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Abstract

Coverage probabilities for prediction intervals are germane to �ltering, forecasting,
previsions, regression, and time series analysis. It is a common practice to choose the
coverage probabilities for such intervals by convention, or astute judgment. We argue
here that coverage probabilities can be chosen by decision theoretic considerations.
But to do so, we need to specify meaningful utility functions. Some stylized choices
of such functions are given, and a prototype approach is presented.
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1 Introduction and Background

Prediction is perhaps one of the most commonly undertaken activities in the physical,

the engineering, and the biological sciences. In the econometric and the social sciences,

prediction generally goes under the name of forecasting , and in the actuarial and the

assurance sciences under the label life-length assessment . Automatic process control,

�ltering, and quality control, are some of the engineering techniques that use prediction

as a basis of their modus operandus.

Statistical techniques play a key role in prediction, with regression, time series analy-

sis, and dynamic linear models (also known as state space models) being the predominant

tools for producing forecasts. The importance of statistical methods in forecasting is un-

derscored by Pearson (1920) who has claimed that prediction is the �fundamental problem

of practical statistics�. Similarly, with de Finetti (1972, Chapters 3 and 4), who labels

prediction as �prevision�, and makes it the centerpiece of his notion of �exchangeability�

and a subjectivistic Bayesian development around it. In what follows, we �nd it conve-

nient to think in terms of regression, time series analysis, and forecasting techniques as

vehicles for discussing an important aspect of prediction.

We start by noting that inherent to the above techniques is an underlying distribution

(or error) theory, whose net e¤ect is to produce predictions with an uncertainty bound;

the normal (Gaussian) distribution is typical. An exception is Gardner (1988) who uses

a Chebychev inequality in lieu if a speci�c distribution. The result of the above is a

prediction interval whose width depends on a coverage probability; see, for example,

Box and Jenkins (1976), p.254, or Chat�eld (1993). It has been a common practice

to specify coverage probabilities by convention, the 90%, the 95%, and the 99% being

typical choices. Indeed Granger (1996) states that academic writers concentrate almost

exclusively on 95% intervals, whereas practical forecasters seem to prefer 50% intervals.

The larger the coverage probability, the wider the prediction interval, and vice versa. But

wide prediction intervals tend to be of little value [cf. Granger (1996), who claims 95%

prediction intervals to be �embarassingly wide�]. By contrast, narrow prediction intervals
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tend to be risky in the sense that the actual values, when they become available, could

fall outside the prediction interval. Thus the question of what coverage probability one

should choose in any particular application is crucial.

1.1 Objective

The purpose of this article is to make the case that the choice of a coverage probability

for a prediction interval should be based on decision theoretic considerations. This would

boil down to a trade-o¤ between the utility of a narrow interval versus the disutility

of an interval that fails to cover an observed value. Hopefully, our approach endows

some formality to a commonly occurring problem that seems to have been traditionally

addressed by convention and judgment, possibly because utilities are sometimes hard to

pin down.

1.2 Related Issues

Before proceeding further, it is important to note that in the context of this article, a

prediction interval is not to be viewed as a con�dence interval . The former is an

estimate of a future observable value; the latter an estimate of some �xed but unknown

(and often unobservable) parameter. Prediction intervals are produced via frequentist or

Bayesian methods, whereas con�dence intervals can only be constructed via a frequentist

argument. The discussion of this paper revolves around prediction intervals produced by

a Bayesian approach; thus we are concerned here with Bayesian prediction intervals.

For an application of frequentist prediction intervals, the paper by Lawless and Fredette

(2005) is noteworthy; also the book by Hahn and Meeker (1991, Section 2.3), or the paper

of Beran (1990).

A decision theoretic approach for specifying the con�dence coe¢ cient of a con�dence

interval is not explored by us. All the same, it appears that some e¤orts in this direction

were embarked upon by Lindley and Savage [cf. Savage (1962), p.173, who also alludes to

some work by Lehmann (1958)]. By contrast, a decision theoretic approach for generat-

ing prediction intervals has been alluded to by Tay and Wallis (2000) and developed by
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Winkler (1972). However, Winkler�s aim was not the determination of optimal coverage

probabilities, even though the two issues of coverage probability and interval size are iso-

morphic. Our focus on coverage probability is dictated by its common use in regression,

time series analysis, and forecasting.

Finally, predictions and prediction intervals should not be seen as being speci�c to

regression and time series based models. In general they will arise in the context of any

probability models used to make previsions, such as the ones used in reliability and survival

analysis [cf. Singpurwalla (2006), Chapter 5].

2 Motivating Example

Our interest in this problem was motivated by the following scenario. For purposes of

exposition, we shall anchor on this scenario.

A university wishes to predict the number of freshman students that will be retained

to their sophomore year. Suppose that N is the number of freshman students, and X is

the number retained to the sophomore year; X � N . Knowing N , the university wishes to

predict X. The prediction is to be accompanied by a prediction interval, and the focus of

this article pertains to the width of the interval. The width of the interval determines the

amount of funds the university needs to set aside for meeting the needs of the sophomore

students. The wider the interval, the greater the reserves; however, large reserves strain

the budget. By contrast, the narrower the interval the greater is the risk of the actual

number of sophomores falling outside the interval. This would result in poor budgetary

planning due to insu¢ cient or excessive reserves. Thus a trade-o¤ between the risks of

over-budgeting and under-budgeting is called for.

The student retention scenario is archetypal because it arises in several other contexts

under di¤erent guises. A direct parallel arises in the case of national defense involving an

all volunteer �ghting force. Meaningful predictions of the retention of trained personnel are

a matter of national security. A more classical scenario is the problem of inventory control

wherein a large volume of stored items ties up capital, whereas too little inventory may
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result in poor customer satisfaction or emergency actions; see, for example, Hadley and

Whitin (1960, Chapter 4). Another (more contemporary) scenario comes from the Basel

II accords of the banking industry. Bank regulators need to assess how much capital a

bank needs to set aside to guard against �nancial risks that a bank may face; see Decamps,

Rochet and Roger (2004) for an appreciation. From the biomedical and the engineering

sciences arises the problem of predicting survival times subsequent to a major medical

intervention or a repair.

In all the above scenarios, the width of the prediction interval is determined by the

nature of an underlying probability model and its coverage probability. This point is best

illustrated by a speci�c assumption about the distribution of the unknown X; this is done

next. But before doing so, it is necessary to remark that neither the literature on inventory

control, nor that on Basel II accords, addresses the issue of optimal coverage probabilities.

In the former case, a possible reason could be the di¢ culties associated with quantifying

customer dissatisfaction.

2.1 Distributional Assumptions

Suppose that the (posterior) predictive distribution of X obtained via a regression or a

time series model is a normal (Gaussian) with a mean � and variance �2, where � and

�2 have been pinned down; the normal distribution is typical in these contexts. Then, it

is well known [cf. De Groot (1970), p.228] that under a squared error loss for prediction

error, � is the best predictor of X. For a coverage probability of (1 � �), a prediction

interval for X may be of the form � � z�=2�. Here z�=2 is such that for some random

variable W having a standard normal distribution, P (W � za=2) = �=2.

The question that we wish to address in this article is, what should � be? A small

� will widen the prediction interval diminishing its value to a user. Indeed, � = 0 will

yield the embarassing (�1;+1) as a prediction interval. By contrast, with large values

of �, one runs the risk of the prediction interval not covering the actual value (when it

materializes). Thus, we need to determine an optimum value of � to use. To address the
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question posed, we need to introduce utilities, one for the worth of a prediction interval,

and the other, a disutility, for the failure of coverage.

3 Candidate Utility Functions

Utilities are a key ingredient of decision making, and the principle of maximization of

expected utility prescribes the decision (action) to be taken; see, for example, Lindley

(1985), p.71. Utilities measure the worth of a consequence to a decision maker, and

disutilities the penalty (or loss) imposed by a consequence. With disutilities, a decision

maker�s actions are prescribed by the principle of minimization of expected disutilities.

The unit of measurement of utilities is a �utile�. However, in practice utilities are measured

in terms of monetary units, such as dollars, and this is what we shall assume.

In the context of prediction, we make the natural assumtion that, in principle, one

prefers a prediction interval of width zero over any other prediction interval. This makes

the utility of any prediction interval of non-zero width a disutility. Similarly, the failure of

any prediction interval to cover an observed value results in a disutility. Following Winkler

(1972), the two disutilities mentioned above are assumed to be additive, though this need

not be so. Thus for the scenario considered here, one endeavors to choose that value of �

for which the total expected disutility is a minimum.

3.1 The Disutility of a Prediction Interval

The width d� of a prediction interval of the type described in Section 2.1 is d� = 2z�=2�;

here the coverage probability is (1 � �). Let c(d�) be the disutility (or some kind of a

dollar penalty) associated with a use of d�. Clearly c(d�) should be zero when d� = 0,

and c(d�) must increase with d�, since there is a disadvantage to using wide intervals. A

possible choice for c(d�) could be

c(d�) = d��; (3.1)

for � > 0. When � < 1, c(d�) is a concave increasing function of d�, and when � > 1, c(d�)

is convex and increasing in d�. The choice of what � must be depends on the application.
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In certain applications, such as target tracking, � < 1 may be more desirable than � > 1;

in others, such as econometric forecasting, a convex disutility function may be suitable.

The choice of (3.1) for a disutility function is purely illustrative. The proposed approach

is not restricted to any particular choice for c(d�).

3.2 The Disutility of Non-Coverage

A possible function for the disutility caused by a failure of the prediction interval to cover

x, a realization of X, can be prescribed via the following line of reasoning.

Suppose that U� = �+z�=2� is the upper bound, and L� = ��z�=2�, the lower bound

of the (1��) probability of coverage prediction interval. Let L(d�; x) denote the disutility

or penalty loss (in dollars) in using a prediction interval of width d� when X reveals itself

as x. Then L(d�; x) could be of the form

L(d�; x) =

8>>>><>>>>:
f1(x� U�); x > U�;

0; L� < x < U�;

f2(L� � x); x < L�;

(3.2)

where f1 and f2 are increasing functions of their arguments, which encapsulate the penalty

of x overshooting and undershooting the prediction interval, respectively.

As illustrated in Figure 1, the said functions will generally be convex and increasing

because a narrow miss by the interval will matter less than a large miss. Furthermore,

these functions need not be symmetric. For example, as shown in Figure 1, the penalty

for undershooting the interval is assumed to be more severe than that of overshooting.

3.3 The Expected Total Disutility

With c(d�) and L(d�; x) thus speci�ed, there remains one caveat that needs to be ad-

dressed. When the � is chosen, the value of x is not known and thus L(d�; x) needs to be

averaged over the possible values that x can take. This is easy to do because the predictive

distribution of X has to be speci�ed. Accordingly, let

R(d�) = EX [L(d�; x)] ; (3.3)
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Figure 1: The Disutility of Non-Coverage

be the expected value of L(d�; x). In decision theory, R(d�) is known as the risk function ;

it is free of X. R(d�) encapsulates the risk of non-coverage by an interval of width d�,

with R(d�) decreasing in d�.

Since c(d�) is devoid of unknown quantities � indeed d� is a decision variable � the

matter of taking an expectation of c(d�) is moot. We may now combine c(d�) and R(d�)

to obtain the total expected disutility function as

D(d�) = c(d�) +R(d�): (3.4)

As mentioned before, the additive choice, albeit natural, is not binding. We choose that

value of � for which D(d�) is a minimum. This is described next.

4 Choosing an Optimum Coverage Probability

To make matters concrete, suppose that c(d�) =
p
d�, so that the � of Equation (3.1) is

1=2. Also, since d� = 2z�=2�, U� = �+ z�=2� can be written as U� = �+ d�=2; similarly,

L� = �� d�=2.

For the f1 and f2 of Equation (3.2), we let f1(x�U�) = (x�U�)2=40 and f2(L��x) =

(L� � x)2=10. These choices encapsulate a squared-error disutility, and make f1 and f2

asymmetric with respect to each other. Writing U� and L� in terms of d�, we have

f1(x� U�) = (x� �� d�=2)2=40, and f2(L� � x) = (�� d�=2� x)2=10.
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To compute the risk function of Equation (3.3) we need to specify � and �2 of the

normal distribution of X. Based on a Bayesian time series analysis of some student

retention data, these were determined to be � = 2140 and �2 = 396. With the above in

place, we may compute the total expected disutility as

D(d�) =
p
d� +R(d�);

where

R(d�) =
1R

�+d�=2

(x� �� d�=2)2
40

f(x)dx+
��d�=2R
�1

(�� d�=2� x)2
10

f(x)dx;

where f(x) is the probability density at x of a normally distributed random variable with

mean � and variance �2.

The computation of R(d�) has to be done numerically, and a plot of D(d�) versus d�,

for d� � 0, is shown in Figure 2.
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Figure 2: Total Expected Disutility versus d�

An examination of Figure 2 shows that D(d�) attains its minimum at d� = 62. This

suggests, via the relationship d� = 2z�=2� with �2 = 396, and a table look up in the

standard normal distribution, that the optimal coverage probability for this scenario is

0:88. Using coverage probabilities other than 0:88 � 0:90, say the conventional 0:95 or
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0:99 would yield a wider interval but the utility of such intervals would be less than that

provided by the 0:90 coverage probability.

5 Generality of the Approach and Some Caveats

The proposed approach is general because it rests on the simple principle of minimizing

D(d�), the total expected disutility function �Equation (3.4). If D(d�) attains a unique

minimum, then a unique optimal coverage probability can be arrived upon. If the minimum

is not unique then several optimal coverage probabilities will result, and the user is free to

choose any one of these. There could be circumstances under which D(d�) will not attain

a minimum, and the method will fail to produce an answer. The optimality conditions

which ensure a minimum value of D(d�) is a matter that needs to be formally addressed,

but with c(d�) monotonic and concave (or convex), and with L(d�; x) U -shaped as shown

in Figure 1, D(d�) will indeed attain a minimum. The choice of L(d�; x) prescribed in

Equation (3.1) is quite general. It is easily adaptable to one sided intervals, and also to

the inventory and banking scenarios mentioned before. Furthermore, it is conventional

in life-length prediction studies and in statistical inference wherein square error loss is a

common assumption.

The assumed distribution of X with speci�ed parameters plays two roles. One is to

average out L(d�; x) to produce the risk function R(d�). In this role the choice of the

distribution ofX is not restrictive because its purpose here is to merely serve as a weighting

function. Any well known distribution can be used, especially when R(d�) is obtained via

numerical methods, as we have done with the normal. By contrast, frequentist prediction

intervals that entail pivitol methods limit the choice of distributions. The second role

played by the distribution of X, is to facilitate a relationship between d� and �: In the

case of the normal distribution with mean � and variance �2, d� = 2z�=2�; here � does not

matter. This type of relationship will arise with any symmetrical distribution, such as the

Student�s-t, the triangular, the uniform, the Laplace, etc. A relationship between d� and

� in the case of the exponential with scale � turns out to be quite straightforward, indeed
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more direct than that encountered with the normal; speci�cally d� = 1
� log[(2��)=�]. By

suitable transformations, the case of other skewed distributions such as the lognormal, the

Weibull, and the chi-squared can be similarly treated. A di¢ cult case in point is the Pareto

distribution (popular in �nancial mathematics) wherein P (X > x; ; �) = ( =( + x))�.

Here d� =  [(1+�=2)�1=��(�=2)�1=� ], and the relationship between d� and � is involved

for the method to be directly invoked.

Finally, besides the caveat of D(d�) not having a minimum, the other caveat is the

dependence of an optimal coverage probability on data. Speci�cally, the use of a posterior

distribution of X to obtain R(d�) makes this latter quantity depend on the observed data

with the consequence that in the same problem one could conceivably end up using a

di¤erent coverage probability from forecast to forecast. Unattractive as this may sound,

it is the price that one must pay to ensure coherence. However, this dependence on the

data becomes of less concern once the posterior distribution of X converges, so that the

e¤ect of the new data on the posterior diminishes. The same situation will also arise when

the distribution of X is speci�ed via a frequentist approach involving a plug in rule.

6 Summary and Conclusions

The thesis of this article is to argue that choosing coverage probabilities for prediction

intervals should be based on decision theoretic considerations. The current practice is

to choose these by convention or astute judgment. Prediction intervals are a part of the

essentials of regression, time series, and state space models. They also occur in conjunction

with previsions based on probability models entailing the judgment of exchangeability.

Furthermore, the principles underlying the construction of prediction intervals share some

commonality with those involving inventory planning and banking reserves.

The decision theoretic approach boils down to the minimization of total expected disu-

tility. This disutility consists of two components. One is a disutility associated with the

width of the interval and the is other associated with the failure of an interval to cover

the observed value when it reveals itself. The proposed approach is illustrated via a con-
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sideration of stylized utility functions. It can be seen as a prototype for approaches based

on other utility functions. The approach also entails a use of the normal distribution to

describe the uncertainties. Again, this distributional assumption is not essential; other

distributions will work equally well.

We emphasize that the material here pertains to prediction intervals, not con�dence

intervals. It would be interesting to develop a decision theoretic approach for choosing the

con�dence coe¢ cient of a con�dence interval. To the best of our knowledge, this remains

to be satisfactorily done.
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