (11)

and the equality is attained if and only if F is multivariate normal distribution.

Next result give the ME characterization of the joint distribution in terms of the ME charac-

terization of a marginal and a set of conditional distributions.

Corollary 1 (Maximum Entropy Chain Rule) Let TX1 = {Tj1(X1), j1 = 1, · · · , J1} and

TXk|x1:xk−1
= {Tjk

(x1, · · · , xk−1,Xk), jk = 1, · · · , Jk} k = 2, · · · , d denote the moment information

sets that characterize the marginal distribution FX1 and conditional distributions FXk|x1,···,xk−1
as

ME, respectively. Then the joint distribution FX is ME in the class of distributions generated by

the moment information set

TX
∼= T ⊆

d⋃

k=1

T ∗
X1:Xk

,

where T ∗
X1:X0

= TX1 and

T ∗
X1:Xk

= {logCk(X1, · · · ,Xk−1), λjk
(X1, · · · ,Xk−1)Tjk

(X1, · · · ,Xk), jk = 1, · · · , Jk}, k = 2, · · · , d,

in which λjk
(x1, · · · , xk−1), jk = 1, · · · , Jk are parameters and Ck(x1, · · · , xk−1) is the normalizing

factors for the conditional ME densities.

Proof. Write the joint ME density using multiplication rule

f∗(x) = f∗X1
(x1)f∗X2|x1

(x2) · · · f∗Xd|x1,···,xd−1
(xd).
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The densities in the right-hand-side are ME with moment information sets TXk|x1:xk−1
, k = 1, · · · , d,

so they are in the form of (8). The parameters and normalizing factor of the marginal density

f∗X1
(x1) do not depend on x2, · · · , xd. The moments, parameters, and normalizing factor of each

conditional density f∗Xk|x1,···,xk−1
(xk) are functions of x1, · · · , xk−1, some possibly constant functions.

Write each conditional ME density in the form of (8) with logCk(x1, · · · , xk−1) in the exponent.

Then the product in the right-hand-side is in the ME form (8). The result is obtained upon

simplifications. When there is no cancelation of terms in the right-hand-side product, then T is

the union. If there is a cancelation, T is a proper subset of the union.

The product decomposition of a joint density is order-dependent. By uniqueness of the ME

distribution when it exists, one expects that the union for all n! arrangements of the components of

X to be congruent with TX . When there is no cancelation of a factor in the product of conditional

and marginal densities TX is congruent with the union. Next example illustrates the chain rule

result for three bivariate distributions.

Example 1

(a) Consider the geometric distribution with fy|p(y) = p(1 − p)y, y = 0, 1, 2 · · · where p has a beta

distribution with fp(p) =
Γ(α+ β)
Γ(α)Γ(β)

pα−1(1 − p)β−1. The density of beta distribution can be

written in ME form (8) with Tp = {T1(p) = log p, T2(p) = log(1−p)}, λ1 = 1−α and λ2 = 1−β.

The geometric distribution can be written in ME form (8) with TY |p = {T12(p, Y ) = Y } and

λ12 = λ12(p) = − log(1 − p), C2(p) = p. Thus, T ∗
Y,p = {log p,−Y log(1 − p)}. The joint (beta,

geometric) distribution is ME in the class of bivariate distributions generated by the moment

information set

T(Y,p) = {T1(Y, p) = log p, T2(Y, p) = log(1 − p), T3(Y, p) = Y log(1 − p)}

∼= Tp ∪ T ∗
Y,p,

and with λ1 = −α, λ2 = 1 − β and λ3 = 1.

(b) Mihram and Hultquist [34] motivated and derived the Beta-Stacy distribution as the product

of the conditional beta distribution with density

f(x2|x1) =
Γ(α+ β)

Γ(α)Γ(β)xβ−1
1

xα−1
2 (x1 − x2)β−1, 0 ≤ x2 ≤ x1,

and the generalized gamma (Stacy) distribution with density

f(x1) =
τλτβ

Γ(β)
xτβ−1

1 e−(λx1)τ
, x1 ≥ 0.

We note that the marginal density f(x1) is in ME form (8) with TX1 = {T1(X1) = Xτ
1 , T2(X1) =

logX1} and with λ1 = λτ , λ2 = 1−τβ. The conditional density f(x2|x1) is in ME form (8) with
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TX2|x1
= {T12(x1,X2) = logX2, T22(x1,X2) = log(x1 −X2)} and λ12 = 1 − α, λ22 = 1 − β. In

this case the model parameters are constant functions of x1, but a moment and the normalizing

factor includes x1. Thus, T ∗
X2,X1

= {logX1, logX2, log(X1 −X2)}. Since there is no cancelation

of terms in the product f(x1)f(x2|x1), the moment information set for f(x1, x2) is

TX1,X2 = TX1 ∪ T ∗
X1,X2

= {T1(X) = Xτ
1 , T2(X) = logX1, T3(X) = logX2, T4(X) = log(X1 −X2)}

This moment information set characterizes the joint Beta-Stacy density

f(x1, x2) =
|τ |λα+βΓ(α+ β)
Γ(α)Γ(β)Γ(δ)

xτδ−α−β
1 xα−1

2 (x1 −x2)β−1e−(λx1)τ
, 0 < x2 < x1, α, β, δ, λ > 0,

which is in ME form (8) with λ1 = λτ , λ2 = α+ β − τδ, λ3 = 1 − α, λ4 = 1 − β.

(c) Let the conditional distribution f(x2|x1) be beta as above and the marginal distribution of X1

be gamma with density

f(x1) =
λβ

Γ(β)
xβ−1

1 e−λx1 , x1 ≥ 0.

This density is in ME form (8) with TX1 = {X1, logX1}. Since the term xβ−1
1 cancels out in

the product f(x1)f(x2|x1), the moment information set for f(x1, x2) is a proper subset of the

union
TX1,X2 = {T1(X) = X1, T2(X) = logX2, T2(X) = log(X1 −X2)}

⊂ TX1 ∪ T ∗
X1,X2

.

This moment information characterizes McKay’s bivariate gamma distribution [33] with density

f(x1, x2) =
λα+β

Γ(α)Γ(β)
xα−1

2 (x1 − x2)β−1e−λx1 , 0 < x2 < x1, α, β, λ > 0.

This density is in ME form (8) with λ1 = λ, λ2 = 1 − α, and λ3 = 1 − β.

2.1 Maximum Entropy Exponential Families

Lemma 2 shows that the problem of ME characterization by moments is only an identification

problem, very much like identifying a distribution as a member of the exponential family. However,

the sets of ME and exponential families are not isomorphic.

A multivariate family {Fβ} is said to be an n-parameter exponential family if the density of Fβ

is in the form of

fβ(x) = q(β)r(x)eτ1(β)W1(x)+···+τn(β)Wn(x), (12)

where q(β) and τi(β) are real-valued functions free from x, and r(x) and Wi(x) are real-valued

functions free from β.
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(a) If r(x) is a constant, then fβ(x) is in the ME form (8), and the exponential family member is

the ME model in the class of distributions generated by information set T = W = {Wi(X), i =

1, · · · , n}.

(b) If log r(x) is integrable, then fβ(x) in (12) can be written in the ME form (8), hence F = F ∗

is the ME model in the class of distributions generated by information set T = W ∪ Wr(X),

where Wr(X) is set of moments generated by log r(x).

(c) When log r(x) is not integrable, then fβ(x) in (12) still can be written in the ME form (8),

however, it is not a proper ME model with finite entropy.

(d) Some ME densities may not be written in the exponential family form (12). An example is t

distribution. Consider the bivariate t density

f(x1, x2) =
1
2π

(
1 +

x2
1 + x2

2

m

)−(m/2+1)

, m > 0.

This density can be written in the ME form (8) with T1(X) = log(m + X2
1 + X2

2 ) and λ1 =

m/2+1, but it can not be written in the form of (12). The ME characterizations of multivariate

t as a transformation of Pearson Type VII is given by Zografos [45].

The following example illustrates that an exponential family of distribution may or may not be

an ME distribution.

Example 2

(a) The most famous member of the distribution in exponential family and the most well known

ME model is the normal distribution. The bivariate normal density is

fβ(x1, x2) =
1

2πσ1σ2

√
1 − ρ2

×exp
{
− 1

2(1 − ρ2)

[
(x1 − µ1)2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)
σ1σ2

+
(x2 − µ2)2

σ2
2

]}
.

(13)

This density can be written in the ME form (8) with

TX = {T1(X) = X1, T2(X) = X2, T3(X) = X2
1 , T4(X) = X2

2 , T5(X) = X1X2}, (14)

and λj = λj(µ1, µ2, σ
2
1 , σ

2
2 , ρ), j = 1, 2, 3, 4, 5; hence it is ME by Lemma 2. If β = (µ1, µ2, σ

2
1 , σ

2
2 , ρ),

then r(x) in (12) is constant and Wj(X) = Tj(X), j = 1, 2, 3, 4, 5 shown in the ME moment

information set (14). Several other examples of parametric families with exponential family

densities will be presented in Section 3.

8



(b) Consider the normal distribution when σ2
1, σ

2
2 , and ρ are known and β = (µ1, µ2). Then,

W1(x) = x1, W2(x) = x2, and log r(x) = a0(a1x
2
1+a2x

2
2+a3x1x2), where ak = ak(σ2

1 , σ
2
2 , ρ), k =

0, 1, 2, 3. Since log r(x) is integrable, the normal distribution Fβ = F ∗ is ME, however, subject to

the same moment information set as (14) where the first two moments, T1(X) = W1(X) = X1

and T2(X) = W2(X) = X2, are from the exponential family exponents and the last three

moments are from log r(x).

(c) Consider the bivariate distribution with the following density

fβ(x1, x2) =
β(β + 1)

x1x2(log x1 + log x2 − 1)β+2
, x1, x2 ≥ e, 0 < β ≤ 1. (15)

This is an exponential family density with r(x) =
1

x1x2
and W1(x) = log(log x1 + log x2 − 1).

It can be shown that log r(x) is not integrable and hence fβ(x1, x2) is not a proper ME model.

An n-parameter bivariate distribution is said to have conditionals in exponential family [3, 4]

if its conditional densities f1(x1|x2) and f2(x2|x1) are in (12) form with qk, rk, τk,i, and Wk,i, i =

1, · · · , nk, k = 1, 2. The joint density is in the form of

fB(x1, x2) = r1(x1)r2(x2)eW1(x1)′ΛW2(x2), (16)

where
W1(x1) = [1,W1,1(x1), · · · ,W1,n1(x1)]′

W2(x2) = [1,W2,1(x2), · · · ,W2,n2(x2)]′,

and Λ is (n1 + 1) × (n2 + 1) matrix of parameters

Λ =




λ00 | λ01 · · · λ0n2

−− + −− −− −−
λ10 |
... | Λ12

λn10 |




subject to the normalizing
∫

SX1

∫

SX2

f(x1, x2)dν1(x1) dν2(x2) = 1,

which imposes restrictions on the λij .

The density (16) is in the exponential family density (12) form. Thus, the bivariate distributions

with conditionals in exponential families are ME whenever log r(xk), k = 1, 2 are integrable. The

ME information moment set is given by T = (W1 ×W2)∪Wr1(x1)∪Wr2(x2), where (W1 ×W2) =

{W1i(X1)W2`(X2), i = 0, 1, · · · , n1, ` = 0, 1, · · · , n2, i = ` 6= 0, βij 6= 0}, and Wrk
(xk) is set

of moments generated by log rk(xk). Next example illustrates ME characterization of bivariate

distribution with normal conditionals. Several other applications will be given in Section 3.
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Example 3

Bivariate normal conditionals is given by (16) where W1(x1) = (1, x1, x
2
1), W2(x2) = (1, x2, x

2
2),

r1(x1) = r2(x2) = 1, and for integrability one of the two set of restrictions on B must hold:

λ22 = λ12 = λ21 = 0, λ20 < 0, λ02 < 0, 4λ02λ20 > λ2
11 (17)

λ22 < 0, 4λ22λ02 > λ2
12, 4λ22λ20 > λ2

21 (18)

The parameter restrictions (17) give the bivariate normal distribution.

The moment information set for the ME characterization of bivariate distribution with normal

conditionals is

T = (W1 ×W2)
= {T1(X) = X1, T2(X) = X2, T3(X) = X2

1 , T4(X) = X2
2 , T5(X) = X1X2,

T6(X) = X2
1X2, T7(X) = X1X

2
2 , T8(X) = X2

1X
2
2}.

Thus the bivariate distribution with normal conditionals requires three additional moments than the

bivariate normal distribution. Specific cases include the bivariate normal distribution obtained from

the first five moments, bivariate distribution with normal conditionals of Castillo and Galambos

[10] obtained from the subset {T3(X), T4(X), T6(X), T7(X), T8(X)} and the centered bivariate

distribution with normal conditionals obtained from the subset {T3(X), T4(X), T8(X)}.

3 Applications: ME Characterization of Bivariate Families

This section presents the ME characterizations of many bivariate distributions. Simplification of

ME characterization is achieved through location-scale transformation Y = Σ1/2(X +µ). We con-

sider FX . That is, without loss of generality, we ignore the location vector and scale matrix in most

cases where no particular purpose being served. One can simply obtain the ME characterization

of FY by application of Lemma 3 of Section 4 to the affine transformation X = Σ−1/2(Y − µ). If

Σ is nonsingular, Jacobian of transformation is |Σ|−1/2.

The distributions are classified into three groups according to their supports. and one group

shows applications of Lemma 3.

3.1 Distributions with Unrestricted Support

Examples of ME bivariate families with support the entire space S = <2, the first quadrant S =

Q1 = {(x1, x2) : x1, x2 ≥ 0}, and the first and second quadrants S = Q1 ∪Q2 = {(x1, x2) : −∞ <

x1 < ∞, x2 ≥ 0} are shown in Table 1. Each distribution is ME in the class of distributions

generated by the corresponding moment information set with Tj(X1,X2) shown in the second

column of the table. It is easy to verify that the densities of the distributions listed in Table 1 can
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Table 1. Examples of Maximum Entropy Bivariate Distributions with Rectangular Support

ME Distribution and density Information Set
Pareto, x1, x2 ≥ 0

f(x1, x2) = α(α + 1)(1 + x1 + x2)−α−2, α > 0 T1(X) = log(1 + X1 + X2)

Pearson Type VII, −∞ < x1, x2 < ∞
f(x1, x2) =

α − 1
π

(1 + x2
1 + x2

2)
−α, α > 1.

T1(X) = log(1 + X2
1 + X2

2 )

Kotz Type, −∞ < x1, x2 < ∞

f(x1, x2) =
τλα/τ

πΓ(α/τ)
(x2

1 + x2
2)

α−1e−λ(x2
1+x2

2)
τ

, α, λ, τ > 0

{
T1(X) = (X2

1 + X2
2 )τ ,

T2(X) = log(X2
1 + X2

2 )

Freund’s bivariate exponential, x1, x2 ≥ 0
(Absolutely Continuous Bivariate Exponential)

f(x1, x2) =





λ

λ1 + λ2
λ1(λ2 + λ12) e−λ1x1−(λ2+λ12)x2 , x1 < x2

λ

λ1 + λ2
λ2(λ1 + λ12) e−(λ1+λ12)x1−λ2x2 , x1 > x2,

λ = λ1 + λ2 + λ12, λ1, λ2, λ12 > 0





T1(X) = X1, T2(X) = X2,
T1(X) = max(X1, X2),
T4(X) = D(X1 < X2)

D(x1 < x2) =
{

1 if x1 < x2

0 otherwise

Pareto Conditionals, x1, x2 ≥ 0
f(x1, x2) = C(α, a, b)(a + x1 + x2 + bx1x2)−α−1, α > 0 T1(X) = log(a + X1 + X2 + bX1X2)

Bivariate Exponential Conditional, x1, x2 ≥ 0
f(x1, x2) = λ1λ2c(δ)e−λ1x1−λ2x2−λ3x1x2 ,

λ1, λ2 > 0, λ3 ≥ 0, δ = λ3/λ1λ2

{
T1(X) = X1, T2(X) = X2,
T3(X) = X1X2

Bivariate gamma conditionals Type II, x1, x2 ≥ 0

f(x1, x2) =
cα,β(λ3)λα

1 λβ
2

Γ(α)Γ(β)
xα−1

1 xβ−1
2 e−λ1x1−λ2x2−λ3x1x2 ,

α, β, λ1, λ2, λ3 > 0





T1(X) = X1, T2(X) = X2,
T3(X) = log X1, T4(X) = log X2,
T5(X) = X1X2

Gamma-Gamma Mix, x1, x2 ≥ 0

f(x1, x2) =
λα

1 λβ
3

Γ(α)Γ(β)
xα+β−1

1 xβ−1
2 e−λ1x1−λ3x1x2 ,

α, β, λ1, λ3 > 0





T1(X) = X1,
T2(X) = log X1, T3(X) = log X2,
T4(X) = X1X2

Normal and Gamma conditionals, −∞ < x1 < ∞, x2 ≥ 0

f(x1, x2) = C(α1, α2, α3, λ1, λ2, λ3, λ4, λ5)x
α1+α2x1+α3x2

1
2

× e−λ1x1−λ2x2
1−λ3x2−λ4x1x2−λ5x2

1x2 ,





T1(X) = X1, T2(X) = X2
1 ,

T3(X) = X2, T4(X) = log X2

T5(X) = X1X2, T6(X) = X2
1X2

T7(X) = X1 log X2, T8(X) = X2
1 log X2,

be written in the form of (8). We only make some brief comments about these distributions. The

entropy expressions for these distributions are given in [36], so the existence is guaranteed.

The Pearson Type VII, Kotz type, densities of Pareto, and the Freund’s bivariate exponen-

tial/Absolutely Continuous Bivariate Exponential (ACBE) distributions shown in Table 1 are mem-
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bers of exponential family with a constant r(x), hence they are ME. The ME characterizations of

Pearson Type VII is given by Zografos [45] and the ME characterizations of Kotz Type is given by

Auglogiaris and Zografos [7] with laborious proofs.

The ACBE distribution is the absolutely continuous part of Marshall-Olkin exponential distri-

bution (shown in Table 3) and is a reparamterization of Freund’s bivariate exponential distribution

[9, 31]. The four constraints for ME characterization of ACBE distribution corresponds to four

independent sufficient statistics that appear in the maximum likelihood equations for a sample of

n observations given in [9], where the last constraint corresponds to n1 =
n∑

i=1

D(x1i < x2i). Also

note that the density of ACBE distribution can be represented in the ME form (8) as:

f∗(x1, x2) =
λ

λ1 + λ2
λ2(λ1 + λ12) e−λ1x1−λ2x2−λ12 max(x1,x2)−λ3D(x1<x2), (19)

where D(x1 < x2) is the indicator function shown in Table 1. Since, E[D(X1 < X2)] =
λ1

λ1 + λ2
,

the parameters in the representation (19) are restricted as

λ3 = log
(
λ1(λ2 + λ12)
λ2(λ1 + λ12)

)
.

That is, the role of the last constraint for ME characterization of ACBE distribution is the parameter

restriction required for the identification of its two branches.

The bivariate Pareto conditionals, bivariate exponential conditionals, bivariate gamma condi-

tionals, the gamma-gamma mixture and gamma normal conditionals are examples of (16) with

λi` = 0 for some i and ` [2, 3, 4]. The normalizing constant for bivariate Pareto conditionals

depends on a and b of the information moment. For a = 1 and b = 0, the moment reduces to the

bivariate Pareto case. For a = 0 and b > 0, the normalizing constant is C(α, b) =
α sin(απ)
πbα−1

. For

a > 0 and b > 0, the normalizing constant is awkward (see [3] pp. 106, 107). The normalizing

constant for the bivariate exponential conditionals includes c(δ) =
[∫ ∞

0
e−z(1 + δz)−1dz

]−1

.

The Type II bivariate distribution with gamma conditionals shown in Table 1 is Model II of

Arnold et al [3]. It is obtained from (16) with W1(x1) = (1, x1, log x1), W2(x2) = (1, x2, log x2),

rk(xk) = xk, k = 1, 2, λ12 = λ21 = λ22 = 0, λ10 = α, λ01 = β, λ20 = λ1, λ02 = λ2 > 0, λ11 =

λ3 > 0; and the normalizing constant includes confluent hypergeometric function given by

cα,β(λ3) =
1

Γ(λ3)

∫ ∞

0
e−λ3zzα−1(1 + z)β−α−1dz.

Arnold et al [3] list five other bivariate distributions with gamma conditionals (including indepen-

dent bivariate gamma) obtained from (16) with restrictions on λi`. The ME characterizations of

these models can be obtained similarly.

The Gamma-Gamma Mix distribution is a generalization of the gamma-exponential distribution

studied by Darbellay and Vajda [15]. Both conditional distributions are gamma, thus it is in the
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form of (16) whose moment information set has one less element than Type II bivariate distribution

with gamma conditionals. It may also be viewed as the limiting case of Type II bivariate gamma

conditionals when λ2 → 0.

The bivariate distribution with normal and gamma conditionals shown in Table 1 is discussed

by Arnold et al [3, 4]. It is obtained from (16) with W1(x1) = (1, x1, x
2
1), W2(x2) = (1, x2, log x2),

r1(x1) a constant, r2 = x2, and

λ12, λ22 > 0, 4λ10λ12 > λ2
12, 4λ20λ22 > λ2

21, λ02 < λ22

(
1 − log

λ22

λ12

)
.

There is no closed form expression for the normalizing constant. For λ10 = λ20 = λ12 = λ21 = λ22 =

0, this distribution reduces to the conjugate normal-gamma prior distribution for normal likelihood

[3, 4, 16]. Thus, the family of conjugate normal-gamma prior distributions for the univariate normal

likelihood f(x|µ, τ) = N(µ, τ−1) is the ME prior distribution subject to moment constraints

T = T3(µ, τ) = τ, T4(µ, τ) = log τ{T1(µ, τ) = µτ, T2(µ, τ) = µ2
2τ}.

3.2 ME Distributions with Restricted Supports

Table 2 shows a few examples where the supports are restricted. Each distribution shown in Table

2 is ME in the class of distributions generated from the corresponding moment information set.

The support of bivariate distribution with normal marginals shown in Table 2 is the first and

third quadrant in <2, [3]. This density is in the ME form (8). The bivariate exponential with

triangular support gives the normalized first (second) branch of ACBE distribution shown in Table

1 for α = 0 (α = 1) and β = 1 (β = 0). This density is also in the ME form (8). The densities

of bilateral Pareto [16], bivariate Pareto conditionals, bivariate beta conditionals [3], Dirichlet,

and Pearson Type II distributions can be tranformed in the ME form (8) using the logarithmic

moments shown in the table. The ME characterization of Dirichlet distribution is given by Kapur

[29], and the ME characterization of Pearson Type II is given by Zografos [45], with laborious

proofs. Application of Lemma 2 simplifies the proofs.

3.3 Distributions with Support in <2 ∪ <

The distributions shown in Table 3 give positive probability to a two-dimensional region as well as

to a line (two lines in the case of natural exponential distribution). Formally, their supports are in

the form S ⊂ <2 ∪ <. Hence these distributions include absolutely continuous and singular parts,

with respect to two-dimensional Lebesgue measure.

Nadarajah and Zografos [36] computed entropies of Marshall-Olkin, Cuadras-Augé and natural

bivariate exponential distributions using densities shown in Table 3. Ebrahimi et al [23], following
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Table 2. Examples of Maximum Entropy Bivariate Distributions with Restricted Supports

ME Distribution and density Information Set
Bivariate normal marginals, x1x2 > 0

f(x1, x2) =
1

π
√

σ1σ2
e−

1
2 (x2

1/σ2
1+x2

2/σ2
2), σ1, σ2 > 0.

T1(X) = X2
1 , T2(X) = X2

2

Bivariate Exponential on Triangle, 0 ≤ αx2 < x1 < βx2

f(x1, x2) =
(αλ1 + λ2)(βλ1 + λ2)

β − α
e−λ1x1−λ2x2 , λ1, λ2 > 0.

T1(X) = X1, T2(X) = X2

Bilateral Pareto, 0 < x1 < η < ξ < x2

f(x1, x2) = α(α + 1)(ξ − η)α(x2 − x1)−α+2, α > 1 T1(X) = log(X2 − X1)

Pareto Conditionals 0 < x1, x2 < 1, x1 + x2 − Ax1x2 < 1
f(x1, x2) = C(α, η)(1 − x1 − x2 + Ax1x2)1/α−1, α > 1

T1(X) = log(1 − X1 − X2 + AX1X2)

Beta conditionals, 0 < x1, x2 < 1, x1 + x2 < 1
f(x1, x2) = C(α1, α2, α3, β)xα1−1

1 xα2−1
2 (1 − x1 − x2)α3−1eβ(log x1)(log x2),

α1, α2, α3 > 0





T1(X) = log X1, T2(X) = log X2

T3(X) = log(1 − X1 − X2)
T4(X) = (log X1)(log X2)

Dirichlet, 0 < x1, x2 < 1, x1 + x2 < 1

f(x1, x2) =
Γ(α1 + α2 + α3)
Γ(α1)Γ(α2)Γ(α3)

xα1−1
1 xα2−1

2 (1 − x1 − x2)α3−1,

α1, α2, α3 > 0

{
T1(X) = log X1, T2(X) = log X2

T3(X) = log(1 − X1 − X2)

Pearson Type II, x2
1 + x2

2 ≤ 1

f(x1, x2) =
α − 1

π
(1 − x2

1 − x2
2)

α, α > 0.
T1(X) = log(1 − X2

1 − X2
2 )

the probabilistic argument of Marshall and Olkin ([31], p. 35), obtained the entropy of the Marshall-

Olkin Bivariate Exponential (MOBE) using one and two dimensional Lebesgue measures via the

partitioning property of (1). The entropies of other distributions shown in Table 3 can be obtained

similarly.

For the ME characterizations of these distribution we use the densities relative to the suitable

measures ν for which (1) is well-defined. The joint survival function F̄ (x1, x2) = P (X1 > x1,X2 >

x2) of MOBE can be represented as

F̄ (x1, x2) =
λ1 + λ2

λ
F̄c(x1, x2) +

λ12

λ
F̄s(x1, x2), x1, x2 ≥ 0, λ1, λ2 > 0, λ12 ≥ 0,

where λ = λ1 +λ2 +λ12, F̄c(x1, x2) is the absolutely continuous part with density of ACBE shown

in Table 1, and

F̄s(x1, x2) = e−λx1 , x1 = x2, λ = λ1 + λ2 + λ12

is a singular part. The singular part reflects the fact that X1 = X2 has positive probability, whereas

the line x1 = x2 has two-dimensional Lebesgue measure zero.
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Table 3. Examples of Maximum Entropy Bivariate Distributions with Probability Mass on a Line

ME Distribution and density Information Set
Marshall-Olkin Bivariate Exponential (MOBE), x1, x2 > 0

fν(x1, x2) =





λ1(λ2 + λ12)e−λ1x1−(λ2+λ12)x2 for x2 > x1 > 0

λ2(λ1 + λ12)e−(λ1+λ12)x1−λ2x2 for x1 > x2 > 0

λ12e
−(λ1+λ2+λ12)x1 for x1 = x2 > 0

λ1, λ2 > 0, λ12 ≥ 0





T1(X) = X1, T2(X) = X2,

T3(X) = max(X1, X2),

T4(X) = D(X1 < X2),

T5(X) = D(X1 = X2)

Cuadras-Augé bivariate distribution, 0 ≤ x1, x2 ≤ 1

fν(x1, x2) =





(1 − α)x−α
1 for 0 ≤ x2 < x1 ≤ 1

(1 − α)x−α
2 for 0 ≤ x1 < x2 ≤ 1

αx−α
1 for 0 ≤ x1 = x2 ≤ 1

0 ≤ α ≤ 1

T1(X) = log X1, T2(Y ) = log X2,

T3(X) = log[min(X1, X2)],

T4(X) = D(X1 = X2)

Natural Bivariate Exponential, x1, x2 > 0

fν(x1, x2) =





λe−x1/α for x1 = αx2

λ(1 − λ)βe−λx1−(1−λ)βx2 for αx2 < x1 < βx2

(1 − λ)e−x1 for x1 = βx2

λ =
β − 1
β − α

, α, β > 0





T1(X) = X1, T2(X) = X2,

T3(X) = max(X1, βX2),

T4(X) = max(X1, αX2),

T5(X) = D(X1 = βX2),

T6(X) = D(X1 = αX2)

Exponential Autoregressive Bivariate distribution, xn, xn+1 > 0

fν(xn, xn+1) =





(1 − ρ)λ2e−λ(1−ρ)xn−λxn+1 for xn+1 > ρxn > 0

ρλe−λxn for xn+1 = ρxn > 0
λ > 0, 0 ≤ ρ < 1





T1(X) = Xn, T2(X) = Xn+1,

T3(X) = D(Xn+1 = ρXn)

Note:
∗ D(z) =

{
1 if z holds
0 otherwise

Let Sc = {(x1, x2) : x1 6= x2} and Ss = {(x1, x2) : x1 = x2}. Then S = Sc ∪ Ss and the suitable

measure for MOBE distribution is

ν(A) = ν1([A∩ Ss]p) + ν2(A), (20)

where ν1 and ν2 are one and two dimensional Lebesgue measures with ν1(Ss) = λ12/λ and ν2(Sc) =

(λ1 + λ2)/λ; and the subscript p denotes the projection of the set onto the x1-axis. This measure

was used by Bemis et al [8] for maximum likelihood estimation of the MOBE parameters. The

density fν(x1, x2) shown in Table 3 for the MOBE distribution is relative to this measure.
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The MOBE density can be represented in the ME form (8) as:

f∗ν (x1, x2) = λ12 e
−λ1x1−λ2x2−λ12 max(x1,x2)−λ3D(x1<x2)−λ4D(x1=x2), (21)

where

D(z) =





1 if z holds

0 otherwise.

Thus, MOBE distribution is ME in the class of distributions generated by the five moments shown

in Table 4. Note that Eν [Dk(X1 < X2)] = π1 and Eν [Dk(X1 > X2)] = π2 where

πk = ν(Sk) =
∫

Sk

f(x1, x2)dν(x1, x2) =
λk

λ
, k = 1, 2

where Sk = {(x1, , x2) : xk < x`, ` 6= k = 1, 2}. Thus, for the representation (21) the MOBE

model parameters are subject the following constraints

λ3 = log
(

λ12

λ1(λ2 + λ12)

)
, λ4 = log

(
λ12

λ2(λ1 + λ12)

)
.

That is, the roles of the last two constraints are the parameter restrictions required for the iden-

tification of the three branches of the MOBE distribution. Note that the five constraints for ME

characterization of MOBE distribution corresponds to five independent sufficient statistics that

appear in the maximum likelihood equations given in [8]. The last two constraints correspond to

nk =
n∑

i=1

Dk(x1i > x2i), k = 1, 2.

The ME characterization of the Cuadras-Augé [13] bivariate distribution shown in Table 3 is

obtained using (20) where ν1(Ss) = α/(2 − α) and ν2(Sc) = 2(1 − α)/(2 − α) are the probabilities

for the singular and continuous parts of S, respectively. The joint density shown in Table 3 is with

respect to ν. It may be written in the ME form (8) as

fν(x1, x2) = (1 − α)e−λ1 log x1−λ2 log x2−λ3 log[min(x1,x2)]−λ4D(x1=x2), 0 ≤ x1, x2 ≤ 1, 0 < α < 1.

where λ1 = λ2 = α, λ3 = −α and λ4 = − log(1/α − 1).

The natural bivariate exponential (NBE) distribution shown in Table 3 has two singular parts

on lines x = αy and x = βy. Thus, Ss = {(x1, x2) : x1 = αx2 ≥ 0} ∪ {(x1, x2) : x1 = βx2 ≥ 0}
and a continuous part Sc = {(x1, x2) : αx2 < x1 < βx2}. The ME characterization is obtained

using a measure similar to (20), however with two one-dimensional Lebesgue components ν(A) =

ν1([A ∩ Ss]pα) + ν1([A ∩ Ss]pβ
) + ν2(A), where as before ν1 and ν2 are one and two dimensional

Lebesgue measures, and the subscripts pα and pβ denote the projections of the set onto the lines

x1 = αx2 and x1 = βx2, respectively. The joint density of NBE distribution with respect to this

measure is shown in Table 3. It may be written in the ME form (8) as

fν(x1, x2) = α(1 − α)βe−λ1x1−λ2x2−λ3 max(x1,αx2)−λ4 max(x1,βx2)−λ5D(x1=αx2)−λ6D(x1=βx2),
x1, x2 ≥ 0, 0 < α < β < 1,
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where λ1 + λ3 = λ, λ2 + λ4/β = (1 − λ)β, λ5 = − log(αβ), λ6 = − log[(1 − α)β], and λ =
β − 1
β − α

.

The exponential autoregressive (EAR) bivariate distribution shown in Table 3 is the distribution

of adjacent terms in the first order autoregressive processXn = ρXn−1+εn, where {εn} is a sequence

of independent and identical exponential variate with survival function F̄ (ε) = P (εn > ε) = ρ +

(1 − ρ)e−λε, ε ≥ 0, λ > 0, and 0 ≤ ρ < 1, [24]. Any pair (Xn,Xn+k) is stationary with a bivariate

exponential distribution. Gaver and Lewis [24] give the Laplace transform for the joint distribution

of (Xn,Xn+1). The bivariate distribution has a singular part (one dimensional Lebesgue ) on

the support Ss = {(xn, xn+1) : xn+1 = ρxn > 0} with probability ρ and a continuous part (two

dimensional Lebesgue) on the support Sc = {(xn, xn+1) : xn+1 > ρxn > 0} with probability 1 − ρ.

The measure ν(A) therefore is the same as (20) with ν1 = ρ and ν2 = 1 − ρ. The bivariate density

shown in Table 3 is relative to this measure. It can be written in ME form (8) as

fν(xn, xn+1) = (1 − ρ)λ2e−λ1xn−λ2xn+1−λ3D(xn+1=ρxn), xn+1 ≥ ρxn, λ > 0, 0 ≤ ρ < 1,

where λ1 = (1 − ρ)λ, λ2 = λ, and λ3 = log[(1/ρ − 1)λ]. Note that the EAR bivariate distribution

with λ = 1 can be obtained as a limiting case of NBE as α→ 0 and β = 1/ρ.

4 Maximum Entropy Transformation

This section shows that ME characterizations of numerous distributions can be obtained by trans-

formation. Unlike the discrimination function (4), the entropy is not invariant under one-to-one

transformations of X.

Let φ : <p → <p be one-to-one transformation and let Y = φ(X). Then the well-known entropy

transformation formula gives

H(FY ) = H(FX ) +E[Tφ(Y )], (22)

where

Tφ(y) = log

∣∣∣∣∣

[
∂φ−1(yi)
∂yk

]∣∣∣∣∣ , i, k = 1, · · · , d

is the logarithm of the Jacobian of transformation.

Kapur [29] presents a few examples of distributions that are obtained from ME models by

transformations, without relating the information moments for ME characterizations of FX and FY .

From the relationship H(FY ) = H(FX ) + log |A|, for the affine transformation Y = AX + b with

a nonsingular A, Auglogiaris and Zografos [7] and Zografos [45] deduced the relationship between

characterizations of F ∗
Y and F ∗

X for some particular distributions. The next result identifies the

class of distributions in which the distribution of an arbitrary one-to-one transformation of X is

the ME model.
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Lemma 3 (Maximum Entropy Transformation) Let F ∗
X be the ME model in the moment

class of distributions (2) generated by TX = {Tj(X), j = 1, · · · , J}. Let φ : <p → <p be one-

to-one transformation. Then the distribution of Y = φ(X) is the ME model F ∗
Y in the moment

class of distributions generated by TY = {Tj [φ−1(Y )], j = 1, · · · , J} ∪ Tφ(Y ). where Tφ(Y ) is the

set of moments generated by the Jacobian of transformation, provided all the moments in TY .

This result is seen by noting that

f∗Y (y) = f∗X [φ−1(y)]

∣∣∣∣∣

[
∂φ−1(yi)
∂yk

]∣∣∣∣∣

= C(λ,Sy)

∣∣∣∣∣

[
∂φ−1(yi)
∂yk

]∣∣∣∣∣ e
−λ1T1[φ−1(x)]−···−λJTJ [φ−1(x)]

= C(λ,Sy)e
log T−1

φ
(y)−λ1T1[φ−1(y)]−···−λJTJ [φ(y)],

which is in the form of ME model (8).

The following example illustrates some points regarding implementation of Lemma 3.

Example 4

(a) Consider X = (X1,X2) having a bivariate normal distribution with density (13). Let yi =

φ(xi) = exi , i = 1, 2. The distribution of Y = (Y1, Y2) is bivariate lognormal with density

fY (y1, y2) =
1

2πσ1σ2

√
1 − ρ2 y1y2

×exp

{
− 1

2(1 − ρ2)

[
(log y1 − µ1)

2

σ2
1

− 2ρ(log y1 − µ1)(log y2 − µ2)

σ1σ2
+

(log y2 − µ2)
2

σ2
2

]}
.

The ME characterization of multivariate lognormal, which is given in Kapur (1988) where the

proof uses the usual calculus of variations technique for ME. The lognormal density fY can

be written in the ME form (8). However, application of Lemma 3 is illuminating. Noting

that φ−1(yi) = log yi and the Jacobian of transformation is
1

y1y2
, in this case {Tφ(Y )} ⊂

{Tj [φ−1(Y )], j = 1, · · · , 5}, so no additional moment is needed, i.e., TY = {Tj [φ−1(Y )], j =

1, · · · , 5}

(b) Since µi = E(Xi), i = 1, 2 are location parameters for the normal distribution, they are not

needed for the ME characterization. The information moment set

TX = {T1(X) = X2
1 , T2(X) = X2

2 , T3(X) = X1X2}

characterizes the centered bivariate normal distribution with µi = 0, i = 1, 2. Again let

yi = φ(xi) = exi , i = 1, 2. The distribution of Y is “centered” bivariate lognormal with
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E[log(Xi)] = µi = 0, i = 1, 2. In this case,

TY = {Tφ(Y )} ∪ {Tj [φ−1(Y )], j = 1, · · · , 3}

= {log Y1, log Y2, (log Y1)2, (log Y2)2, (log Y1)(log Y2)}.

That is, two more moments in addition to the moments for the centered normal are needed.

(c) Consider X = (X1,X2) having a bivariate Pareto distribution with density shown in Table 1.

Let yi = φ(xi) = exi+1, i = 1, 2. The Jacobian of transformation is
1

y1y2
, however, in this case

log Yi, i = 1, 2 is not integrable and the distribution of Y = (Y1, Y2) is not ME; it has density

(15).

Table 4 shows more examples of bivariate distributions fY where the components of Y is

obtained by one-to-one transformations of random variables X whose distributions are presented

in previous. Other than the inverted Dirichlet distribution (also referred to as beta prime), all

examples are component-wise transformations illustrating various issues of interest. The inverted

Dirichlet distribution is an example of vector transformation. Densities of these distributions are

given in an Appendix.

The bivariate Weibull conditionals is obtained by the power transformation of the bivariate

exponential conditional shown in Table 1, which is ME subject to three moment constraints. The

Jacobian is
1

y1y2
, and thus Tφ(Y ) = {log Y1, log Y2} which adds two constraints to TX .

The generalized gamma-gamma mix is related to gamma-gamma mix distribution shown in

Table 1, which is ME subject to four moment constraints. The transformation is the same as the

Weibull conditionals case. However, unlike the Weibull case no additional constraints are needed.

Here, {Tφ(Y )} ⊂ {Tj [φ−1(Y )], j = 1, · · · , 4}.
The bivariate logistic distribution is obtained by the log transformation of the bivariate Pareto

shown in Table 1, which is ME subject to a single moment constraint. The Jacobian is ey1ey2 , and

thus Tφ(Y ) = {Y1, Y2} which adds two mean constraints to TX . Logistic distribution is presented

in Kapur (1988) as an example of transformation of Dirichlet, without exploring the relationship

between the sets of moment constraints for fX and fY (the support is identified erroneously).

The bivariate Gumbel conditionals distribution is obtained by the log transformation of the

bivariate exponential conditionals shown in Table 1, which is ME subject to three moment con-

straints. The Jacobian is ey1ey2 , and thus Tφ(Y ) = {Y1, Y2} which adds two mean constraints to

TX .

The Muliere and Scarsini’s Pareto distribution is obtained by the exponential transformation

of the Marshall-Olkin distribution shown in Table 3. The Jacobian is
1

y1y2
, and thus Tφ(Y ) =

{log Y1, log Y2} which does not add any constraint to TX , because {Tφ(Y )} ⊂ {Tj [φ−1(Y )], j =

1, · · · , 5}.
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Table 4. Examples of Maximum Entropy Bivariate Distributions Obtained by Transformation

ME Distributions Transformation φ(x) Information Set TY

Bivariate Weibull Conditional, y1, y2 ≥ 0
Bivariate Exponential Conditional, x1, x2 ≥ 0 yi = x

1/τi

i





T1(Y ) = Y τ1
1 , T2(Y ) = Y τ2

2 ,
T3(Y ) = Y τ1

1 Y τ2
2

T4(Y ) = log Y1, T5(Y ) = log Y2

Generalized Gamma-Gamma Mix, y1, y2 ≥ 0
Gamma-Gamma Mix, x1, x2 ≥ 0 yi = x

1/τi

i

{
T1(Y ) = Y τ1

1 , T2(Y ) = log Y1,
T3(Y ) = log Y2, T4(Y ) = Y τ1

1 Y τ2
2

Logistic, −∞ < y1, y2 < ∞
Pareto, x1, x2 > 0 yi = log xi

{
T1(Y ) = log

(
1 + e−Y1 + e−Y2

)
,

T2(Y ) = Y1, T3(Y ) = Y2

Bivariate Gumbel conditionals, −∞ < x1, x2 < ∞
Bivariate exponential conditionals, x1, x2 > 0 yi = − logxi





T1(Y ) = e−Y1 , T2(Y ) = e−Y2 ,
T3(Y ) = e−Y1−Y2 ,
T4(Y ) = Y1, T5(Y ) = Y2,

Muliere and Scarsini’s Pareto , y1, y2 > 1
Marshall-Olkin yi = exi

T1(Y ) = log Y1, T2(Y ) = log Y2

T3(Y ) = max(Y1, Y2),
T4(Y ) = D(Y1 < Y2),
T5(Y ) = D(Y1 = Y2)

Inverted Dirichlet, y1, y2 ≥ 0
Dirichlet, 0 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 1 yi =

xi

1 − x1 − x2

{
T1(Y ) = log Y1, T2(Y ) = log Y2

T3(Y ) = log(1 + Y1 + Y2)

Note:
∗ D(z) =

{
1 if z holds
0 otherwise

The bivariate inverted Dirichlet distribution is related to the Dirichlet distribution shown in Ta-

ble 2, which is ME subject to three moment constraints. In this case, T1[φ−1(Y )] = log y1, T2[φ−1(Y )] =

log y2, and T3[φ−1(Y )] = log(1 + Y1 + Y2). The Jacobian is
1

(1 + y1 + y2)3
, and thus Tφ(Y ) =

{log(1 + Y1 + Y2)} which adds no additional constraint to TX .

Asadi et al [5] lists more than twenty families of distributions that can be obtained from the

univariate version of Pareto distribution shown in Table 1. These distributions and their transfor-

mation functions are given in [5]. The ME characterizations of bivariate (multivariate) versions of

these distributions can easily be obtained from the Pareto distribution by Lemma 3.

5 Dependence Information

An important information function is defined when the reference distribution in (4) is the product(s)

of some marginals. The mutual information between two subvectors Xa and Xb has Kullback-

Leibler and entropy representations

M(Xa,Xb|S) = K(F : FXa
FXb

|S)

= H(FXa
|Sa) +H(FXb

|Sb) −H(F |S),
(23)
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where FXa
and FXb

are the marginal distributions of Xa and Xb, and a+ b ≥ d. For a+ b > d,

(23) gives a measure of conditional dependence between Xa and Xb, given the common components

Xab = xab. For a+ b = d, (23) gives a measure of dependence between Xa and Xb. The mutual

information for more than two subvectors are defined similarly. For simplicity, we consider the

bivariate case. The results given in this section extends to higher dimensions when a+ b = d.

The mutual information between to random variables is given by

M(X1,X2|S) = K(F : F1F2)|S]

= H(F1|S1) +H(F2|S2) −H(F |S),
(24)

where F = FX1,X2 , F1 = FX1 , and F2 = FX2 are the joint and marginal distributions, respectively.

M(X1,X2|S) ≥ 0, where the equality holds if and only if the variables are independent. This is a

widely used measure of dependence in statistics and many other fields (see, e.g, [28, 41]).

Note that by the Kullback-Leibler representation in (24), the mutual information is well-defined

when the joint distribution is absolutely continuous relative to the product F1F2. For example, for

Marshall-Olkin distribution all three entropies in (24) can be computed, but the mutual information

is not well-defined due to the singularity. The product F1F2 has bivariate density relative to two-

dimensional Lebesgue, but the bivariate distribution is not absolutely continuous. In fact, the

entropy representation gives negative values.

It is well-known that M(X1,X2) is invariant under one-to-one transformations of each compo-

nent. For example, for the bivariate normal and lognormal, and for the first four pairs of distrib-

utions listed in Table 4, M(Y1, Y2) = M(X1,X2). The transformation for last pair of distributions

shown in Table 4, inverted Dirichlet and Dirichlet, is not component-wise and it can be shown that

M(Y1, Y2) 6= M(X1,X2).

The MDI model relative to given marginal distributions, minimizes the mutual information and

has density in the form of

f∗(x1, x2|S) = C(λ,S)f1(x1)f2(x2)e−λ1T1(x1,x2)−···−λJTJ (x1,x2). (25)

For specified marginal distributions, the marginal entropies H(f1) and H(f2) are determined. Then

from the entropy representation in (24) it is clear that minimization of M(X1,X2) is equivalent to

the maximization of the joint entropy H(F ).

Dependence in an ME model is induced by the joint moments and/or the support S. Examples

of some distributions where the dependence is only due to the joint moments are bivariate normal

and lognormal and other distributions with rectangular supports shown in Table 1 and Table 3. The

bivariate normal marginals and bivariate exponential on triangle shown in Table 2 are examples of

distributions where the dependence is only due to the support. Other distributions shown in Table

2 are examples where dependence is due to joint moments and support.
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The ME distributions with joint moment constraints are two types in terms of the ME prop-

erties of their marginal distributions. For example, the marginal distributions of bivariate normal,

lognormal, Gamma-Gamma, and Marshall-Olkin’s bivariate exponential are ME models in the uni-

variate classes of distributions defined by the marginal moments in their moment information sets.

The marginal distributions of bivariate t, Pareto, bivariate conditional exponential, and absolutely

continuous bivariate exponential are not ME models in the univariate classes of distributions defined

by the marginal moments in their moment information sets.

Let T ∗
Xk

= {T ∗
jk

(Xk), jk = 1, · · · , Jk}, k = 1, 2, be the moment information sets that char-

acterize the marginal distributions of F as the ME model F ∗
k . Then the marginal distributions of

F ∗ are ME subject to the marginal moments in T if and only if each T ∗
Xk
, k = 1, 2 is congruent to

a subset TXk
⊆ T , k = 1, 2. The next result gives an information characterization of ME nested

models.

Lemma 4 The components of an ME model F ∗ are independent if and only if T ∼= T ∗
X1

∪T ∗
X2

and

S = S1 × S2, where Sk, k = 1, 2 does not depend on x`, ` 6= k = 1, 2.

Proof. For the case of J1 + J2 = J , without loss of generality, let TX1 = {Tj(X), j = 1, · · · J1}
and TX2 = {Tj(X), j = J1 + 1, · · · J}. Then it can be seen from (8) that the ME model factors as

f∗(x1, x2|S) = C(λ,S)w1(x1)w2(x2),

where
w1(x1) = e−λ1T1(x1)−···−λJ1

TJ1
(x1)

w2(x2) = e−λJ1+1TJ1+1(x2)−···−λJTJ (x2).

Observe that wk(xk) is the univariate version of the kernel of the ME density (8). That is, we must

have C(λ,S) = C1(λ,S1)C2(λ,S2), and

f∗k (xk) = Ck(λ,S)wk(xk), k = 1, 2

is the density of the univariate ME distribution subject to the respective moment constraints.

This result confirms the well-known belief that since the ME is maximally noncommittal to

missing information, in the absence of information on the dependence, the ME solution gives

independent components.

When the marginal distributions are not ME subject to the given marginal moments in T and

the dependence is only due to a set of joint moments in T , the marginal distributions are given by

fk(xk) = C(λ,S)Wk(xk)wk(xk), k = 1, 2. (26)
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where

Wk(xk) = C(λ,S)
∫

S`

w`(x`)dx`, k 6= ` = 1, 2. (27)

That is, the marginal distributions are ME subject to a set of additional marginal moments which

are not in T of the bivariate ME distributions. The marginal entropies therefore are given by

(9) that includes these additional moments. Because of these additional constraints, the marginal

entropies are lower than the above case.

The support induces dependence when its boundary is a function of x1 and x2. It is well-

known that for a rectangular support (e.g., S = <2, the first quadrant S = Q1, the unit square

S = Sq), with sides parallel to the coordinate axes when the boundary does not depend on x1 and

x2, the product decomposition implies independence (see, [17]). Note that for such a rectangular

support the dependence is only due to the joint moments and in the absence of a joint moment

M(X1,X2) = 0.

The incremental contribution of a subset of moment information set {Tj(X), j = q+1, · · · , J} ⊆
T to the information content of another subset {Tj(X), j = 1, · · · , q} ⊆ T is measured by

K(F ∗
1,···,J : F ∗

q+1,···,J |S) = H(F ∗
q+1,···,J |S) −H(F ∗

1,···,J |S); (28)

K(F ∗
1,···,J : F ∗

q+1,···,J |S) ≥ 0, where the equality holds when the additional constraints are redundant.

Next result gives mutual information for ME nested and non-nested models.

Lemma 5 Let T and T ∗
Xk
, k = 1, 2 be the information moment sets for the joint and marginal

distributions.

(a) If each T ∗
Xk
, k = 1, 2 is congruent to a subset TXk

⊆ T , k = 1, 2, then, the mutual information

(24) is given by the ME difference (28):

M(X1,X2) = H(F ∗
1,···,m|S) −H(F ∗

1,···,J |S)

= logC(λ,S) − logC1(λ,S) − logC2(λ,S) − λm+1θm+1 − · · · − λJθJ ,

where, without loss of generality, TX1 = {Tj(X1,X2) = Tj(X1), j = 1, · · · , q} and TX2 =

{Tj(X1,X2) = Tj(X2), j = q + 1, · · · ,m}, with q < m ≤ J .

(b) If each T ∗
Xk
, k = 1, 2 is not congruent to a subset TXk

⊆ T , k = 1, 2, then,

M(X1,X2) = logC(λ,S) −E log[W1(X1)] −E log[W2(X2)] + ∆′θ, (29)

where Wk(Xk) is defined in (27), ∆ = (∆1, · · · ,∆m,−1, · · · ,−1), ∆j = λj1 − λj2 is the vector

of the differences between the ME marginal and joint model parameters for the moments θ =

(θ1, · · · , θJ).
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Example 5

(a) The ME model subject to the four marginal constraints shown in (14) for the bivariate nor-

mal distribution of Example 2 is the independent normal model with H(F ∗
1,2,3,4|<2) = 1 +

log(2πσ1σ2). With the addition of E(X1X2) as the fifth constraint, the marginals are still nor-

mal and H(F ∗
1,2,3,4,5|<2) = 1+log(2πσ1σ2)+ .5 log(1−ρ2), where ρ is the correlation coefficient.

We have

M(X1,X2) = K(F ∗
1,2,3,4,5 : F ∗

1,2,3,4) = H(F ∗
1,2,3,4|<2) −H(F ∗

1,2,3,4,5|<2) = −.5 log(1 − ρ2).

(b) The ME model subject to the two marginal constraints shown in shown in Table 2 for the

bivariate distribution with normal marginals is not the independent normal model because

the support is a function of x1x2. The mutual information for this distribution is simply

M(X1,X2) = log 2.

Example 6

Consider the moment information set T = {T1(X1,X2) = X1, T2(X1,X2) = X2}.

(a) The ME model with S = <2 does not exist.

(b) Let S = Q1 = {(x1, x2) : x1, x2 ≥ 0}. Then the ME model is independent bivariate exponential.

The ME mode entropy is

H(X1,X2) = H(F ∗
1,2) = 2 − log λ∗1 − log λ∗2,

where the parameters are determined by the moments E(Xk) =
1
λ∗k

= µ∗k, k = 1, 2.

(c) Consider the moment information set T = {T1(X1,X2) = X1, T2(X1,X2) = X2, T3(X1,X2) =

X1X2}, and the rectangular support S = Q1. Then the ME model is bivariate exponential

conditional (BEC) model shown in Table 1. The marginal distributions of BEC are in the form

of (26) with

Wk(xk) =
1

1 + δλkxk
, k = 1, 2.

The marginal information moment sets T ∗
Xk

= {T1k
(Xk) = Xk, T2k

(Xk) = log(1 + δλkXk), k =

1, 2} are not congruent to any subset of T , so the dependence is not only through E(X1X2). In

this case the ME model entropy is

H(X1,X2) = H(F ∗
1,2,3) = 1 − log[λ1λ2C(δ)] +

C(δ) − 1
δ

where the BEC parameters are determined by the marginal and joint moments given by

E(Xk) =
c(δ) − 1
δλk

= µk, k = 1, 2 and E(X1X2) =
1 + δ − c(δ)

δλ3
= µ12.
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The ME entropy difference measure (28) is given by

K(F ∗
1,2,3 : F ∗

1,2) = H(F ∗
1,2) −H(F ∗

1,2,3) = 1 + log
(
λ1λ2

λ∗1λ
∗
2

)
+ log[c(δ)] − c(δ) − 1

δ
, (30)

where λ∗1 and λ∗2 are the parameters of the independent exponential model of (b). Thus, (30)

measures the incremental contribution of the joint moment E(X1X2) = µ12 to the independent

exponential. The mutual information measures departure of the BEC model from the product

of its marginals. It is given by

M(X1,X2) = − log[c(δ)] + ζ1 + ζ2 +
c(δ) − 1

δ
− 1,

where ζk = E[log(Wk(Xk)] = E[log(1 + δλkXk)].

(d) Now let S = STR = {(x1, x2) : 0 < x1 < x2}. From Table 2 we find that the bivariate

exponential on the triangle with α = 0 and β = 1 gives Half ACBE on the triangle as the ME

model. The marginal distributions have densities:

f1(x1) = (λ1 + λ2)e−(λ1+λ2)x1 , x1 > 0

f2(x2) =
λ2

λ1
(λ1 + λ2)e−λ2x2

(
1 − e−λ1x2

)
, x2 > 0.

The ME model parameters are determined by

E(X1) =
1

λ1 + λ2
= µ1, and E(X2) =

1
λ2

+
1

λ1 + λ2
= µ2.

For computing the mutual information we let Y2 = 1− e−λ1X2 . Then Y2 has a beta distribution

with density

fY2(y2) = β(β + 1)y2(1 − y2)β−1, 0 ≤ y2 ≤ 1,

where β =
λ2

λ1
. The joint distribution of (X1, Y2) has density

fX1,Y2(x1, y2) = β(λ1 + λ2)e−λ1x1(1 − y2)β−1.

Using the Kullback-Leibler representation in (24) gives

M(X1,X2) = M(X1, Y2) = − log(β + 1) + λ2E(X1) −E(log Y2)

= ψ(β + 1) − log(β + 1) + γ,

where ψ(·) is the digamma function and γ = −ψ(1) = .5772 · · · is Euler’s constant. The last

expression is obtained by noting that E(log Y2) = ψ(2)−ψ(β+2) and using ψ(z+1) = ψ(z)+1/z.

Since there is no joint moment in the information set, M(X1,X2) measures the dependency due

to the support. Note that M(X1,X2) is strictly positive, is an increasing function of β > 0, and

0 < M(X1,X2) < γ.
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Appendix

Densities of Maximum Entropy Bivariate Distributions of Table 4 are as follows.

Bivariate Weibull Conditionals density

fY (y1, y2) = C(α1, α2, τ1τ2, λ1, λ2, λ3)yα1−1
1 yα2−1

2 exp {−(λ1y1)τ1 − (λ2y2)τ2 − λ3y
τ1
1 y

τ2
2 } , y1, y2 ≥ 0

α1, α2, λ1, λ2, λ3, τ1, τ2 > 0.

Bivariate Generalized Gamma-Gamma Mix density

fY (y1, y2) =
τ1τ2λ

τ1α1
1 λτ2α2

3

Γ(α1)Γ(α2)
yτ1α1+τ2α2−1
1 yτ2α2−1

2 exp {−λ1y
τ1
1 − λτ2

3 y
τ1
1 y

τ2
2 } , y1, y2 ≥ 0

α1, α2, λ1, λ2, λ3, τ1, τ2 > 0.

Bivariate Gumbel conditionals, −∞ < x1, x2 <∞

f(x1, x2) = C(α)e−(x1+x2+e−x1+e−x2+αe−x1−x2), α ≥ 0.

Bivariate logistic density

fY (y1, y2) =
2e−(y1+y2)

1 + e−y1 + e−y2
, −∞ < y1, y2 <∞.

Muliere and Scarsini’s Pareto survival function

F̄ (y1, y2) = y−λ1
1 y−λ2

1 max(y1, y2)−λ12 , y1, y2 ≥ 1, λ1, λ2 > 0, λ12 ≥ 0.

Bivariate inverted Dirichlet density

fY (y1, y2) =
Γ(α1 + α2 + α3)
Γ(α1)Γ(α2)Γ(α3)

yα1−1
1 yα2−1

2

(1 + y1 + y2)α1+α2+α3
, y1, y2 ≥ 0

α1, α2, α3 > 0.
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