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Abstract

Health Related Quality of Life (HRQoL) is a method to measure the
perceived physical and mental health over time, as described by the Center
for Disease Control. This measure can be used for various purposes such
as evaluating the severity of the effect of a disease or comparing treatment
methods. There exist alternate HRQoL measurements. In this paper we
consider the Health Utility Index Mark II (HUI2) to quantify and describe
a population's HRQoL over health states which are composed of multiple
attributes. We present a Bayesian framework for population utility
estimation and health policy evaluation by introducing a probabilistic
interpretation of the  multiattribute utility theory (MAUT) approach used
in health economics. In so doing, our approach combines ideas from
MAUT approach of  Raiffa and Keeney (1976) and Bayesian statistics and
provides an alternate method of modeling preferences and utility
estimation.

Keywords: Bayesian inference; Health economics; Health-related quality
of life; Markov chain Monte Carlo methods; HUI2 System.
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1. Introduction
Preference based evaluation of health policies have become an integral

component of public health policy development in countries such as Australia, Canada
and United Kingdom. As pointed out by Brazier (2005), use of preference-based
measures of health "  have become a common means of generating health state valuesá

for calculating quality-adjusted life years (QALY)."
Use of preference-based measures requires quantification of health state

preferences by a sample group of individuals. This preference data is used as a sample to
develop an aggregate measure for the population. Authors such as Torrance, Boyle and
Horwood (1982) liken this process to determination of a social preference function and
present a multi atribute utility theory (MAUT) framework in the sense of Keeney and
Kirkwood (1975) and Keeney and Raiffa (1976). The methods that quantify preference
based measurement of health (PBMH) are referred to as the health related quality of life
measures (HRQoL). These measures are used to quantify a population's preferences over
health states as well as of a treatment's effect. Brazier (2005) provided a short list of
several common PBMHs and discussed how they are quantified with HRQoL.

Most of the research in this area focuses on development of  such asPBMHs
Health Utilities Index Quality of (HUI) of Torrance, (1995), Furlong, Feeny and Boyle 
Well-Being (QWB) scale discussed in Kaplan, Ganiats, Sieber and Anderson (1988) and
Short Form (SF-6D) survey discussed in Brazier, Roberts and Deverill (2002). These
measures are based on a multi attribute model for evaluating health states using
preference weights and scores. They provide a single index number for each health state.
Typically an index value "1" denotes perfect health and "0" denotes In health death. 
economics literature, these index values are referred to as utility. Furthermore, health
states have multiple dimensions allowing a multiattribute model. Thus, elicitation of
utility requires sophisticated procedures based on standard gambles as reviewed in
Brazier and Deverill (1999). A simpler approach for obtaining preference measures is to
ask respondents to assign values to health states and convert these to utilities.

Preference based measures such as QWB and SF-6D use what is referred to as the
composite approach for estimation of the multi attribute utility function for the health
states. The composite approach involves direct elicitation of utility of multidimensional
health states and as pointed out by Brazier (2005) the approach requires lot more health
states than that can be evaluated by a single respondent. Thus, regression models are used
with this approach to extrapolate the values of health states, that are not included in the
survey.
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The alternative method for estimation of the utility function for the health states is
the  approach employed by the HUI. The decomposed approach uses thedecomposed
MAUT framework developed by Keeney and Raiffa (1976) and determines a functional
form for the multi attribute utility function of health states. Based on simplifying
assumptions such as  and , the approachpreferential independence utility independence
yields simpler forms of utility functions and substantially reduces the valuation effort by
decomposing the problem into single dimension elicitation problems. Hazen (2004)
investigated various independence concepts including those involving the concept of
time. The author goes on to describe how the additive or multiplicative decomposition
within QALYs can be constructed using these independence concepts and furthermore,
discusses how they relate to HUI. In addition to allowing for evaluations for all possible
health states, the decomposed approach also provides flexibility in modeling interactions
using multiplicative utility functions of Keeney (1974). This is unlike the composite
approach where there is no standard method for determining the states required to
estimate a model with interaction terms; see Brazier (2005).

 It is important to note that both the composite and decomposed approaches
provide us with a sample of  health state valuation data, that is, with health state utilities
from a sample of individuals. The objective is to estimate the health state utilities of the
population based on this sample and use the estimated population utility function to
evaluate different health policy alternatives. In recognition of this, statistical methods
have been considered by earlier researchers such as Dolan (1997) and Brazier et al.
(2002). In general these approaches employed linear models with normally distributed
error terms. Brazier et al. (2002) went on to include random effect terms. As pointed out
by Brazier (2005), these models, that used data from the composite approach, "have
estimated crude summary terms for interactions" and have required range of
transformations to deal with highly skewed data.

More recently a nonparametric Bayesian approache has been considered in
Kharroubi, Brazier, O'Hagan and Roberts (2007) Kharroubi, O'Hagan and Brazier and 
(2005) for estimation of the HRQoL of a population. Utility quantifies the HRQoL
measured by the SF-6D measurement which is based on six attributes, namely, physical
functioning, role limitations, social functioning, pain, mental health and vitality where
each attribute has four to six levels. The specification of the six attributes levels describe
a health state where 18,000 such possible health states are possible. The authors treat
health states as single attribute objects and utilize standard gamble techniques to elicit
utility from individuals. Since it would be infeasible to construct a utility function over
all health states using the standard gamble technique, the authors propose a sampling
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method where an individual goes through the standard gambles for a limited number of
health states. Utility function is estimated from these health states using a multivariate
nonparametric Bayesian model.

Even though this model has desirable properties, it is based on the composite
approach that requires large number of evaluations of health states. As noted by Brazier
(2005), although the composite approach involves cognitively complex tasks in
elicitation, most of the literature on statistical modeling of health state data is limited to
this approach. In this paper we will consider parametric Bayesian models and inference
to analyze health state utility data using a decomposed approach. In so doing, we describe
uncertainty about the unknown utility function probabilistically and pose the population
utility estimation problem as a Bayesian inference problem. Our framework is different
than Kharroubi, O'Hagan and Brazier (2005) due to its parametric nature and its use of  a
decomposed approach based on a multiattribute utility function.

A synopsis of our paper is as follows. In Section 2 we present a model for
describing uncertainty about single attribute utility functions and discuss Bayesian
estimation  of the single attibute population utility function. Using a decomposed
approach based a multiplicative multiattribute utility function Section 3 discusses
estimation of population multiattribute utility functions and considers probabilistic
evaluation of health state preferences. Extension of the utility models are discussed in
Section 4 where covariate and heterogeneity effects are incorporated into the analysis.
Implementation of the Bayesian framework is presented in Section 5 using actual health
state preference data. Concluding remarks are given in Section 6.

2. Bayesian Modeling of Utility Functions
Torrance, Boyle and Harwood (1982) presented a MAUT approach for

quantification of society's preferences for health states. The authors used a multiattribute
utility model to aggregate sample individuals' utility and estimated society's preferences
over health states and provided a framework for the development of a popular HRQoL
measure, the eath  (HUI)H Utility Index . Torrance et al. (1996) outlined the construct of
Health Utilities Mark 2 (HUI2) measurement which will be used in our development. 
HUI2 has seven attributes with 3-5 levels, (sensation, mobility, emotion, cognition, self-
care, pain, and fertility) that describes around 24,000 health states. The authors used the
multiplicative multiattribute model in order to estimate the utility of these health states.
The Bayesian framework, that we present in the sequel, is motivated by the Torrance et
al. (1996) setup.
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We consider a multiattribute evaluation problem with +1 alternatives and O G

attributes where the interest is in estimating the utility of these alternatives for a
population based on utilities obtained from a sample of  individuals. In the context ofR

HUI systems discussed above, the +1 alternatives represent the health states associatedO

with different health policy initiatives and attributes represent the multiple dimensionsG

considered in the MAU model of the HUI.
Our development requires a probability model for describing population utility.

Following the decomposed approach of , as is common in the HUITorrance et al. (1996)
literature, we will use multiplicative utility functions. Use of such forms for utility
functions can be justified in the presence mutual utility independence of the attributes.
This particular form allows us to model population utility for each of the attributes and
estimate population utility on a given dimension. Once such estimation is completed for
all attributes independently, population's MAU function can be obtained via the
multiplicative utility model.

2.1 A Model for Population Utilities
We assume that preference ordering of the 1 alternatives with respect to eachO 

attribute is known for the population, that is, we assume that the preference ordering of
the population of individuals is identical and monotonic. Let denote the level of a\

single attribute , then it follows that-

\ ¡ \ ¡ \ ¡ â ¡ \ ¡ \1 2 3 O O". 

In this setup we are interested in making inference about the unknown population
utilities , where  and .  We may have a?Ð\ Ñ  â  ?Ð\ Ñ ?Ð\ Ñ œ ! ?Ð\ Ñ œ "# O " O"

prior opinion on these values and we are interested in updating this prior opinion based
on the sample utility measurements on the  individuals. In what follows, the termsR

value and utility will be used interchangeably.
We define  and let  denote the utility declared by the ?Ð\ Ñ œ ? ? 3  >2-ß -ß44

3
-ß4

individual for attribute  at level . For general purposes, we also define  to- 4 O  "-

denote the number of levels of attribute . The attribute label is supressed unless it-

becomes necessary. We focus on a single criterion and to reflect the ordering
?Ð\ Ñ  ?Ð\ Ñ  â  ?Ð\ Ñ  ?Ð\ Ñ" # O O" , that applies to the population, we  assume
that for all individuals

 . (1)!  ?  ?  â  ?  "# $ O
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The first step in our development is to consider a probability model for the utility
vectors  which is consistent with the ordering given by (1) and?3 3 3 3

" # Oœ Ð? ß ? ß á ß ? Ñ

which is flexible enough to reflect the diminishing utility scenario encountered in many
applications. One such multivariate model is the ordered Dirichlet distribution which has
been used in reliability growth modeling by  andvan Dorpe, Mazzuchi and Soyer (1997)
by . The ordered Dirichlet model for Erkanli, Mazzuchi and Soyer (1998) ? œ Ð? ß ? ß# $

á ß ? ÑO  is given by

:Ð ± Ñ œ Ð? ? Ñ
Ð Ñ

Ð Ñ

? "
> "

> "!

,     , (2)
 

! # $
O"

œ#

O"

œ

4 4


j
j

j 2
1

1"!j

where 0, 1,  and are the parameters of the model? œ ? œ œ Ð Ñ" O" " !! # $ O"ß ß á ß! !

such that 0 and  1. Note that the distribution is defined over the simplex! !4 4
4œ#

O"

 œ!
š ›? ± Ð Ñ! Ÿ ? Ÿ ? Ÿ â Ÿ ? Ÿ "# $ O  which is consistent with the restrictions in 1 . The

model implies that the changes in the utilities , for 2 , follow aÐ?  ? Ñ 4 œ ßá ßO  "4 41

Dirichlet distribution.
As shown by van Dorpe, Mazzuchi and Soyer (1997), the marginal distributions

of the ordered Dirichlet model are beta densities, that is,

:Ð? ± Ñ œ Ð? Ñ Ð"  ? Ñ
Ð Ñ

Ð Ñ Ò Ð"  ÑÓ
4 4 4

4 4

 Ð" Ñ""
> "

> "! > " !
,    (3)! * *

1"! " !4 4
* *

for , where  . We will denote the beta density of (3) as4 œ #ßáO œ! !4
5œ#

4

5
* !
Ð? ± Ñ µ F/>+ ß Ð"  Ñ4 4 4" "! " !, . (4)! Š ‹*

Note that the above implies that

IÒ? ± Ó œ Z Ò? ± Ó œ
Ð"  Ñ

 "
4 44

4 4
" ! "

! !

"
,  and , (5)! !*

* *

where  is a parameter with lower values of  reflecting more spread in" "degree of belief 
the distribution. Furthermore, it can be shown that [see van Dorpe et al. (1997)]

Ð?  ? Ñ ± µ F/>+ Ð  Ñ Ð   Ñ 3  44 3 4 3 4 3" " ! ! " ! !, , 1   for  , (6)! Š ‹* * * *

and thus, we obtain



7

IÒ?  ? ± Ó œ Ð  Ñ œ4 4" 44 4"" ! ! !, . (7)! * *

The above distributions provide meaningful interpretations for the parameters !4

and  in terms of properties of the utility function. Specifically,  can be interpreted as! !4 4
*

the expected increase in utility as a result of going from attribute level \4" to attribute
level  and .  Furthermore, it is easy to\ \4 4and  is the expected utility at attribute level !4

*

see that !4
* is increasing with , implying that for the population we expect utility is an4

increasing function of the attribute when high values of the attribute are desirable. Also,
if ,  is a decreasing sequence in , then we expect that theIÒ?  ? ± Ó œ 44 4" 4" !!

marginal utility is diminishing as the attribute level gets larger. This is equivalent to
requiring that ,  is discrete concave in , that is, we expect thatIÒ? ± Ó œ 44 4" !! *

individuals in the population is risk averse with respect to the particular attribute. By
choosing 's differently we can represent different attitudes towards risk. For example,!4

by specifying  as an increasing sequence in , we represent a risk seeking behavior.!4 4

Similarly if for all , then we have the risk neutral behavior. Note that we may! !4 œ 4

have prior beliefs about the general behavior of the expected utility function and we can
incorporate that in our Bayesian analysis. Such prior beliefs can be used in specification
of the prior distribution of the parameters and . Thus, the ordered Dirichlet! "

distribution 2  provides a flexible model to describe uncertainty about utility.Ð Ñ

2.2 Bayesian Estimation of Population Utilities
In the Bayesian setup we are interested in describing uncertainty about the

population utility function  based on the the information provided by? œ Ð? ß á ß ? Ñ# O

the sample of  utility vectors  from the R œ Ð? ß ? ß á ß ? Ñß 3 œ "ßá ßR?3 3 3 3
O2 3 ordered

Dirichlet distribution in (2). Given sample utilities given ,  from the ? ? ?" # Rß ßá R

individuals, we update our knowledge about  via the calculus of probability. In the?

Bayesian framework this is achieved by obtaining the posterior predictive distribution
:Ð l ß ßá Ñ? ? ? ?R" " # R, . Thus, the objective of this treatment is to obtain the posterior
distribution for the population's utility function. In what follows, we will pose this as an
inference problem and present the Bayesian machinery to obtain .:Ð l ß ÞÞÞß Ñ? ? ? ?R" " # R

In order to obtain the posterior predictive distribution of , we need to specify our?

prior distribution of the unknown population parameters . We denote this ,Ð Ñ" !

distribution by where  represents prior beliefs about the utility function of:Ð l Ñ", ! [ [

the population. Note that in specifying the prior distribution, we can use the results (5)-
(7) as well as the implications of  monotonocity of 's. If such a monotonocity!4
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assumption is used then the joint distribution of 's should reflect that. For example, in!4

such case an ordered Dirichlet distribution can be used as the joint distribution of 's. In!4

our setup, we assume that . We use a" and are conditionally independent given ! [

Dirichlet distribution to model the gamma density for .! parameters and specify a "

Once the prior is specified, we can revise our uncertainty about unknown parameters Ð",
!Ñ via the Bayes rule, that is,

:Ð l Ñ œ Ð Ñ
PÐ à Ñ :Ð l Ñ

PÐ à Ñ :Ð l Ñ . .
"

" "

" "
, 8

, , 
, , 

!
! !

! !
?

?

?
R

R [

[ "'
"ß!

R !

where  is the likelihood function of  given .PÐ à Ñ Ð Ñ œ Ð ß ßá ß Ñ" ", ,! !? ? ? ? ?R R " # R

Since the utilities Ð ß ßá ß Ñ? ? ?" # R  are conditionally independent vectors from the
the ordered Dirichlet distribution (1). Given ,  dimensional utility vectorsR O , we can
write the likelihood function of the parameters asÐ Ñ", !

PÐ à Ñ œ"
> "

> "!

,     
 

! ?R $–
3œ"

R Ð Ñ

Ð Ñ

Ð? ? Ñ# $ —O"

4œ
4

O"

4œ#

3 3 
4 4

2

1
1"!j (9)

by using the ordered Dirichlet model.
The posterior density  in (8) can not be obtained analytically and thus:Ð l Ñ", ! ?R

requires use of Markov chain Monte Carloiterative simulation methods known as 
(MCMC) techniques. Note that evaluation of (8) involves the Bayesian analysis of the
ordered Dirichlet model given by ( ). Previous uses of the ordered Dirichlet model in the2
literature were generally limited to prior distributions, but in this case the ordered
Dirichlet model  is used as the sampling model (or the likelihood) for the utility vectors.

Once the posterior density  is evaluated, the next step is to obtain the:Ð l Ñ", ! ?R

posterior distribution of the utility function for the population, that is, we need to obtain
the joint distribution , . In other words, we need to:Ð l ß ßá Ñ œ :Ð l Ñ? ? ? ? ? ?" # R R

evaluate the posterior predictive distribution

: ? ? ? ? ?Ð l Ñ œ :Ð l ß Ñ :Ð l ÑR R(
", !

 " ", , ! !R . .! ", (10)
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which reduces to

:Ð l Ñ œ :Ð l Ñ :Ð l Ñ? ? ? ?R (
", !

 ," ", , ! ! R . .! " (11)

due to the independence of   and  given ? ? ?R Ð Ñ :Ð l Ñ" ", , ! !. Note that in the above  is
the ordered Dirichlet density shown in (2). Again the posterior predictive distribution can
not be obtained analytically but given the posterior samples from :Ð l Ñ", ! ?R , (11) can
be approximated by the Monte Carlo integral

:Ð l Ñ ¸ :Ð l Ñ
"

W
? ? ?R "

=œ"

W

 "Ð=Ñ, !Ð=Ñ , (12)

where ˆ ‰" "Ð=Ñ W

=œ"
,  are samples from the posterior density , ! !Ð=Ñ :Ð l Ñ?R . The posterior

predictive distribution represents probability distribution of the population's:Ð l Ñ? ?R  
utility function.

3. Estimation of MAU Function and Evaluation of Health States
The above development was presented for a single attribute, that is, for attribute

- O  ", with  levels and observed utility vectors - ?-
3 3 3 3

-ß" -ß# -ßOœ Ð? ß ? ß á ß ? Ñ  for
individuals . Note that in the above development attribute index   was3 œ "ß á ßR -

suppressed. In general for specifying the ordered Dirichlet model, all model parameters
are supposed to be indexed by , that is, we have  with prior  for- Ð Ñ :Ð l Ñ" "- -, , ! !- - [

attribute . Using the Bayesian machinery our development in Section 2 resulted in the-

posterior utility distribution  for attribute .  proposed model is justifiable:Ð l Ñ -? ?- -
R The

when we have see for example, Keeney andmutual utility independence of the attributes [
Raiffa (1976)]. Then the above development can be extended to  attributes and theG

posterior  utility distributions  are obtained for . In this case the:Ð l Ñ - œ "ß á ßG? ?- -
R

parameters  are assumed to be independent for  and thus ourÐ Ñ - œ "ß á ßG"- , !-

approach yields independent posteriors   for .:Ð l Ñ - œ "ß á ßG? ?- -
R

 A common method of decomposition that is used to account for potential
interactions in attribute utilities is the multiplicative utility model; see Brazier (2005).
The multiplicative model is specified as,

"  5? \ ß ÞÞÞß\ œa b"ßE GßE3 3
$
-

G

E

=1
cÐ  55 ?Ð\ ÑÑ Ð Ñ1  , 13

3

where !  5  "+8. 5   "- .
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 In the above , and  are scaling coefficients that fixes the range of utility5 5-

between 0 and 1. We assume that, given their respective parameters, the 's are5-

independently beta distributed namely,

: Ð ÑÐ5 ± ß Ñ µ F/>+ ß " - - - -, / ,/ , /Š ‹a b . 14

In the above / /- - - is the expected value of scaling coefficient , that is,  for5  "! 

- œ "ßá G, . Parameter  represents the analyst's strength of belief about specification,

of  . By specifying independent priors for  but assuming a common belief parameter/ /- -

, for all attributes in (14) we can describe dependence of 's in the multiplicative model.5-

Once the joint prior ,  where  is specified we can obtain the:Ð Ñß œ Ð ßá ß Ñß/ /, / /l[ " G

posterior distribution of  and  using the Bayes' rule. More specifically/  ,

:Ð Ñ º PÐ Ñ:Ð Ñ/ /, ; , ,, ,l lO OR R,ß/ [

where ;  is the likelihood function of and  given the sample of  scalingPÐ Ñ,ß/ OR /  ,

coefficients  elicited from  individuals. TO 5R 3œ œ Ð5 ßá5 Ñà 3 œ "ßá ßR Rˆ ‰3 3
" G he

likelihood function can be written as the product of beta densities, that is,

P œ 5 "  5
Ð Ñ

Ð Ñ Ð Ñ
ˆ ‰ ˆ ‰ ˆ ‰$$ ˆ ‰,

,

,/ , /
ß

" 
/ ;OR

3œ" -œ"

R G
3 3
- -

>

> >- -

" " "a b ,/ , /- -a b (15)

For any form of the prior distribution on , ,Ð, ,/ /Ñ :Ð l Ñ, the posterior distribution OR

can not be obtained analytically. As in the other cases we will develop the Bayesian
analysis using MCMC methods.

Once  is obtained, we can evaluate the posterior predictive:Ð l Ñ,ß/ OR

distribution of the population vector viaO

: œ : ß ß . Ð Ñˆ ‰ ( a bO O O Ol l :Ð l Ñ .R R

,ß/

, , ,/ / / , 16

The above can be approximated by the Monte Carlo integral

:Ð Ñ ¸ Ð l Ñ
"

W
O O Ol ÑR Ð=Ñ"

=œ"

W

 : Ð,, / (17)

using  realizations from the posterior distribution For parameter , weW 5:Ð l Ñ,ß/ OR . 
have the equality

1   = 1  , 5 Ð  55 Ñ$
-

G

-

=1



11

Thus, given the realizations of , for each realization the above identityO Ð=Ñ, = œ "ßá ßW

can be solved for the interaction parameter  and its posterior predictive distribution can5

be obtained. We note that if the posterior predictive distribution of  is concentrated5

around 0 then this is an indication of support for an additive utility model for the
population.

In the above we have presented how to obtain two sets of posterior samples, that
is, sample of utilities and weights. Thus, we can make probability statements using the
multiattribute utility function . Given a specific health state, say , we canin (13) E3

evaluate the corresponding multiattribute function using the posterior samples associated
with the utilities corresponding to attribute levels. Based on these for a given health state
E ?Ð ß ß á ß \ Ñ3 we can obtain the posterior distribution of  using a Monte\ \1,E #ßE E3 3 3Gß

Carlo estimate. Thus, we can make probability statements on whether   ishealth state E3

preferred to , that is, is equivalent toE T<ÖE ¢ E l4 3 4 O
R ,  ? ?R R

" G, , . This probabilityá ×

T<š ›? ?ˆ ‰ Š ‹\ \ \ \ á1, 1,E E#ßE E #ßE E3 43 3 4 4
ß ß á ß \  ß ß á ß \Gß Gß

R R
" Gl ? ?OR , , , a b18

which can be approximated using the MCMC samples. In other words, it is possible to

compute the posterior probability that a particular health state is preferred to another

health state in the population.

4. Incorporating Covariate Effects and Heterogeneity
Our development above can be modified to incorporate the effects of covariates

on utility at a given attribute level. In so doing, we model the expected changes in utility
between the adjacent levels of an attribute  In what follows, wÞ e suppress the attribute
subscript and use a logit transform for individual 's expected utility change from3

attribute level  to  as4  " 4

(
!

!
3
4

3

3
O

œ 691 Ñ 4

+1
, (19 .4 œ #ßá ßO

Note that the expected utility change from level  to  is used as the level ofO O  "

reference in (19). The above relationship is defined for each attribute - œ "ßá ßG

separately. For attribute  we can write-
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Î Ñ Î Ñ Î Ñ Î ÑÐ ÓÐ Ó Ð Ó Ð ÓÐ ÓÐ Ó Ð Ó Ð ÓÐ ÓÐ Ó Ð Ó Ð ÓÐ ÓÐ Ó Ð Ó Ð Ó
Ï Ò Ï Ò Ï Ò Ï Ò

a b
(

(

3

3
O

3 3
" U

2
Þ
Þ
Þ

œ  D  ÞÞÞ  D

Þ
Þ
Þ

Þ
Þ
Þ

Þ
Þ
Þ

;

;

3

3

3

3

2 2

O Oß"

ßU

OßU

ß" 2

20

 
for covariates , , .U D á D" U

Note that in analyzing the above model, the likelihood function of the unknown
parameters will be based on the ordered Dirichlet model (2). Typically, the prior
distributions for parameters  and ; ; 3œ Ð Ñ œ Ð à 3 œ #ßá ßO 4 œ "ßá ßUÑ; ;2ßá O 334

will be specified as independent multivariate normal distributions. As before for any
choice of prior distributions, evaluation of  the posterior distributions requires use of
MCMC methods. Note that the model can be generalized to attributes.G

 The above model can be easily extended to capture heterogeneity in utility
change by introducing random effect terms associated with each individual. More
specifically we can write (20) as

Î Ñ Î Ñ Î Ñ Î ÑÐ ÓÐ Ó Ð Ó Ð ÓÐ ÓÐ Ó Ð Ó Ð ÓÐ ÓÐ Ó Ð Ó Ð ÓÐ ÓÐ Ó Ð Ó Ð Ó
Ï Ò Ï Ò Ï Ò Ï Ò

a b
(

(

3

3
O

3 3
" U

2
Þ
Þ
Þ

œ  D  ÞÞÞ  D 

Þ
Þ
Þ

Þ
Þ
Þ

Þ
Þ
Þ

;

;

3

3

3

3

2 2

O Oß"

ßU

OßU

ß" 2 Î ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò

%

%

3

3
O

2
Þ
Þ
Þ

, 21

where random component  is assumed to have the multivariate normal %3 œ Ð Ñ% %3 3
O2 á

distribution as

 %3 µ QZ RÐ ß Ñß! [%

with unknown covariance matrix  Given , 's are conditionally independent[ [% %Þ %3

random quantities across the individuals.
The above setup can be adopted for the scaling weights  of the multiplicative5- 's

utility model. More specifically, we can introduce the logit transformation on the
expected scaling factors  as/-

(3 3 3
- "œ D D691 œ  á 

@

"  @
Œ  a b3

-
3
-

"ß- Uß-. - -
- U

22
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for . The above can be extended by including an additive random effect term- œ "ßáG

%3-  to incorporate unknown heterogeneity. As in the previous case the Bayesian analysis
requires use of MCMC methods.

In our implementations in the next section, we use BRugs a package within the R, 
software, to apply MCMC methods by running the software WinBUGS. 

5.  Illustration using HUI2 based Data
In this section we illustrate the implementation of the models introduced in

previous sections using data from McCabe, Stevens and Brazier (2004). The data is from
an HUI2 based survey conducted on = 201 individuals drawn from the generalR

population of UK. The purpose of the McCabe et. al. paper is to compare the various
methods that are used to convert the data obtained from visual analog scale (VAS) into
utility scale in order to "explore the implications for health care resource allocation". The
sample was stratified by mainland UK socio-economic region, based on the 1991 census.
Marital status, gender and age were three of the characteristics that were monitored.

5.1 Description of the Data
HUI2 is originally developed with seven attributes which describes an

individual's health state. One of these attributes, fertility, is not included in this survey.
The attributes self care, sensation and cognition has four while mobility, emotion and
pain has five levels which is used to describe various situations within these attributes.
The levels of the attributes are structured such that for most people there is a natural
order where the smaller index level is preferred to its higher adjacent level. Furthermore
level 1 of all attributes are fixed at a value of 100 and the highest indexed attribute level
is set at 0. We scale these values between 0 and 1. Note that the order of attribute levels
is reversed in our development. For instance st level describes the best attributeÐO  "Ñ

value, whereas in the data it represents the worst level.
 In order to construct a MAU model, in addition to the utility assigned to each
attribute level we need the attribute scaling weights. In conventional MAUT the weights
are obtained by eliciting a value for the state where an attribute has the highest and the
others the lowest possible values. The same method is not applied in this survey as these
would be harder for the respondents to evaluate. Instead they are prompted to provide
values for health states where an attribute is set at its worst while the others at their best
levels. These are referred to as the . The authors' model is constructedcorner health states
on the disvalue scale (1 utility) where the worst health state is assigned, a value of 1,

and the best, a value of 0. In order to evaluate the utility of a health state the authors
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simply subtract from 1 the disutility of that health state. The respondents were asked to
provide a value between 0 and 100 for the 4 corner health states, namely for the attributes
pain, cognition, sensation and emotion. These values are transformed to disutility by
subtracting from one. The weights of self care and mobility are obtained using the
method described in Torrance et al. (1996) and McCabe et al. (2004). Estimating these
attributes weights are problematic since they do not have "structural independence". We
apply the same estimation method as well.

In our analysis we only consider values from respondents whose utility increase
with smaller indexes of the health attributes. Therefore the number of observations we
have in each attribute is not the same. We provide descriptive statistics in Table . 1 We
eliminate from the original sample, individuals who did not assign a value of 100 to the
best health state. Furthermore, when the health states, where both mobility and self care
attributes were set at their worst level and where mobility was set at its intermediate level
were compared, if an individual provided a lower score for the latter health state (s)he
was removed from the study. There were 148 individuals remaining from the original
201. When the two unknowns, the interaction term and the disutility of  self care are
solved for, 88 individuals are eliminated from whom we could not get valid solutions.
This leaves a sample size of 60 for the modelling of attribute weights. In table 2 we
report the summary statistics of the disutility weights of the attributes for the
multiplicative utility model.

Table 1: Descriptive statistics of attribute levels. 
W/8=+>398 Q9,363>C I79>398 G
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Table 2: Descriptive statistics of the weights. 

W/8Þ Q9,Þ I79Þ G91Þ W/6Þ T+3Þ 5
7/+8
7/.3+8 Þ!$'
=Þ.Þ Þ"!)
R '! '! '! '! '! '!

.512 .449 .628 .21 .303 .407 .072

.5 .427 .65 .2 .271 .4

.254 .213 .198 .154 .241 .225
'!

 Marital status, age and gender are the three covariates that are used to model the
expected attribute levels and weights. Marital status have four levels, "single and never
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married", "married or living as married", "divorced or separated" and "widower". The age
ranges between 19 and 84 in the sample with a median age of 52.
 

5.2 Analysis of the Attribute Levels
In our analysis  , we used two ordered Dirichlet models for each attribute. One of

the models assumed a common , and the other had distinct precision parameters  for" "-

the attributes. The common precision parameter model enables us to use data from all
attributes in updating parameters of single attribute utility models. We also considered
the extension of the model using covariate information as discussed in Section 4. In all
our analyses we used proper but diffused priors.

In Table 3 we present the summary statistics from the posterior predictive
distribution of the utility at each attribute level. Note that utility across different attributes
can not be compared such that we can not argue that people prefer to be at the second
level of cognition rather than the second level of pain. It is neccessary to obtain the
scaling constants in order to compare the utility increases in two attributes.

Table 3: Summaries for the posterior predictive distribution of the attributes' utility 
for the common precision ( and the distinct precision ( . models.GÞT ÞÑ H T ÞÑ
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In order to compare the performance of the common and distinct precision

models, we used the  ( ) of Spiegelhalter, Best, Carlin,deviance information criterion DIC
and van der Linde (2002). For a generic parameter vector ,  is defined as@ HMG

HMG œ H,+< :H, (23)

where D , is two times the negative loglikelihood E D  andœ  #691 Ð Ñ ß œ Ò Ó_ @ H,+< @l.+>+

:H H,+< H2+>œ  Ð Ñ HMGs s@ @, where  is the posterior mean. The  has the general
"fit complexity" form used by many model selection criteria. In (23)  represents H,+<

the "goodness of the fit of the model where  represents a complexity penalty as:H

reflected by the effective number of parameters of the model. The model with the smaller
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HMG  is more likely to predict closer values to the observed data from a similar dataset
that the likelihood is based on. In Table 4, we present the above measures for both the
common and distinct precision models. Data seems to give more support to the distinct
precision model.

Table 4: ComparisonHMG Þ
 H2+> H,+< HMG :H
G97798  #)%"  #)&(  #)#& "&Þ*(
H3=>38->  !*  #*$!  #))) #!Þ**29

In Figure 1 we present a comparison of the observed utility of individuals associated with
the attributes cognition, self care and sensation and the posterior predictive utility.
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Figure 1. Histogram of the observed utility data and the plots of the posterior predictive
distributon of utility of  attribute levels. The dashed vertical lines are the 95% CI.
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The dashed lines represent 95% credibility interval of the of the predictive utility. The
figures show that the ordered Dirichlet model with distinct precision coefficients is an
appropriate representation of the data. Thus, in what follows we will present our results
using this model.
 In Figure 2 we present the posterior predictive distributions of the utility
difference between the levels of the self care attribute. It is of interest to assess the risk
attitude of a random individual from the population. We can compute posterior
probabilities of different risk attitudes in the population. These probabilities are presented
in Table 5 for the self care attribute. We note that the probability of an individual to be
risk seeking is 0.237 and risk averse is 0.106. The table compares these posterior
probabilities with the  relative frequencies obtained from the data.

Figure 2. Posterior predictive utility differences of self care attribute. 

We considered an extension of the model by including covariate information. For
illustrative purposes we included the gender as the covariate in our models for each
attribute. It is of interest to calculate the expected utility increase for adjacent level 

changes in an attribute and observe the effect of covariates. In Table 6, we present the
posterior means and standard deviations of 's for attribute pain associated with both!3

genders.
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Table 5: Probability of different risk attitudes in self care attribute.
Model Data
.237
.106
.365
.291
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Table 6: Expected utility increase for the levels of the attributes for different genders.  
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 We can probabilistically compare whether the utility of an individual with a given
characteristic is greater than the utility of another individual with some other
characteristic. For instance we can be interested in finding the probability of a male
having a higher utility than a female at level 2 of the attribute pain. This can be
accomplished by comparing the posterior distribution of the utility of the two individuals
mentioned above.
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We report the results for the pain attribute in Table 7 and observe that for worse levels,
males tend to have a higher utility than females.  

Table 7. Probabilistic comparison of utility 
Attribute-Pain

.567

.4

T ? lQ+6/  ? lJ/7+6/ Þ'$%
T ? lQ+6/  ? lJ/7+6/
T ? lQ+6/  ? lJ/7+6/ &%

a ba b a ba ba b a ba ba b a b
# #

3 3

4 4

 We also considered a random effect extension of the model with the gender
covariate. In Figure 3 we illustrate the random effect of 30 individuals'  component of%%

the pain attribute, sorted in relation to the mean effect. As can be seen in the diagram,
there seems to be individuals, whose expected utility differs from the others when
controlled for the gender effect.
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Figure 3. Random effect of  30 individuals associated with level 4 of the attribute pain 
controlled for gender.

5.3 Analysis of Scaling Weights
Following our development in Section 3, we present the posterior means and

standard deviations of mean coefficients in table 8. The posterior mean and standard
deviation of the common precision component  is 3.957 and 0.272 respectively.  The,

scaling constant  has a posterior predictive distribution with a mean of -0.963 and a5

standard deviation of .054. Thus, data strongly supports the multiplicative model rather
than an additive utility model.

Table 8: Posterior mean and standard deviation of the independent beta model parameters. 
7/+8ß =. W/8Þ Q9,Þ I79Þ G91Þ W/6Þ T+38
@- .517,.028 .457,.028 0.616,.027 0.24,.023 0.308,.025 0.41,.028

 In Table 9 we illustrate the age effect on the expected weights of the attributes. As
can be seen from the table, as the value of age increases expected attribute weights
increase for the sensation, mobility and self care attributes. The steepest increase is
observed for the sensation attribute. The other attributes, emotion, cognition and pain's
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weights decrease on average with age. The attribute pain has the steepest decrease of
disvalue with age.

Table 9: Mean and standard deviation of the posterior predictive of scaling weights 
for three individuals at ages 27,55 and 81.

7/+8ß =Þ.Þ W/8Þ Q9,Þ I79Þ G91Þ W/6Þ T+38
E1/ œ #(
E1/ œ &&

.399,.222 .407,.222 .658,.216 .264,.2 .299,.209 .54,.226

.526,.223 .462,.223 .614,.217 .235,.19 .306,.206 .397,.216
.641,.22 .515,.229 .568,.226 .212,.18 .311,.21 .281,.203E1/ œ )"

 When the model is extended by the addition of random effects the HMG

significantly improves as shown in Table 10. Thus, there exists variability among
individual's attribute weights which can not be captured only by covariate age.

Table 10. Model fit and complexity of the weights model Þ
 Model

No Covariates

and .E

H,+< H2+> HMG :H

E1/
E1/ V

-155.2 -162 -148.2 6.979
-164.3 -177.3 -151.2 13.08

 -1017 -1398 -635.1 381.6

5.4 Posterior Evaluation of Health States
As discussed in Section 3 given samples from the posterior distributions of the

attribute weights and utility levels, we will be able to compare the preferences between
health states probabilistically. For this purpose we construct three health states
\ \ \" # $œ œ ß œa b a b a bX ,X ,X ,X ,X ,X , X ,X ,X ,X ,X ,X  X ,X ,X ,X ,X ,X .1 1 4 1" $ " # " " $ # " " " $ " "

Note that in each case the subscript denotes the particular level of the attribute. In Figure
4 we present the boxplots associated with the posterior predictive utility distributions for
the three health states.

The mean and standard deviation of  are (.619,.176), (.534,.161) and\ \ \1 3, , #

(.418,.157), respectively. Using the posterior sample values obtained from the MCMC
methods we can evaluate the posterior probability that one health state is preferred to the
other. This can be computed by using simulated values from posterior predictive
distribution of the utility associated with each health state. There is a .658 probability that
a randomly selected individual from the population prefers  to . Table 11 presents\ \1 #

the probabilistic comparison of health states. For example, the posterior probability that
\ \ \1  is preferred to  and is preferred to is 0.509 in the population.# # \3 
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Figure 4. Posterior predictive utility distribution of , , .\ \ \1 3#

 
Table 11. Posterior probabilities for health state preferences in the population.

T \ ¢ \
T \ ¢ \
T \ ¢ \
T \ ¢ \ ¢ \
T \ ¢ \ ¢ \
T \ ¢ \ ¢ \
T \ ¢ \ ¢ \
T \ ¢ \ ¢ \
T \ ¢ \ ¢ \

a ba ba ba ba ba ba ba ba b

" #

# $

" $

" # $

# " $

$ " #

" $ #

# $ "

$ # "

.658

.795

.794

.509

.17

.033

.116

.117

.055

When we incorporated the covariate effects on the attribute weights, these
probabilities changed. In Table 12 we present the probabilistic comparison of health
states using age and gender. In so doing, we only use health states and .   We note\ \" #

that a 27 year old male individual tends to prefer  to whereas a female of the same\ \# " 
age seems to be indifferent between the two states. As people of both genders get older
they tend to prefer  to however, males' tendency to prefer  to  increases\ \ \ \" "2 #

more rapidly than the female.
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Table 12. Probability that health state  is preferred to accounting for gender  and age \ \" 2

Q+6/ J/7+6/
E1/ œ #( E1/ œ && E1/ œ E1/ œ #( E1/ œ && E1/ œ

T<Ð\ ¢ \ Ñ
7/+8 =Þ.Þ \

81 81
.456 .697 .787 .515 .663 .762

, ( ) .482,.176 .641,.166 .723,.16 .515,.182 .
" #

" 622,.175 .71,.166
( ) .507,.16 .537,.16 .567,.164 .508,.159 .537,.162 .567,.1647/+8ß =Þ.Þ \#

6. Concluding Remarks
In this paper we presented a Bayesian framework for modeling and analysis of

health state  based on MAUT models. The approach is comprehensive in thatutility data
it allows for estimation of the population utilities on each dimension as well as
aggregated population multiattribute utility functions and it allows for probabilistic
comparison of different health states for  the population.

We considered extensions of the framework via incorporation of covariate and
heterogeneity effects into the analysis. We presented an implementation of the
framework  via Monte Carlo-based methods using actual health-state data and ilustrated
what type of insights can be obtained from a Bayesian analysis of such data.
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