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Abstract

The randomized response (RR) procedures for estimating the proportion (π) of a popu-

lation belonging to a sensitive or stigmatized group ask each respondent to report a response

by randomly transforming his/her true attribute into one of several response categories. In

this paper, we present a common framework for discussing various RR surveys of dichoto-

mous populations with polychotomous responses. The unified approach is focused on the

substantive issues relating to respondents’ privacy and statistical efficiency and is helpful

for fair comparison of various procedures. We describe a general technique for obtaining

unbiased estimators of π based on RR data, from unbiased estimators of π based on open

surveys. The technique works well for any sampling design p(s) and also for variance esti-

mation. We develop an approach for comparing RR procedures, taking both respondents’

protection and statistical efficiency into account. For any given RR procedure with three or
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more response categories, we present a method for designing an RR procedure with a binary

response variable which provides the same respondents’ protection and at least as much sta-

tistical information. This result suggests that RR surveys of dichotomous populations should

use only binary response variables.

Key words and Phrases: Design unbiasedness, Fisher information, respondents’ protection,

sampling design, variance estimator.
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1. Introduction.

In most surveys, the individuals selected in the sample are asked to answer direct questions re-

lating to the survey variables. However, for questions on sensitive or stigmatizing characteristics

such as criminal history, tax evasion, drug abuse, gambling and abortion, many respondents

are unwilling to give honest answers, if at all they respond in the first place. The refusals and

false answers lead to biased and unreliable estimates. The main reason for lack of respondents’

cooperation is the lack of privacy. To increase truthful respondent participation, Warner (1965)

proposed the first randomized response (RR) procedure for a binary characteristic, which we

briefly review next. Consider a dichotomous population where each person belongs either to a

sensitive group A or to its complement Ac. The objective is to estimate the true proportion (π)

of the population that belongs to group A. In Warner’s (1965) method, each interviewee first

selects one of the two questions:

Q1: Do you belong to A?

Q2: Do you belong to Ac?

with respective probabilities p and (1− p), by performing a random experiment, unobserved by

the interviewer. The respondent then truthfully replies “Yes” or “No” to the selected question

without disclosing the question and thereby protecting his/her privacy. The probabilities p and

(1 − p) are known and are embedded in the randomization mechanism. In this scheme, the

probability of the “Yes” response is:

PW (Yes) = λW = πp+ (1− π)(1− p) = (1 − p) + (2p− 1)π.

Let n denote the sample size and X denote the number of “Yes” responses. Considering

p 6= 0.5 and simple random sampling with replacement (SRSWR), where X ∼ b(n, λW), Warner
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(1965) proposed the following method of moments estimator of π:

π̂W =
λ̂W − (1 − p)

2p− 1
,

where λ̂W = X/n. The variance of π̂W is

V ar(π̂W ) =
λW (1− λW )
n(2p− 1)2

=
π(1− π)

n
+

p(1 − p)
n(2p− 1)2

. (1.1)

The last two terms of (1.1) represent, respectively, the variance of the minimum variance unbi-

ased estimator of π from an open (or direct) survey and the additional variance due to random-

ization. Both the variance of π̂W and the degree of respondents’ privacy depend on the value of

p.

Greenberg et al. (1969) discussed a related procedure, called Simmons’ unrelated question

method, in which the question Q2 in Warner’s method is replaced by an unrelated nonsensitive

question:

Q3: Do you belong to B?

An example of an unrelated question is: were you born in the month of June? The probabilities

of “yes” (Y ) and “no” (N) responses to Q3 may be known, in which case, a method of moments

estimator (π̂U) of π can be derived easily. Greenberg et al. (1969) showed that V ar(π̂U) is smaller

than V ar(π̂W ) when the probability (p) of asking the direct question Q1 is the same in the two

methods. As noted by Leysieffer and Warner (1976) and Fligner et al. (1977), that comparison

is not fair because the two procedures, with a common value of p, offer different degrees of

privacy to the respondents. For fair comparison, the two procedures should be required to offer

equal respondents’ protection. Several other RR methods have been proposed and investigated

in the literature, e.g., Chaudhuri and Mukerjee (1988), Kuk (1990), Mangat and Singh (1990),

Mangat (1994) and Kim and Warde (2004). However, some of the efficiency comparisons, e.g.,
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Greenberg et al. (1969), Mangat and Singh (1990) and Mangat (1994), are flawed as they do

not hold respondents’ protection at the same level.

Various RR methods can be found in the literature, but each RR procedure has usually been

discussed using features (parameters) that are specific to its randomization mechanism. Often

the randomization mechanisms of two procedures share a common element, but with different

effect on privacy and efficiency of the two procedures. For example, the question Q1 is common

to Warner’s and Simmons’ procedures, but the probability (p) of asking Q1 affects respondents’

protection and statistical efficiency differently for the two procedures; see Fligner et al. (1977) for

a more detailed discussion and some numerical illustrations. Some unfair comparisons stemmed

from considering two procedures with a common randomization parameter, but with disparate

impact on respondents’ protection, and then comparing variances of the estimators proposed

under the two procedures. We believe, misleading comparisons could be avoided by discussing

various RR procedures within a common framework. A general framework is also important

for identifying and placing the substantive logical issues at the forefront. For binary response

RR surveys of dichotomous populations, Nayak (1994) proposed a unified framework, which we

briefly discuss below.

Let Y be an indicator of the sensitive characteristic, viz., Y = 1 if the respondent belongs

to the sensitive group A and Y = 0 otherwise. Let Z = 0 and Z = 1 label the two response

categories. For example, in Warner’s and Simmons’ procedures, the “Yes” and “No” responses

may be recorded as Z = 1 and Z = 0, respectively. Let, a and b denote P (Z = 1|Y = 1) and

P (Z = 1|Y = 0), respectively. Then, the posterior probabilities of Y = 1, which determine the
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level of respondents’ privacy, are:

P (Y = 1|Z = 1) =
aπ

aπ + b(1− π)

P (Y = 1|Z = 0) =
(1 − a)π

(1 − a)π + (1− b)(1− π)
.

Let n denote the sample size and X denote the number of respondents reporting Z = 1. Then,

under the common assumptions of simple random sampling with replacement (SRSWR) and

truthful answering, X ∼ b(n, θ), where θ = aπ + b(1 − π). It can be seen that if a 6= b, the

uniformly minimum variance unbiased estimator of π, based on X , is

π̂ = (
X

n
− b)/(a− b)

and its variance is V (π̂) = θ(1 − θ)/[n(a − b)2]. If a and b are known and are determined

only by the randomization mechanism, as is the case for most binary response RR procedures,

all statistical properties, including protection of privacy and accuracy of statistical inferences,

depend on the randomization step only through the values of a and b. So, such procedures

can be characterized by a and b, taking them as the RR design parameters. Thus, a unified

approach ensues from discussing various binary response RR procedures in terms of their design

parameters a and b.

Remark 1. Any one-to-one transformation of (a, b) can also be used as the RR design

parameters for developing a unified framework. In particular, Nayak (1994) used P (Y es|A)

and P (No|Ac) as the RR design parameters, which correspond to our a and 1 − b if Z = 1

and Z = 0 represent the “Yes” and “No” responses, respectively. Leysieffer and Warner (1976)

expressed respondents’ protection and V ar(π̂) in terms of u = a/b and v = (1 − b)/(1− a). As

the transformation {a, b} → {u, v} is one-to-one, a unified framework can also be developed in

terms of u and v.
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Remark 2. As it was noted in Nayak (1994), the interchanging of the two responses “Yes”

and “No” (or equivalently Z = 1 and Z = 0) does not alter any statistical property of a

procedure, which implies that for any 0 ≤ a, b ≤ 1, the two RR procedures with RR design

parameters (a, b) and (1 − a, 1 − b), respectively, are equivalent. For unique representation, we

may impose the restriction a > b and take {(a, b) : 0 ≤ a, b ≤ 1, a > b} as the RR design space.

In this framework, Nayak (1994) showed that respondents’ protection and statistical efficiency

do not necessarily move in opposite directions and an RR design (a, b) is admissible if and only

if a = 1.

Remark 3. The general framework presented above covers all binary response RR procedure

for which the randomization probabilities a and b are known. It does not cover Simmons’ two

sample procedure, where the probability of the “Yes” answer to Q3 is unknown and the sampled

individuals are divided into two groups to receive the questions Q1 and Q3 with different but

known probabilities (Greenberg et al., 1969).

Some RR procedures proposed in the literature use polychotomous responses (e.g., Leysieffer

and Warner, 1976; Kuk, 1990; Christofides, 2003). In Chow’s procedure, discussed in Leysieffer

and Warner (1976), each respondent selects k balls at random, without replacement and un-

observed by the interviewer from an urn containing L red and M blue balls, where L and M

are known and k ≤ min{L,M}. The respondent then reports the number of red balls if he/she

belongs to the sensitive group A; otherwise he/she reports the number of blue balls. Christofides

(2003) proposed a similar, albeit more general, procedure where each person in the sample is

provided with a device which produces the integers 1, · · · , k with known probabilities p1, · · · , pk,

respectively. Each respondent uses the device, in the absence of the interviewer, to produce one

integer J and then reports the value of (k + 1 − J) if he/she belongs to A; otherwise, he/she
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reports the value of J . In Kuk’s (1990) repeated trials design, each respondent is given two

decks of cards. Both decks comprise of cards of two colors, say red and blue, but with different

proportions. A respondent selects k cards at random and with replacement from deck 1(2) if

he/she belongs to A(Ac) and reports the number of red cards selected. In all of these procedures,

the response variable Z is integer valued and the probabilities {P (Z = z|A)} and {P (Z = z|Ac)}

are known and specified by the randomization device.

The main goals of this paper are to present a unified framework for RR surveys of dichoto-

mous populations with polychotomous response variables, discuss unbiased estimation under

general sampling designs and compare RR surveys, paying attention to both respondents’ pro-

tection and statistical efficiency. In Section 2, we lay out a unified framework and express

privacy measures and some basic statistical entities in terms of the randomization parameters.

We hope the proposed framework will be helpful for thinking in a principled way about privacy

and statistical efficiency. Most papers present estimators for SRSWR, but many surveys employ

unequal probability sampling, e.g., stratified and multi-stage sampling. In Section 3, we discuss

unbiased estimation of π and variances of estimators under a general sampling design p(s). Fol-

lowing Padmawar and Vijayan (2000) and Chaudhuri (2001, 2004), we present a technique for

amending a linear unbiased estimator under an open survey to obtain an unbiased estimator for

an RR survey. We also uncover and discuss an arbitrariness inherent in that approach. In Sec-

tion 4, we compare RR surveys taking both respondents’ protection and statistical information

into account. We find that use of polychotomous responses is not really helpful for sampling

dichotomous populations. Specifically, given any RR procedure with a polychotomous response

variable, we can devise a better RR procedure using a dichotomous response variable. Section

5 presents some concluding remarks.
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2. A Unified Framework.

Let us now consider RR surveys of dichotomous populations using polychotomous response

variables. As before, let Y = 1 if the respondent belongs to the sensitive group A and Y = 0 if

the respondent belongs to Ac and let π = P (Y = 1) be the unknown parameter of interest. We

shall denote the response variable by Z, the number of response categories by k(k ≥ 2) and the

possible responses by c1, · · · , ck, satisfying ci 6= cj for i 6= j. Further, let αi = P (Z = ci|Y =

1), βi = P (Z = ci|Y = 0) for i = 1, · · · , k, ~α = (α1, ..., αk) and ~β = (β1, ..., βk). For uniqueness of

k, we shall require that min(αi, βi) > 0, i = 1, · · · , k. We shall call a RR survey with k response

categories a (2 → k) RR survey. The binary response surveys, as considered in Nayak (1994),

correspond to k = 2. We shall consider all (2 → k) RR surveys with known ~α and ~β, noting

that for protecting respondent’s privacy it is not necessary to use a randomization device for

which ~α and ~β are unknown.

Let θi denote P (Z = ci), i.e., θi = αjπ + βj(1 − π). Then, the posterior probabilities which

determine the level of respondents’ privacy are:

P (A|Z = cj) =
αjπ

αjπ + βj(1− π)
=

π

π + (βj/αj)(1− π)
, j = 1, · · · , k. (2.1)

For i = 1, · · · , k, let Xi denote the observed frequency of the response ci. Then, under SRSWR,

(X1, · · · , Xk) ∼mult(n; θ1, · · · , θk) with probability mass function

fπ(x1, · · · , xk) = P (X1 = x1, · · · , Xk = xk) =
n!

x1! · · ·xk!
θx1
1 · · ·θxk

k .

The maximum likelihood estimate (MLE) of π, based on (X1, · · · , Xk), is the solution of

∂

∂π
ln fπ(x1, · · · , xk) = 0 or

k∑

i=1

xi(αi − βi)
αiπ + βi(1− π)

= 0,
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provided that the solution is in [0, 1]. In the case of sampling from an infinite population, the

Fisher information in a single response is

i(π) =
k∑

i=1

(αi − βi)2

αiπ + βi(1− π)

and the asymptotic distribution of the MLE (π̂ML) is normal:

√
n(π̂ML − π) L→ N(0, i(π)) as n→ ∞,

which can be used to construct large sample confidence intervals for π. Note that the posterior

probabilities in (2.1), the distribution of (X1, · · · , Xk) and the Fisher’s information depend on

the randomization mechanism only through ~α and ~β. Thus, all (2 → k) RR procedures can be

characterized by the values of ~α and ~β. This implies that for designing a (2 → k) RR survey

we should first determine the values of ~α and ~β and then devise a mechanism for implementing

them. For a unified approach, we suggest to take (~α, ~β) as the RR design parameters and discuss

and examine all (2 → k) RR procedures through them.

Remark 4. The ordering of the k response categories should have no bearing on the

substantive properties of a (2 → k) RR design. A (2 → k) RR design essentially remains

unchanged under any permutation of the response categories and corresponding permutations of

the components of ~α and ~β. Thus, for any (~α, ~β) = (α1, · · · , αk, β1, · · · , βk) and any permutation

(i1, · · · ik) of (1, · · · , k), the two (2 → k) RR designs with randomization probabilities (~α, ~β)

and (αi1 , · · · , αik , βi1, · · · , βik), respectively, are equivalent. This implies that any (2 → k) RR

design can be characterized by many different sets of values of the RR design parameters (~α, ~β),

generated by permutations of the response categories. So, for unique characterization of a

(2 → k) RR design by (~α, ~β), we need a convention for ordering the response categories. One

possibility is to order the categories first by the values of {αi} and then by the β values, i.e.,
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require that α1 ≥ · · · ≥ αk and if αj = · · · = αj+m for any j and m, then βj ≥ · · · ≥ βj+m.

Noting that the posterior probability P (A|Z = cj) in (2.1) depends on ~α and ~β only through

the ratio (αi/βi) and P (A|Z = cj) is an increasing function of (αi/βi), we believe a more

meaningful approach would be to order the categories first in decreasing order of magnitude of

(αi/βi), i.e., in decreasing order of the probability of being classified in the sensitive group A,

and then by decreasing order of magnitude of {αi}. Thus, to make (~α, ~β) unique we suggest to

require (α1/β1) ≥ · · · ≥ (αk/βk) and if (αj/βj) = · · · = (αj+m/βj+m) for any j and m, then

αj ≥ · · · ≥ αj+m.

3. Estimation.

While most authors discussed statistical analyses of RR data assuming random sampling from

an infinite population or SRSWR, practical surveys often involve complex survey designs and

many variables, only a few of which may be sensitive. Thus, it is important to derive estimators

based on RR data and unequal probability sampling. For a quantitative response variable,

Padmawar and Vijayan (2000) discussed linear unbiased estimation of a finite population total

based on RR data obtained under a general sampling design. Analogously, Chaudhuri (2001,

2004) presented linear unbiased estimators of a population proportion (π) based on certain RR

procedure including the Christofides’ (2003) procedure. Specifically, they showed how a linear

unbiased estimator based on an open survey can be modified to obtain an unbiased estimator

under an RR survey. They also discussed unbiased estimation of the variance of the estimators

from RR survey data. In this section, we first develop similar results for a general (2 → k) RR

procedure and then discuss an arbitrariness of the approach.
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3.1. Estimation of π.

Consider a finite population of N units, labeled i = 1, · · · , N , and let Yi denote the value of

Y (an indicator of the sensitive variable) for unit i. Let Zi denote the response of unit i and

suppose the sample is selected using a non-informative sampling design p(s). So, the data can

be represented as {(i, Zi); i ∈ s}, where s is a subset of {1, · · · , N}, and our goal is to estimate

π = (
∑N

i=1 Yi)/N . Note that while Yi are fixed, Zi are random variables, and estimation of π is

equivalent to estimation of the population total T (Y ) =
∑N

i=1 Yi.

Suppose

e(s, y) = ws0 +
∑

i∈s

wsiYi (3.1)

is a linear unbiased estimator T (Y ), i.e.,

Ep[e(s, y)] =
∑

s

e(s, y)p(s) =
N∑

i=1

Yi for all Y1, · · · , YN

or equivalently,

∑

s

ws0p(s) = 0 and
∑

s3i

wsip(s) = 1, i = 1, · · · , N.

To extend Chaudhuri’s (2001, 2004) results, in this section we shall require c1, · · · , ck to be real

numbers. Then, since P (Z = cj |Y = 1) = αj and P (Z = cj |Y = 0) = βj , we have

E[Z|Y = 1] =
k∑

j=1

αjcj and E[Z|Y = 0] =
k∑

j=1

βjcj

or

E[Z|Y ] =
k∑

j=1

βjcj + [
k∑

j=1

(αj − βj)cj ]Y = d1 + d2Y, say,

where d1 =
∑k

j=1 βjcj and d2 =
∑k

j=1(αj − βj)cj . So, if d2 6= 0, i.e., (~α − ~β) is not orthogonal

to ~c = (c1, · · · , ck), letting U = (Z − d1)/d2, it follows that ER(U) = E(U |Y ) = Y , where ER
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denotes expectation with respect to the randomization mechanism. Let

e∗(s, z) = ws0 +
∑

i∈s

wsiUi = w∗
s0 +

∑

i∈s

w∗
siZi, (3.2)

where w∗
s0 = ws0 − (d1/d2)

∑
i∈s wsi and w∗

si = wsi/d2. Then, it can be seen that

E[e∗(s, z)] = EpER[ws0 +
∑

i∈s

wsiUi] = Ep[e(s, y)] = T (Y ).

Thus, we have the following:

Theorem 1. For any given sampling design p(s), if e(s, y) in (3.1) is a linear design unbiased

estimator of the population total T (Y ) =
∑N

i=1 Yi based on the open survey, then the estimator

e∗(s, z) in (3.2) is a linear design unbiased estimator of T (Y ) based on the RR survey with RR

design (~α, ~β) and sampling design p(s).

Conversely, from any given linear unbiased estimator for an RR survey we can derive a linear

unbiased estimator for an open survey. Specifically, suppose e∗(s, z) = bs0 +
∑

i∈s bsiZi is an

unbiased estimator of T (Y ) based on an RR survey, i.e.,

T (Y ) = EpER[bs0 +
∑

i∈s

bsiZi] = Ep[b∗s0 +
∑

i∈s

b∗siYi], (3.3)

where b∗s0 = bs0 + d1
∑

i∈s bsi and b∗si = d2bsi. Then, (3.3) shows that e(s, y) = b∗s0 +
∑

i∈s b
∗
siYi is

a linear unbiased estimator of T (Y ) based on the corresponding open survey. Thus, for a given

sampling design p(s), the two classes of all linear unbiased estimators of π based on an open

survey and an RR survey, respectively, are isomorphic.

3.2. Variance Estimation.

We shall now focus on the variance of the estimator e∗(s, z), defined in (3.2). First note that

V [Z|Y = 1] =
k∑

j=1

αjc
2
j − (

k∑

j=1

αjcj)2 = v1 and V [Z|Y = 0] =
k∑

j=1

βjc
2
j − (

k∑

j=1

βjcj)2 = v0
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and hence we can write

V [Z|Y ] = v0 + (v1 − v0)Y. (3.4)

Using (3.4), the variance of e∗(s, z) can be written as

V (e∗(s, z)) = EpVR(e∗(s, z)|s, Y ) + VpER(e∗(s, z)|s, Y )

= Ep[
∑

i∈s

w2
si

d2
2

(v0 + (v1 − v0)Yi)] + Vp(e(s, y)). (3.5)

The first term in (3.5) is the extra variation due to randomization. Noting that in our application

Y 2
i = Yi, it can be seen that

Vp(e(s, y)) = Ep{e(s, y)}2 − {Ep(e(s, y))}2

=
∑

s

w2
s0p(s) +

N∑

i=1

Yi

∑

s3i

(w2
si + 2ws0wsi)p(s) +

N∑

i,j=1

i 6=j

YiYj

∑

s3i,j

wsiwsjp(s) − (
N∑

i=1

Yi)2

= g0 +
N∑

i=1

giYi +
N∑

i,j=1

i 6=j

gijYiYj , say,

where,

g0 =
∑

s

w2
s0p(s), gi =

∑

s3i

(w2
si + 2ws0wsi)p(s)− 1, and gij =

∑

s3i,j

wsiwsjp(s) − 1.

Now we discuss how an unbiased estimator of V (e∗(s, z) can be obtained from an unbiased

estimator of Vp(e(s, y) based on an open survey. Let dsi and dsij be such that

∑

s3i

dsip(s) = gi, and
∑

s3i,j

dsijp(s) = gij

so that

t(s, y) = g0 +
∑

i∈s

dsiYi +
∑

i,j∈s

i 6=j

dsijYiYj

is an unbiased estimator of Vp(e(s, y)) based on the open survey data. A specific unbiased

estimator of Vp(e(s, y)) is obtained by using dsi = gi/πi and dsij = gij/πij , where πi =
∑

s3i p(s)
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and πij =
∑

s3i,j p(s). The following result can now be established using the fact thatER(U |Y ) =

Y .

Theorem 2. An unbiased estimator of V (e∗(s, z)), based on RR survey data, is given by

t∗(s, z) = g0 +
∑

i∈s

dsiUi +
∑

i,j∈s

i 6=j

dsijUiUj +
∑

i∈s

w2
si

d2
2

(v0 + (v1 − v0)Ui).

Remark 5. So far we have assumed that the randomization probabilities {αj , βj} are the

same for all population units. However, in some situations, especially in stratified sampling,

as discussed in Kim and Warde (2004) and Christofides (2005), the randomization probabilities

may vary over the populations units. We note that the above discussed technique for deriving

unbiased estimators based on a RR survey from unbiased estimators based on an open survey

also works for varying randomization probabilities. Suppose the randomization probabilities for

unit i are (~αi, ~βi) = (αi1, · · · , αik, βi1, · · · , βik), i = 1, · · · , N . Then letting di1 =
∑k

j=1 βijcj , di2 =

∑k
j=1(αij − βij)cj and Ui = (Zi − di1)/di2, it can be seen that e∗(s, z) = ws0 +

∑
i∈s wsiUi is an

unbiased estimator of T (Y ). Furthermore, letting

vi0 = V [Zi|Yi = 0] =
k∑

j=1

βijc
2
j − (

k∑

j=1

βijcj)2 and vi1 = V [Zi|Yi = 1] =
k∑

j=1

αijc
2
j − (

k∑

j=1

αijcj)2,

we can verify that the variance of e∗(s, z) is

V (e∗(s, z)) = Ep[
∑

i∈s

w2
si

d2
i2

(vi0 + (vi1 − vi0)Yi)] + Vp(e(s, y)). (3.6)

and an unbiased estimator of (3.6) is

t∗(s, z) = g0 +
∑

i∈s

dsiUi +
∑

i,j∈s

i 6=j

dsijUiUj +
∑

i∈s

w2
si

d2
i2

(vi0 + (vi1 − vi0)Ui).

We may also mention that following Chaudhuri (2001, 2004), one can express V (e∗(s, z)) in

other forms and thence obtain other unbiased estimators of it.
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3.3. An Arbitrariness of e∗(s, z).

We note that the construction of e∗(s, z) from a given open survey estimator e(s, y), discussed

above, depends on the numerical values c1, · · · , ck used to label the response categories of the

RR procedure. For a given sampling design p(s) and a given unbiased estimator for the open

survey, the technique yields many unbiased estimators for an RR survey (with k ≥ 3), by

associating different sets of numbers to the response categories. To put this in another way,

let c∗i = ψ(ci), i = 1, · · · , k be a transformation of {c1, · · · , ck}. Then it can be seen that

E[ψ(Z)|Y ] = d∗1 + d∗2Y , where d∗1 =
∑k

j=1 βjψ(cj) and d∗2 =
∑k

j=1(αj − βj)ψ(cj) and if d∗2 6= 0,

letting U∗ = (ψ(Z)− d∗1)/d
∗
2, it follows that ER(U∗|Y ) = Y , and

e∗∗(s, z) = ws0 +
∑

i∈s

wsiU
∗
i = w∗∗

s0 +
∑

i∈s

w∗∗
si ψ(Zi),

where w∗∗
s0 = ws0 − (d∗1/d

∗
2)

∑
i∈swsi and w∗∗

si = wsi/d
∗
2, is an unbiased estimator of T (Y ) based

on the RR survey. Thus, from a given e(s, y), we can construct many unbiased estimators of

T (Y ) based on the RR survey, by employing different transformations ψ(.).

In view of the above discussion, we may choose c1, · · · , ck to minimize the variance in (3.5).

Since the second term of (3.5) does not depend on c1, · · · , ck we need to consider only the first

term. First, it is seen easily that (Z − d1)/d2 and e∗(s, y) are invariant under location and scale

transformations of c1, · · · , ck, i.e., under ci → γci + δ, i = 1, · · · , k, for all γ, δ. From this, it can

also be seen that for k = 2, i.e., for a (2 → 2) RR design, e∗(s, z) is unique, independent of the

choice of c1 and c2. So the estimation methods discussed earlier is well defined for (2 → 2) RR

designs. For k ≥ 3, without loss of generality (in view of the above mentioned invariance under

location and scale transformations), we impose the restrictions:

k∑

i=1

αici = 1 and
k∑

i=1

βici = 0. (3.7)

16



Then, d1 = 0, d2 = 1, v0 =
∑k

i=1 c
2
iβi and v1 =

∑k
i=1 c

2
iαi − 1, and the first term of (3.5) reduces

to

Ep[
∑

i∈s

w2
si

d2
2

(v0 + (v1 − v0)Yi)] = v0
∑

s

{
∑

i∈s

w2
si}p(s) + (v1 − v0)

N∑

i=1

Yi

∑

s3i

w2
sip(s)

= A1(
k∑

i=1

c2iαi − 1) + A2(
k∑

i=1

c2iβi), (3.8)

where

A1 =
N∑

i=1

Yi

∑

s3i

w2
sip(s) and A2 =

∑

s

{
∑

i∈s

w2
si}p(s)− A1.

Now, using Lagrangian multipliers, it can be seen that (3.8) is minimized, subject to (3.7), by

ci =
D2αi −D3βi

(D1D2 −D2
3)(A1αi +A2βi)

, i = 1, · · · , k, (3.9)

where,

D1 =
k∑

i=1

α2
i

A1αi + A2βi
, D2 =

k∑

i=1

β2
i

A1αi + A2βi
and D3 =

k∑

i=1

αiβi

A1αi + A2βi
.

The optimum values in (3.9) depend on the sampling design p(s), the estimator e(s, y) for the

open survey and also on Y1, · · · , YN , which are unknown. However, the {ci} in (3.9) depend on

Y1, · · · , YN only through A1, which may be approximated by

A1 ≈ π
N∑

i=1

∑

s3i

w2
sip(s).

4. Comparison of RR Procedures.

For comparing two RR procedures one should examine both statistical information and respon-

dents’ privacy offered by the two procedures. Several authors, including Leysieffer and Warner

(1976), Lanke (1976) and Fligner et al. (1977), suggested to compare statistical efficiency, e.g.,
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variances of the estimators, of competing procedures while requiring them to offer the same

degree of respondents’ protection. We shall adopt this approach. The variance of an estimator

depends not only on the RR design but also on the choice of the estimator. So for compar-

ing statistical efficiency of two designs, it may be more appropriate to compare some measure

of “statistical information” afforded by the two designs. In the following, we shall use Fisher

information to compare statistical efficiencies of two RR designs.

We now suggest a criterion for controlling respondents’ protection. We start our deliberation

with the posterior probabilities in (2.1), which are the determinants of respondents’ privacy. The

response cj alters the probability of the respondent’s belonging to A by the factor rj = P (A|Z =

cj)/π. The ratio rj may be taken as a measure of respondents’ hazard yielded from reporting

the response cj . Clearly, the respondents’ hazards r1, · · · , rk corresponding to the responses

c1, · · · , ck may be different and a response cj is hazardous only if rj > 1. Logically, a (2 → k)

RR design is totally non-hazardous if all posterior probabilities equal the prior probability (π),

i.e., r1 = · · · = rk = 1. However, it can be seen that r1 = · · · = rk = 1 if and only if αj = βj for

j = 1, · · · , k, in which case, θj = P (Z = cj), j = 1, · · · , k, are independent of π and hence the data

do not contain any information on π. Thus, to be statistically useful, the design cannot be totally

non-hazardous and some rj must be greater than one. Let (αi1, · · · , αik, βi1, · · · , βik), i = 1, 2

be two (2 → k) RR designs with respondents’ hazards (ri1, · · · , rik), i = 1, 2. Strictly speaking,

these two RR designs offer equal respondents’ protection if and only if r1j = r2j, j = 1, · · · , k.

However, this can be satisfied if and only if α1j = α2j and β1j = β2j for j = 1, · · · , k (assuming

that the design parameters are specified uniquely following a convention, as discussed in Remark

4), i.e., the two designs are the same. Thus, to proceed further we need to employ a weaker

criterion for defining equal respondents’ protection.
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It seems sensible to work with the maximum respondents’ hazard: MRH = max{P (A|Z =

c1)/π, · · · , P (A|Z = ck)/π} = max{r1, · · · , rk}. This MRH measure is similar to the “primary

protection” measure of Fligner et al. (1977). Two RR designs will be considered to offer

equal respondents’ protection if they have the same MRH value. For controlling respondents’

protection, it seems sensible to require the MRH value to be less than a pre-specified number.

Several authors, e.g., Anderson (1976), Lanke (1976), Leysieffer and Warner (1976) and Fligner

et al. (1977), essentially suggested this approach. However, the values of rj and hence MRH

depend on the unknown parameter π. Thus, in practice, we would need to put an upper bound

on MRH for a specific value of π. Since P (A|Z = cj)/π is an increasing function of (αj/βj),

putting an upper bound on MRH , for a specific value of π, is equivalent to putting an upper

bound on max{α1/β1, · · · , αk/βk}. Thus, we shall take

R(~α, ~β) = max{α1

β1
, · · · , αk

βk
} (4.1)

as our measure of the degree of privacy afforded by the (2 → k) RR design (~α, ~β). It can be

seen that two RR designs (~α1, ~β1) and (~α2, ~β2) have a common value of MRH if and only if

they have same value for R, i.e., R(~α1, ~β1) = R(~α2, ~β2). Noting that

αj

βj
=

P (Z = cj |A)
P (Z = cj |Ac)

=
P (A|Z = cj)/P (A)
P (Ac|Z = cj)/P (Ac)

, j = 1, · · · , k,

the ratios {αj/βj} may be regarded as Bayes factors. They were used by Leysieffer and Warner

(1976) in their discussion of respondents’ protection.

In summary, for comparing two procedures, we suggest to hold the privacy measure in

(4.1) equal for the two procedures and then compare statistical efficiency, measured by Fisher

information. Using this approach, we shall next show that for any (2 → k) design with k ≥ 3,

there exists a better (2 → 2) design. The result also helps us to identify the most efficient RR
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design at any given level of privacy protection.

Theorem 3. Let D be any (2 → k) RR design with k ≥ 3 and randomization parameters

(~α, ~β). Then, there exists a (2 → 2) RR design D0 which provides the same respondents’

protection, measured by (4.1), as D and at least as much statistical information as D.

Proof. For notational simplicity, without loss of generality suppose that α1/β1 = max{αj/βj}.

If (α1/β1) = 1, the data do not contain any information on π. So, we shall only consider the

case of (α1/β1) > 1. Let b0 = β1/α1(< 1) and D0 be the (2 → 2) RR design with response

variable V and P (V = 1|A) = 1 and P (V = 1|Ac) = b0. It is easy to verify that D0 and D offer

the same degree of respondents’ protection, as measured by (4.1).

Next we shall show that D is equivalent to post-randomizing the data generated by D0. Let

~γ = (γ1, · · · , γk) = (~β − b0~α)/(1− b0), and randomly transform V to c1, · · · , ck according to the

probabilities P (cj |V = 1) = αj and P (cj |V = 0) = γj for j = 1, · · · , k, and denote the resulting

variable by Z. From the fact that α1/β1 ≥ αi/βi, i = 1, · · · , k, it can be checked easily that

γi ≥ 0, i = 1, · · · , k and
∑k

i=1 γi = 1, i.e., ~γ is a probability vector. We may also note that the

transformation of V to Z is performed without using the true category of the respondent or the

true value of π. Now, it follows easily that for i = 1, · · · , k,

P (Z = ci|A) = P (Z = ci|V = 1)P (V = 1|A) + P (Z = ci|V = 0)P (V = 0|A) = αi (4.2)

and

P (Z = ci|Ac) = P (Z = ci|V = 1)P (V = 1|Ac) + P (Z = ci|V = 0)P (V = 0|Ac) = βi. (4.3)

So, generating data using D is equivalent to first generating data using D0 and then randomizing

them using the known probabilities {αi} and {γi}.
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In effect, D adds “random noise” to the data generated byD0, from which it is quite intuitive

thatD0 is more informative thanD. This can be established formally following Anderson (1977),

as discussed below. Let IV (π), IZ(π) and IV Z(π) denote Fisher’s information on π contained

in V, Z and (V, Z), respectively. Then from general properties of Fisher’s information it follows

that

IV Z(π) = IV (π) + IZ|V (π) = IZ(π) + IV |Z(π), (4.4)

where IZ|V (π) is the average conditional information in Z given V and IV |Z(π) is defined sim-

ilarly. Since the conditional distribution of Z given V does not depend on π, IZ|V (π) = 0 and

(4.4) implies that

IV (π)− IZ(π) = IV |Z(π) ≥ 0,

which completes the proof of the theorem.

The proof of Theorem 3 shows that D is as informative as D0 only when IV |Z(π) = 0, or

equivalently, the conditional distribution of V given Z is independent of π. Note that

Pπ(V = 1|Z = cj) =
αjπ + αj(β1/α1)(1− π)

αjπ + βj(1− π)

is independent of π if and only if αj(β1/α1) = βj , i.e., αj/βj = α1/β1. So, the conditional

distribution of V given Z is independent of π if and only if α1/β1 = · · · = αk/βk, i.e., αj = βj

for j = 1, · · · , k, in which case D is non-informative. Thus, for any informative design D,

IV |Z(π) > 0 and hence D0 is more informative than D.

Our proof of Theorem 3 is constructive; we not only show existence of a better design D0 but

also provide a recipe for finding one. The main implication of Theorem 3 is that for surveying

dichotomous populations one should use only binary response variables, i.e., use only (2 → 2)

RR designs. Then, Nayak’s (1994) admissibility result (see, Remark 2) suggests that one should
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use only (2 → 2) RR designs with P (Y es|A) = 1. The design D0, constructed in the proof of

Theorem 3, is an admissible design. From Nayak (1994) and our Theorem 3 it can be seen that

the best RR design at a specified level (r ≥ 1) of the privacy measure R(~α, ~β) is the (2 → 2)

design with α1 = 1, α2 = 0, β1 = 1/r and β2 = 1 − 1/r.

Remark 6. Information domination of D0 over D can also be seen using Blackwell’s (1951)

ideas for comparing statistical experiments. Equations (4.2) and (4.3) show that D0 is sufficient

for D, by Blackwell’s definition of sufficiency. Then, from Blackwell (1953) it follows that for

every loss function L(π, π̂) and any estimator π̂D based on D, there exists an estimator π̂∗ based

on D0 such that E[L(π, π̂∗)] ≤ E[L(π, π̂)] for all 0 ≤ π ≤ 1.

Remark 7. We may note that some papers, e.g., Greenberg et al. (1969) and Mangat

and Singh (1990), compared variances without holding respondents’ protection equal. Similarly,

Christofides (2003) compared the variances of Warner’s estimator and his estimator, based

on his (2 → k) procedure, not taking respondents’ protection into account. In his design,

βi = α(k−i+1), i = 1, · · · , k, and he showed that for any Warner’s design with given p, one can

find suitable values of the parameters {αi} of his design, with k ≥ 3, such that the variance of his

estimator is less than that of Warner’s estimator. Thence he concluded that his RR technique

“improves upon” Warner’s procedure. As an illustrative example, he took the Warner’s estimator

with p = 0.6, in which case

V ar(π̂W ) =
π(1− π)

n
+

6
n
. (4.5)

Then he showed that his estimators, with k = 6 and (α1, · · · , α6) = (0.38, 0.02, 0.19, 0.1, , 0.05, 0.26),

has variance

V ar(π̂C) =
π(1− π)

n
+

3.76
n
,
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which is clearly less than V ar(π̂W ) in (4.5) for all 0 ≤ π ≤ 1. However, we find Christofides’

(2003) argument and his conclusion to be flawed. First, he did not take respondents’ protection

into account. Second, if only the variances are compared, the fact that for any Warner’s estima-

tor, with given p, there exists a Christofides’ estimator with smaller variance does not validate

the conclusion that Christofides’ procedure is better than Warner’s procedure. This is because

it can also be seen that for any given Christofides’ estimator, there exists a Warner’s estimator,

with suitable choice of p, with uniformly smaller variance; note that the last term of (1.1) can be

made arbitrarily small because it approaches 0 as p tends to 1 (or 0). For example, the Warner’s

estimator with p = .65, in which case the last term of (1.1) is 2.528/n < 3.76/n, is better (in

terms of variance) than the Christofides’ estimator considered in the illustrative example.

5. Discussion.

In this paper we presented a unified framework for discussing RR surveys of dichotomous popula-

tions with multiple response categories. Several RR procedures have appeared in the literature,

but typically, each procedure has been discussed within its own framework. We believe, this has

hindered systematic thinking about the core statistical issues and has led to erroneous conclu-

sions. A common framework is helpful, and perhaps necessary, for abstraction and formalization

of the key elements relating to respondents’ privacy and statistical efficiency and comparison of

various procedures. We hope the ideas put forward in this paper will be helpful in developing

a unified theory of RR surveys, comparing various procedures and reaching valid conclusions.

While we discussed only polychotomous response variables, we believe our ideas can be ex-

tended to RR surveys of dichotomous populations with quantitative response variables, such as
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the procedures discussed in Franklin (1989) and Chua and Tsui (2000).

A unified theory is also helpful for recognizing connections of RR surveys to other areas of

statistics, such as comparison of experiments (see Remark 6) and estimation from open sur-

veys. RR surveys are closely related to the post-randomization method (PRAM) for controlling

statistical disclosure. The PRAM, introduced by Gouweleeuw et al. (1998), is concerned with

protecting respondents’ privacy while releasing microdata (already collected) for public use. It

stochastically transforms the values of categorical variables in a data set using a known Markov

matrix. As noted by Van den Hout and Van der Heijden (2002), mathematically, the PRAM

is equivalent to an RR procedure. Both are concerned with protection of respondents’ privacy

and statistical efficiency; only difference is that in RR surveys, the responder randomizes the

response at data gathering stage whereas in PRAM randomization is carried out by the sur-

veyor after the data are collected. Thus, the results for RR surveys can be used beneficially in

statistical disclosure control.
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