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Abstract

Estimation of Kullback-Leibler information for assessing model fit requires a nonparametric
estimate of entropy of the data-generating distribution. This paper develops a class of entropy
estimates and provides a procedure for Bayesian inference on the entropy and a Kullback-Leibler
information index of fit. We define a quantized entropy that approximates and converges to the
entropy integral for the continuous case. The quantized entropy is a general representation that
includes several entropy estimates that have been used for frequentist and Bayesian inferences.
For inference about the fit, we use the candidate model as the expected distribution in the
Dirichlet process prior for the unknown data-generating distribution. The maximum entropy
characterization of the candidate model is then used to derive the prior and posterior distri-
butions for the information index of fit. As by-products, the procedure also produces prior
and posterior distributions for the model parameters and the moments. The posterior means
of the quantized entropy and information index of fit are the Bayes estimates under quadratic
loss. The consistency of the Bayes estimates for the entropy and for the information index are
shown. The implementation steps are outlined and the performances of the Bayes estimates are
illustrated using data sets simulated from exponential, gamma, and lognormal distributions.

Keywords: Nonparametric Bayes, Dirichlet process, Model selection, Kullback-Leibler.

Date: February 16, 2007

File: bentrp24.tex



1 Introduction

Entropy and Kullback-Leibler information have been instrumental in the development of indices

of fit of parametric models to the data. Frequentist inference procedures about entropy-based

fit indices are abundant. Although use of a parametric model that fits the data is of paramount

importance for Bayesian analysis, entropy based fit indices and Bayesian inference about them have

not received much attention. In Bayesian statistics, Kullback-Leibler information and entropy are

mainly used as descriptive measures for comparison of parametric models and many other purposes

and as criteria for derivation of models; see, e.g., Clarke (1996), Clarke and Gustafson (1998), Yuan

and Clarke (1999), Carota, Parmigiani, and Polson (1996), and Zellner (1991, 1996).

Given data x1, · · · , xn from a distribution F , we wish to assess whether the unknown F (x) can be

satisfactorily approximated by a parametric model F ∗(x|θ). We measure the loss of approximating

F (x) by a parametric model F ∗(x|θ) using the Kullback-Leibler discrimination information between

the two distributions,

K(F : F ∗|θ) =
∫

log
f(x)
f∗(x|θ)

dF (x), (1)

where f and f∗ are the respective probability density (mass) functions.

In model selection and parametric estimation problems, (1) is referred to as the entropy loss.

Among the parametric models, the one that minimizes the expected loss E[K(F : F ∗|θ)] is selected.

The entropy loss has been used with frequentist and Bayesian risk functions in model selection and

parametric estimation problems; see Soofi (1997) and references therein.

In general, estimation of (1) directly is formidable. Akaike (1974) observed that decomposing

the log-ratio in (1) gives

K(F : F ∗|θ) = −Ef [log f∗(X|θ)] −H(F ), (2)

where

H(F ) = −
∫

log f(x)dF (x) (3)

is the entropy of F . Since the entropy of the data-generating distribution is free of the parameters,

the second term in (2) is ignored in the derivation of the AIC for model selection. The AIC

type measures are derived by minimizing the first term in (2) using the average likelihood of the

sample. Consequently, the AIC type measures provide criteria for model comparison purposes

only, and do not provide information diagnostic about the model fit. Spiegelhalter, Best, Carlin,
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and van der Linde (2002) developed a generalization of the AIC for hierarchical Bayesian models

using the posterior deviance concept proposed by Dempster (1974). The authors referred to this

model comparison criterion as the Deviance Information Criterion (DIC) and showed that DIC is

asymptotically equivalent to AIC for non-hierarchical models.

For developing information indices that assess whether the unknown F can be satisfactorily

approximated by a parametric model F ∗, estimation of the entropy integral (3) plays the pivotal

role. In the discrete case, the problem leads to the quantities related to sample proportion and

logit analysis. When F is absolutely continuous, information indices of fit and distributional tests

require a nonparametric entropy estimate and an estimate for the entropy of a parametric model

for F . This line of research began with Vasicek (1976) and continues to date. See for example,

Vasicek (1976), Dudewicz and Van der Meulen (1981), Gokhale (1983), Arizono and Ohta (1989),

Ebrahimi et al. (1992), Soofi et al (1995), deWaal (1996), Ebrahimi (1997, 1998, 2001), Mazzuchi

et al. (2000), Mudholkar and Tian (2002), Taufer (2002), Inverardi (2003), Park and Park (2003),

Park (1999, 2005), and Choi and Kim (2006). With the exception of Mazzuchi et al. (2000),

all of these papers use frequentist procedures for nonparametric estimation of entropy. Several

frequentist procedures for estimation of entropy are available in the literature, see Dudewicz and

Van Der Meulen (1987), Ebrahimi et al. (1994), Beirlant et al. (1997), Kraskov et all (2004) and

references therein.

Bayesian estimation of entropy has not received much attention. Gill and Joanes (1979) ad-

dressed Bayesian estimation of discrete entropy for the frequency data. Mazzuchi et al. (2000)

proposed a computational procedure for Bayesian inference about the entropy and an information

index of fit. The procedure was shown to be successful in identifying the correct model when fitting

various models to a simulated example. Recently, Dadpay et al. (2007) have used a histogram-type

entropy estimate for model fitting in generalized gamma family. Bayesian estimation of entropy

is closely related to the notion of expected information in Bayesian analysis (Bernardo 1979 and

Zellner 1991) and to the notion of average entropy in the communication theory (Campbell 1995).

For constructing information indices of fit, the parametric model F ∗(x|θ) is selected based on

the maximum entropy characterization of the densities of the parametric families. Consider the

moment class of distributions:

Ωθ = {F (x|θ) : EF [Tj(X)|θ] = θj, j = 1, · · · , J} , (4)

3



where Tj(X) are integrable functions with respect to the density and θ = (θ1, · · · , θJ) is a vector

of moment parameters. The maximum entropy (ME) model in the moment class (4), if it exists,

has the density in the following exponential form:

f∗(x|θ) = C(η)e−η1T1(x)−···−ηJTJ (x), (5)

where the model parameters η = (η1, · · · , ηJ ) are the Lagrange multipliers in the ME procedure

with

ηj = ηj(θ), j = 1, · · · , J, (6)

and C(η) = η−1
0 is the normalizing constant.

The entropy of ME model is given by

H[F ∗(x|θ)] = − logC(η) + η1θ1 + · · · + ηJθJ . (7)

Soofi et al. (1995) showed that if F ∈ Ωθ and F ∗ is the ME model in Ωθ, then the first term

in (2) becomes the entropy of F ∗ and

K(F : F ∗|θ) = H[F ∗(x|θ)] −H[F (x|θ)]. (8)

The first term is the entropy of the parametric ME model (5) and the second term is the entropy

of a distribution which is unknown other than the density is a member of a general moment class,

F ∈ Ωθ. This equality defines the information distinguishability (ID) between distributions in Ωθ.

ID statistics are obtained by estimating (8).

The relation (8) reduces the problem of estimating K(F : F ∗|θ) to the problem of estimating

the two entropies shown in (8). Many known parametric families of distributions are in the form of

(5) and therefore are ME subject to specific forms of moment constraints. For a parametric model,

one may easily identify the moment class Ωθ by writing the density in the exponential form (5);

see, e.g., Soofi et al. (1995). The entropy expression for the well known parametric families are

tabulated.

Two main issues remain: estimation of the entropy of the unknown distribution H[F (x|θ)] and

maintaining the non-negativity of the estimate of (8).

This paper develops a class of entropy estimates and provides a procedure for Bayesian inference

on the entropy and a fit index. We define a quantized approximation of (3), which for the continuous

case converges to the entropy integral. The quantized entropy provides a general representation
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for several existing entropy estimates, including Vasicek’s sample entropy, which has been the

main vehicle for the frequentist entropy-based distributional tests, and the existing Bayes entropy

estimates (Gill and Joanes 1979, Mazzuchi et al. 2000, Dadpay et al. 2007). We then derive

a Bayes estimate of the quantized entropy, based on the Dirichlet process posterior for F , with

the ME model as the prior expectation E(F ) = F ∗. We refer to this inferential procedure as the

Maximum Entropy Dirichlet (MED). We explore the large sample properties of the Bayes estimates

of entropy and the fit index.

For inference about the fit of the model F ∗, we give an approximation of the posterior entropy

loss, K(F : F ∗|θ)]. The normalized estimated average entropy loss provides a Bayesian Information

Distinguishability (BID) index of fit for the model. Inference about the fit is based on comparing

the prior and posterior distributions of the normalized K(F : F ∗|θ). As byproducts, the MED also

provides priors and posteriors for the moment parameters θ and the model parameters η.

Section 2 presents the quantized entropy and the Bayes estimate of entropy for continuous case.

Section 3 relates the entropy estimate to some measures for the discrete case. Section 4 presents

estimation of the Kullback-Leibler function. Section 5 reports some results of a simulation study.

Section 6 gives some concluding remarks. Technical details are given in an appendix.

2 The Continuous Case

For a real-valued random variableX with distribution function F , the probability integral transform

gives a uniform random variable U = F (X) over the unit interval and the quantile function is

defined as ξ = Q(u) = F−1(u) = inf{x : F (x) ≥ u}. Parzen (2004) gives an insightful discussion of

quantile functions and the useful roles that they play in statistical data modeling, including quantile

formula for mean and variance. Quantile formulas for sample moments use order statistics. Given

a set of observations x1, · · · , xn from F , the sample quantiles are defined by the order statistics

y(1) ≤ y(2) ≤ · · · ≤ y(n) with F̂i = P̂ (X ≤ y(i)) =
i

n
, see Parzen (2004).

The quantile formula for entropy (3) is

H(F ) =
∫ 1

0
log
[
d

du
Q(u)

]
du. (9)

Vasicek (1976) noted this entropy representation and defined a sample entropy based on order
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statistics as follows. At each sample point
(
y(i),

i

n

)
, the derivative in (9) is estimated by

si(m,n) =
y(i+m) − y(i−m)

F̂(i+m) − F̂(i−m)

=
y(i+m) − y(i−m)

2m/n
, (10)

where m ∈
{

1, 2, · · · ,≤ n

2

}
is an estimation window size. Vasicek’s sample entropy is defined by

the average of (10),

Hv(m,n) =
1
n

n∑

i=1

log
[
n

2m
(y(i+m) − y(i−m))

]
, (11)

where yi−m = y1 for i ≤ m and yi+m = yn for i ≥ n−m.

We generalize Vasicek’s sample entropy by a quantized entropy.

2.1 Quantized Entropy

Let ξk = Q(uk), k = 0, 1, · · · , q be a set of quantiles of F and let Fk = F (ξk). Each set of quantiles

define a partition of the real line <,

−∞ < ξ0 < ξ1 < · · · < ξq <∞. (12)

At each point (ξk, Fk), we estimate the derivative in (9) by

sk(m, q) =
∆ξm,k

∆Fm,k
, (13)

where m ∈
{

0, 1, 2, · · · ,≤ q

2

}
is an estimation window size, ∆ξm,k is spacing of order 2m defined

by

∆ξm,k =





ξk − ξk−1 ≡ ∆ξk for m = 0

ξk+m − ξk−m =
m∑

`=−m

∆ξk+` otherwise, (14)

and

∆Fm,k =





Fk − Fk−1 ≡ ∆Fk for m = 0

Fk+m − Fk−m =
m∑

`=−m

∆Fk+` otherwise, (15)

with ξk−m = ξ0, k < m and ξk+m = ξq, k > q −m are set such that F0 < ε0 and Fq < 1 − εq.

Figure 1 depicts estimation of the derivative of the quantile function
dQ(u)
du

. Figure 1a shows five

quantiles ξk−2, ξk−1, ξk, ξk+1, ξk+2 and the probabilities on the distribution function F (x). Figure

1b shows the quantile function ξ = Q(u), which is the mirror image of the u = F (x) on the rotated

axis. At point (Fk, ξk), the derivative
dQ(u)
du

may be estimated by any of the slopes computed by

the following ratios of the spacings to the corresponding probability increments:

6



Figure 1: Probability distribution function and quantile function

(a) Ratio of the spacings of order one to the corresponding probability increments. sk(0, q) =
ξk − ξk−1

Fk − Fk−1
;

(b) Ratio of the spacings of order two to the corresponding probability increments. sk(1, q) =
ξk+1 − ξk−1

Fk+1 − Fk−1
;

(c) Ratio of the spacings of order four to the corresponding probability increments. sk(2, q) =
ξk+2 − ξk−2

Fk+1 − Fk−1
.

Other plausible alternatives include
ξk+1 − ξk
Fk+1 − Fk

and a combination of sk(m, q), m = 1, 2.

The roles of spacing ∆ξm,k and window size m are to smooth the slope estimate (13). With m >

0 the derivative is estimated based on the spacings of order 2m and the corresponding probability

increments. Due to the relationship between the single and higher order spacings and probability

increments shown in (14) and (15), the case of m > 0 provides a “moving average” type estimate

for
dQ(u)
du

in the form of

sk(m, q) =
∆ξk

∆F k
, m > 0,

where ∆ξk =
m∑

`=−m

∆ξk+`

2m
and ∆F k =

m∑

`=−m

∆Fk+`

2m
are the moving averages of spacings of order

one and the corresponding probability increments defined by m = 0. If the spacings of order one

are all equal, then the case of m > 0 is simply the moving average of the case of m = 0, i.e.,
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sk(m, q) = s̄k(0, q)∗.

The quantized entropy is defined by the average of the logarithm of the slopes (13):

Hm,q(F ) = −
q∑

k=1

∆Fk log
∆Fm,k

∆ξm,k
. (16)

For a distribution with an absolutely continuous density, Hm,q(F ) provides a quantized approx-

imation for the entropy integral (3). Note that Hm,q(F ) has the scale property of the differential

entropy H(F ). That is for a constant a, Hm,q(FaX ) = Hm,q(FX) + log |a|.

Hm,q(F ) is a general representation that includes several entropy estimates proposed in the lit-

erature. For m = 0, the quantized entropy (16) gives a modification of the quantized approximation

of the differential entropy (3) by the discrete entropy proposed by Cover and Thomas (1991). This

case was used in Mazzuchi et al (2000). The modification resolve the convergence problem of the

quantized approximation of Cover and Thomas (1991).

Lemma 1 Let F be a distribution with an absolutely continuous density f . Then,

Hm,q(F ) → H(F ), as q → ∞, ∆ξm,k → 0 ∀k.

Proofs of this and other results are given in the Appendix.

When the partition (12) is defined in terms of the order statistics, ξk = yi, k = i = 1, · · · , n,

then Hm,n(F ) with ξ1 = y1, · · · , ξq = yn, and the empirical distribution ∆Fn = ∆F̂n = 1/n gives

Vasicek’s sample entropy Hv(m,n). Ebrahimi et al. (1994) observed that (10) does not define

correct measures of the slope when i ≤ m or i ≥ n − m + 1 and provided two modifications of

Hv(m,n) which are asymptotically equivalent to Hv(m,n). The quantized entropy (16) includes

both of these modifications.

Hall and Morton (1993) proposed estimating H(f) by the entropy of a histogram,

Hh
q (F ) = −

q∑

k=1

∆F̂k log
∆F̂k

h
,

where ∆F̂k =
nk

n
, k = 1, · · · , q are the relative frequencies in the bin width h = ∆ξm,k. Hm,q(F )

gives the histogram entropy when m = 0, ∆ξk = h, and ∆Fk = ∆F̂k k = 1, · · · , q.

Another useful partition is given by the Dirichlet tessellation (Bowyer 1981) defined by

Tk = {x : |x− ξk| < |x− ξj |,∀ j 6= k}.
∗Interpretation of this special case is due to a referee
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In this case each data point xi, i = 1, · · · , n is placed in an interval (ξi, ξi+1), i = 0, · · · , n − 1.

The boundaries are given by the data midpoints

ξi =
1
2

(
y(i) + y(i+1)

)
, i = 1, · · · , n− 1, (17)

where y(1) ≤ · · · ≤ y(n) are the order statistics; ξ0 and ξn are defined as above.

Theil (1980) used the midpoints (17) for derivation of a mass and mean preserving ME (MMME)

density estimate f∗n, which is piecewise uniform over the intervals [ξi, ξi+1], i = 1, · · · , n − 1 and

exponential over (−∞, ξ1], and [ξn,∞). Its entropy, given by

H(F ∗
n) = −

n∑

i=1

∆F̂i log
∆F̂i

∆ξi
+

2
n

(1 − log 2).

This entropy is a nonparametric entropy (Dudewicz and Van Der Meulen 1987, Soofi and Retzer

2002) and is a special case of the quantized entropy (16) with F = F ∗, m = 1, and q = n as n→ ∞.

In case of histogram partition, where h = ∆ξm,k, ∀k and m = 0, smoothing is done only through

the binwidth h. Whereas in the case of a partition defined by order statistics (e.g., Vasicek’s

sample entropy and Dirichlet tessellation) smoothing is done through the window size. The choice

of m ≥ 1 for Vasicek’s sample entropy and its modifications has been studied via simulation in

terms of frequentist criteria such as bias and mean squared error of estimation and power of the

distributional tests (see, e.g., Ebrahimi et al 1992, Ebrahimi et al 1994, Mudholkar and Tian 2002,

and Park and Park 2003). Choice of m for the quantized entropy requires simulation study in

the context of its applications to various statistical problems. Section 5 reports some results for

Bayesian estimation of entropy and inference about the fit.

2.2 Bayes Estimate of Entropy

Given a sample x = (x1, · · · , xn) from unknown F , the Bayes entropy estimate is defined by the

mean of a posterior distribution of the quantized entropy (16),

H̃m,q(F ) ≡ E[Hm,q(F )|x].

We use the Dirichlet process prior (Ferguson 1973) for the unknown F ,

F (ξk)|B, F ∗ ∼ D(B, F ∗), (18)

where F ∗ is a prior mean of F and B > 0 is the strength of belief parameter. We use F ∗, the

ME distribution in Ωθ, as the best guess distribution of the Dirichlet prior. In this context, B is

9



the degree of belief in the ME distribution F ∗ and we refer to D(B, F ∗) as the maximum entropy

Dirichlet (MED) prior.

For any partition (12) of <, the increments ∆Fk, k = 1, · · · , q have the Dirichlet distribution

π(∆F ) ∝ (∆F1)α(ξ1)−1(∆F2)α(ξ2)−α(ξ1)−1 · · · (∆Fq)B−α(ξq−1)−1. (19)

The parameters of the Dirichlet distribution (19) are given by α(ξk) ≡ α((−∞, ξk]), a measurable

function defined over < such that limξ→∞ α(ξ) = B, and

E[F (ξk)] =
α(ξk)
B = F ∗(ξk).

The prior variance of F (ξ) is given by

V [F (ξ)|F ∗,B] =
α(ξ)[B − α(ξ)]
B2(B + 1)

=
F ∗(ξ)[1 − F ∗(ξ)]

B + 1
,

reinforcing the notion of F ∗ being the best guess and B being the strength of belief parameter.

It is well-known that the posterior distribution of F is also Dirichlet process with parameters

updated by the data as:

F (ξ)|F ∗,B,x ∼ D(B̃, F̃ ), (20)

with the parameters updated by

B̃ = B + n, and α̃(ξk) = α(ξk) +
q∑

i=1

δ[xi ≤ ξk] (21)

where δ[·] is the indicator function of the set.

The posterior mean of Fk is given by

F̃k = E[F (ξk)|F ∗,B,x] =
B
B̃
F ∗(ξk) +

n

B̃
F̂ (ξk), (22)

where F̂ (ξk) is an empirical distribution.

The natural choice for empirical distribution is the cumulative distribution (piece-wise uniform).

For the Dirichlet tessellation with m = 0, the empiric distribution function of order one (piecewise

uniform over intervals (ξk−1 < x ≤ ξk+1], k = 1, · · · , n) developed by Dudewicz and Van Der

Meulen (1987) and the cumulative distribution of Theil’s MMME (piece-wise uniform over intervals

(ξk−1 < x ≤ ξk+1], k = 1, · · · , n with exponential tails) are also applicable. For Dirichlet tessellation

with m ≥ 1 the higher order empiric distribution developed by Dudewicz and Van Der Meulen

(1987) and the distribution function associated with Vasicek’s sample entropy developed by Park

and Park (2003) are applicable.
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Theorem 1 For each given partition (12) with the Dirichlet prior (19) the following results hold.

(i) The posterior average quantized entropy is

H̃m,q(F ) = ψ(B̃ + 1) −
q∑

k=1

∆F̃k[ψ(B̃∆F̃m,k + 1) − log ∆ξm,k], (23)

where ψ(z) =
d log Γ(z)

dz
is the digamma function.

(ii) For large B̃ such that ∆F̃k/(B̃∆F̃m,k) ≈ 0,

H̃m,q(F ) ≈ −
q∑

k=1

∆F̃k log
∆F̃m,k

∆ξm,k
. (24)

Since the Dirichlet prior (19) requires specification of a parametric first guess distribution F ∗,

for B > 0 the posterior mean H̃m,q(F ) is a semiparametric Bayes entropy estimate under quadratic

loss. For the case of the improper prior B = 0, or when n → ∞, the posterior mean H̃m,q(F ) is a

nonparametric Bayes entropy estimate under quadratic loss.

In practice, the posterior mean will be computed by the average of a large number of replications

of posterior Dirichlet vectors generated from (20) and computing (16) for each run, and then taking

the average. By the law of large numbers, the simulated Bayes estimate should be close to (23),

which may be used for the simulation accuracy as well.

Next result shows the consistency of the Bayes entropy estimate for the histogram partition.

Theorem 2 Let F be a distribution with an absolutely continuous density f . Then H̃m,q(F ) based

on a histogram type partition is consistent.

In the case of Dirichlet tessellation partition, q = n and H̃m,q(F ) = H̃m,n(F ). Note that use of

the Dirichlet tessellation partition circumvents the empty cell problem that usually is encountered

in applications of the Dirichlet process prior. Next result shows the consistency of the Bayes entropy

estimate for the Dirichlet tessellation partition.

Theorem 3 Let F be a distribution with an absolutely continuous density f . Let (12) be the

partition with ξi defined by the Dirichlet tessellation (17). Then as n→ ∞, m→ ∞, and
m

n
→ 0,

H̃m,n(F ) p→ Hv(m,n) p→ H(F ),

where Hv(m,n) is the Vasicek’s entropy estimate.
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According to Theorem 2 and Theorem 3 consistency may be achieved by smoothing, either

through the binwidth h or through increasing the window size m. Consistency can also be proved

for the case of m = 0, however, under a very stringent requirement of ∆ξi → 0 ∀i = 1, · · · , n, which

is hardly implementable. We therefore present it as a remark.

Remark 1 Let F be a distribution with an absolutely continuous density f . Let (12) be the partition

with ξi defined by the Dirichlet tessellation (17). Then as ∆ξi → 0 ∀i = 1, · · · , n, H̃0,n(F )
p→ H(F ).

As a final point, we also should note that the posterior variance of quantized entropy is available.

Since derivation is tedious and the variance expression is messy it is not reported here. It can be

shown that the posterior variance goes to zero as n→ ∞.

3 The Discrete Case

We have discussed the problem when F has a continuous density. However, with some modifi-

cations, the procedure is applicable when F is discrete or a distribution over q categories. Let

H(∆F ) = −
q∑

k=1

∆Fk log ∆Fk, (25)

where ∆Fk = fk is probability assigned to the kth category, k = 1, · · · , q by F . Then under the

Dirichlet prior (19) for F , the posterior average discrete entropy is

H̃(∆F ) = ψ(B̃ + 1) −
q∑

k=1

∆F̃k[ψ(B̃∆F̃k + 1)]. (26)

This is obtained by using part (ii) of Lemma 2 with u = B̃∆F̃k and v = B̃(1 − ∆F̃k).

Specific cases of (26) have been used previously. Gill and Joanes (1979) used the symmetric

Dirichlet prior distribution

π(f1, · · · , fq) ∝ fρ−1
1 · · · fρ−1

q , ρ > 0 (27)

and found the posterior mean of H(f). This prior reduces to the uniform prior when ρ = 1 and to

the Jeffreys invariant prior when ρ = 1/2.

Campbell (1995) obtained simple expressions for the prior average entropy and the prior entropy

variance using (27). The following theorem characterizes the results based on (27) in terms of the

Dirichlet prior (19).
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Theorem 4 Let F be a distribution with probability mass function f1, · · · , fq over q points y1 <

· · · < yq. Then the average entropy based on the symmetric Dirichlet prior (27) is given by (26) if

and only if the prior guess for the Dirichlet prior (19) is uniform, F ∗(yk) = k/q, k = 1, · · · , q.

Let ∆F̂k = nk/n, where nk =
∑q

i=1 δ[xi = yk]. Then with the uniform best guess, the posterior

average entropy (26) gives the Bayes estimate of the discrete entropy obtained by Gill and Joanes

(1979).

4 Information Index of Fit

The entropy-difference tests of distributional hypotheses are based on the right-hand-side of (8)

and the Kullback-Leibler tests arrive at (8) from (1). The tests were constructed using an esti-

mate η̂j in the expression for the parametric entropy H[F ∗(x|θ)] and a sample entropy (usually

Vasicek’s entropy Hv(m,n)) as the nonparametric estimate of H[F (x|θ)] in (8). Often these tests

are computed without imposing the constraints (4) on the two entropy estimates. When F is not

constrained to be in Ωθ̂ with F ∗(x|θ̂) as the ME model in the moment class, the entropy difference

in (8) does not measure disparity between F and F ∗. Moreover, without the constraints the pro-

cedure may produce a negative estimate of the discrimination information function K(F : F ∗|θ).

Soofi et al (1995) and Park and Park (2003), developed distributional fit indices and tests that

ensure non-negativity of K(F : F ∗|θ).

In order to ensure the non-negativity of K(F : F ∗|θ), the parameters of the ME model (hyper-

parameters) are determined by the moments of the quantized F . Quantized approximations of the

moment are obtained by

θq,j =
q∑

k=1

Tj(ξ̄k,m)(∆Fk), j = 1, · · · , J, (28)

where

ξ̄k,m =





ξk + ξk−1

2
for m = 0

ξk−m + ξk+m

2
for m ≥ 1.

The quantized moments (28) are approximations of the moments θj = θj(F ) ≈ θj(∆F ) = θq,j

in (4). We then use the maximum entropy H(F ∗|θq), where θq is the vector of quantized moments,

and the quantized entropy Hm,q(F ) in the decomposition (8). By using (28), in addition to ensuring
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non-negativity of the Kullback-Leibler function, we can draw prior and posterior for θ from the

Dirichlet prior and posterior for F . Then the priors and posteriors for the model parameters ηj(θ)

are obtained.

The priors and posteriors of H(f∗|θ) are obtained using θq,j and ηj(θq) in the general form of

the entropy of ME model f∗ ∈ Ωθ given by

H[f∗(x|θq)] = − logC(ηq) −
J∑

j=1

ηq,jθq,j.

Then the prior and posterior distributions for K(F : F ∗|θ) are induced by

Km,q(F : F ∗) = H(F ∗|θq) −Hm,q(F )

Note that Km,q(F : F ∗) is scale invariant and P (Km,qF : F ∗) ≥ 0) = 1.

Using the posterior mean of the entropy of the ME model H̃[f∗(x|θq)], (23) and (24) in (8)

gives the posterior mean of Km,q

K̃m,q(F : F ∗) = H̃[F ∗(x|θq)] + ψ(B̃ + 1) −
q∑

k=1

∆F̃k[ψ(B̃∆F̃m,k + 1) − log ∆ξm,k]

≈ H̃[F ∗(x|θq)] −
q∑

k=1

∆F̃k log
∆F̃m,k

∆ξm,k
. (29)

This approximation of the expected entropy loss provides an Information Distinguishability (ID)

index for assessing the fit of the parametric model F ∗.

The ID index can be normalized as:

IDm,q(F : F ∗) = 1 − exp[−Km,q(F : F ∗)]

= 1 − exp[Hm,q(F ) −H(F ∗|θq)]. (30)

Note that 0 ≤ IDm,q(F : F ∗) ≤ 1, and IDm,q(F : F ∗) = 0 if and only if F (x|θ) = F ∗(x|θ) with

probability 1. The posterior mean ˜IDm,q(F : F ∗) of the IDm,q(F : F ∗) index will be referred

to as Bayesian Information Discrimination (BID) index. We compare the posterior and prior

distributions of the ID index for inference about the fit. If the posterior distribution of IDm,q(F :

F ∗) shifts to the left of the prior, then data provide support for the ME model. If the posterior

shifts to the right of the prior or concentrates around the prior mean then the data and model are

not compatible.

Next result shows the consistency of the information index of fit for the histogram and tessel-

lation partitions.
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Theorem 5 Let F ∗ be a distribution with an absolutely continuous density f∗. If the data is

generated from F ∗, then the following results hold.

(i) For the histogram type partition K̃m,q(F : F ∗) p→ 0.

(ii) Let (12) be the partition with ξi defined by the Dirichlet tessellation (17). Then as n →

∞, m→ ∞, and m
n → 0, K̃m,q(F : F ∗)

p→ 0.

Thus if F ∗ is not a suitable approximation for the true data-generating distribution F , then for

large n, we can generally expect large values of K̃m,q. The next remark gives the consistency for

the case of m = 0 under the stringent requirement of ∆ξi → 0 ∀i = 1, · · · , n.

Remark 2 Let F be a distribution with an absolutely continuous density f . Let (12) be the partition

with ξi defined by the Dirichlet tessellation (17). Then as ∆ξi → 0 ∀i = 1, · · · , n, and as n → ∞,

K̃0,q(F : F ∗)
p→ 0.

5 Implementation and Examples

This section outlines the computational steps and reports results of a simulation study for the

proposed Bayes entropy estimate and information index of fit.

5.1 Implementation

Computation of the entropy estimate and the fit index for the case of m = 0 is discussed in Mazzuchi

et al. (2000). The procedure is adjusted for general m as follows.

1. Specification of the MED inputs:

(a) Identify the moment constraints (4) for which the likelihood function is the ME model

F ∗(x|θ); for a table of ME distributions see, e.g., Soofi et al. (1995).

(b) Set up the moment equations (28), the model parameter equations (6), and the entropy

expression for F ∗(x|θ). Use an entropy table (see e.g., Ebrahimi et al. (1999)) or (7).

(c) Specify the uncertainty about the ME distribution F ∗(x|θ) as the prior expected distri-

bution via the degree of belief parameter B.
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(d) Set the best guess moment parameter θ0; in the absence of prior values use the data

moments.

(e) Set ξ0 and ξq as suitable percentiles of F ∗(x|θ0) and compute data midpoints ξi for the

Dirichlet tessellation partition.

2. Simulation of the MED priors:

(a) Simulate n-dimensional Dirichlet vectors, F s = (∆F s
1 , · · · ,∆F s

n), s = 1, · · · , S, S � n,

according to 1(a)-1(e) and obtain the Dirichlet prior (18) for the quantized distribution

F .

(b) For each Dirichlet vector F s, s = 1, · · · , S, use (16) to compute Hs
m,q(F ) and obtain the

prior distribution for the unknown entropy H(F ).

(c) For each Dirichlet vector F s, s = 1, · · · , S, use (28) to compute the quantized moment

parameters θs
q and obtain the prior distributions of the moment parameters θ.

(d) For each vector of moment parameters θs
q, s = 1, · · · , S, use (6) to compute the model

parameters ηs
q and obtain the prior distributions of η.

(e) For each vector of model parameters ηs
q, s = 1, · · · , S, use the entropy expression to

compute the ME model entropy H(F ∗|θs
q) and obtain the prior for H(F ∗|θ).

(f) Use each pair of Hs
m,q(F ) and H(F ∗|θs

q), s = 1, · · · , S in (30) to compute IDs
m,q(F :

F ∗;θq) and obtain the prior distribution for the ID index,

(g) The simulation accuracy can be checked as follows.

i. Compute the prior mean of the quantized entropy using (23) with n = 0 in (22) and

compare it with the simulated mean H̄s
m,q = S−1

S∑

s=1

Hs
m,q. If the two quantities are

not satisfactorily close, increase the number of simulations S.

ii. Compare the quantized moments with the corresponding moments of F ∗(x|θ0). If

there is a large discrepancy, adjust ξq (h for histogram partition).

3. Simulation of the MED posteriors:

(a) Update the Dirichlet prior parameters to obtain the posterior parameters of (21).

(b) Simulate S posterior Dirichlet vectors using 1(a)-1(d) with the updated Dirichlet para-

meters and obtain the posterior distribution of the quantized distribution F .
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Table 1. Maximum entropy models used for simulated data

ME Model Exponential Gamma Log-normal

Distribution 1 − e−λx
∫ x

∞
λα

Γ(α) t
α−1e−λtdt

∫ x

∞
1√

2πσx
e−

1
2σ2 (log t−ν)2dt

Moment class E(X) = µ

{
E(X) = µ
E(logX) = ν

{
E(logX) = ν
E(logX)2 = τ

Model Entropy 1 + logµ log Γ(α)
λ + (1 − α)ψ(α) + α 1

2 log(2πσ2) + ν

Quantized moments
∑

∆Fk ξ̄k,m = µq





∑
∆Fk ξ̄k,m = µq

∑
∆Fk log ξ̄k,m = νq





∑
∆Fk log ξ̄k,m = νq

∑
∆Fk(log ξ̄k,m)2 = τq

(c) Obtain the MED posterior distributions using the posterior Dirichlet vectors as in 2(a)

and then follow 2(b)-2(g).

5.2 Example

We present the results for three sets of data generated from exponential, gamma, and lognormal

distributions. For each set of data, we consider all three distributions as the ME models. These

are typical results that may be viewed as prototypes of MED analysis for these types of data and

models.

For each model, Table 1 shows the distribution function F ∗(x|θ) of each candidate model used

as the best guess in the Dirichlet prior for unknown distribution F , the moment class (4) in which

it is the ME model, and the expression for the entropy of the ME model. The table also shows the

quantized moment equations (28) which link the ingredients of the MED procedure.

We report on the results based on the histogram partition and the Dirichlet tessellation. We

complete the MED prior specification for each model by setting B = 6 to reflect a very week degree

of belief in the ME distribution.

We report the results for the Dirichlet tessellation for q = n = 500 and window sizes m =

0, 1, 2, 5, 10, which depict the general patterns in light of the theoretical results. For the distributions

under consideration here, the natural choice for ξ0 = 0. We set ξq such that F ∗(ξq) ≥ .99, adjusted

to obtain moment estimates close to sample moments, and hence to prevent negative BID values.

Computation times on a desk top varied between 20-30 seconds for various values of m.

In choosing the histogram’s number of bins (h), we started with a standard rule (Sturges’
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rule h = 1 + 3.322 log(500)), which gives approximately 10 classes. But then this was adjusted

for accuracy in moment fitting. We used 12-15 classes in most cases. However, for lognormal

alternative sometimes a much large number of classes were needed to obtain moment estimates

close to sample moments, and hence to prevent negative BID values. Computation time on a desk

top for histogram partition was about 10 seconds.

The exponential data were generated using λ = 1. Thus, the model entropy is H(F ∗) = 1. The

sample mean is x̄ = 1.03. The gamma data were generated using α = 2 and λ = 1. Thus, the

model entropy is H(F ∗) = 1.577. The sample moments are x̄ = 1.99 and log x = .41, which give

moment estimates (MLE) α̂ = 1.950 and λ̂ = .980. The lognormal were data generated using ν = 0

and σ2 = 1. Thus, the model entropy is H(F ∗) = 1.419. The sample moments are log x = −0.012

and (log x)2 = 0.957, which give MLE ν̂ = 1.950 and σ̂2 = .975.

Table 2 shows the results for entropy estimation. The maximum likelihood method gives esti-

mate Ĥ(F ∗) for entropies of the parametric models. The MED method gives estimates of entropies

of the parametric models H∗ and a nonparametric estimate Hm,q for each class of distributions

where the model is ME. Table 2 shows the prior and posterior means and standard deviations for

the model and quantized entropies. The table shows the following general patterns, typically found

in the simulation runs. Estimates of model entropy given by MLE, MED with histogram partition

and tessellation for all m are all similar. For the exponential data, the model entropy estimates are

close to the actual value. For gamma and lognormal data the model entropies are underestimated

by these methods. The quantized entropy estimates with histogram partition are close to the ac-

tual model entropies, thus verifying the result of Theorem 2. The quantized entropy estimates with

tessellation partition move closer to the actual model entropies as m increases. For m = 10, the

estimates are close to the actual model entropies, verifying the result of Theorem 3. The results for

m = 0 are not satisfactory because the condition of ∆ξi → 0∀i = 1, · · · , 500 is violated; in general

it is difficult to achieve. Smoothing by m > 0 substantially improves the estimates.

Some general remarks are in order.

1. Entropy estimation procedures underestimate the entropy. This point has been noted in

previous studies (e.g. Ebrahimi et al 1994) and is observed for all procedures used in the

present study, as noted in Table 2 .

2. Table 2 shows substantial shifts from the prior means (highly negative) toward the actual
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Table 2. Posterior means and standard deviations of entropies for exponential, gamma, and
lognormal data

Exponential Gamma Lognormal
H = 1.000 H = 1.722 H = 1.419

Mean S.D. Mean S.D. Mean S.D.

Maximum Likelihood

Model entropy Ĥ∗ 1.030 - - - 1.579 - - - 1.385 - - -
Histogram

Prior model entropy H∗ 1.001 .348 1.478 .304 1.276 .437
Posterior model entropy H∗ 1.037 .040 1.607 .035 1.376 .052

Prior quantized entropy Hm,q .659 .254 .952 .230 .780 .253
Posterior quantized entropy Hm,q 1.005 .039 1.568 .033 1.350 .044

Tessellation
m = 0

Prior model entropy H∗ .979 .371 1.480 .313 1.240 .449
Posterior model entropy H∗ 1.032 .042 1.605 .037 1.387 .054

Prior quantized entropy Hm,q -2.487 .529 -1.944 .499 -2.155 .615
Posterior quantized entropy Hm,q .320 .061 .906 .054 .667 .069

m = 1
Prior model entropy H∗ .961 .362 1.454 .321 1.262 .444
Posterior model entropy H∗ 1.033 .041 1.604 .036 1.388 .055

Prior quantized entropy Hm,q -1.891 .507 -1.366 .468 -1.536 .587
Posterior quantized entropy Hm,q .604 .055 1.172 .051 .951 .064

m = 2
Prior model entropy H∗ .948 .357 1.468 .302 1.253 .448
Posterior model entropy Hm,q 1.031 .041 1.603 .036 1.386 .055

Prior quantized entropy H∗ -1.304 .489 -.751 .421 -.928 .576
Posterior quantized entropy Hm,q .797 .051 1.355 .046 1.147 .062

m = 5
Prior model entropy H∗ .957 .372 1.478 .298 1.251 .453
Posterior model entropy H∗ 1.031 .041 1.604 .037 1.386 .055

Prior quantized entropy Hm,q -.566 .482 -.021 .422 -.198 .555
Posterior quantized entropy Hm,q .942 .047 1.499 .042 1.299 .060

m = 10
Prior model entropy H∗ .962 .384 1.461 .309 1.258 .439
Posterior model entropy Hm,q 1.032 .042 1.602 .035 1.384 .056

Prior quantized entropy H∗ -.045 .490 .489 .402 .335 .536
Posterior quantized entropy Hm,q 1.002 .047 1.556 .040 1.364 .058

model entropies for the MED procedures with histogram partition and tessellation for every

m.
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Figure 2: MED prior and posterior distributions of quantized entropy based on the histogram
partition for gamma data with three best guess models for the prior.

3. When the sample size is large and the prior is weak, by Theorems 2 and 3, the sample dom-

inates the first guess model F ∗, and this makes the MED a robust procedure for inference

about entropy. Our simulation studies confirm this. Figure 2 shows the prior and posterior

distributions of quantized entropy for gamma data when the gamma, exponential, and log-

normal distributions described above are used as the best guess models in the prior. With

n = 500 and B = 6, the MED prior and posterior distributions are quite similar in all three

cases. The factor that makes a difference in the information fit measure K̃m,q(F : F ∗) for

these models is the parametric model entropy.

Table 3 shows the prior and posterior means and standard deviations of the normalized infor-

mation fit index for three candidate models for the exponential data. Since exponential is gamma

with shape parameter one (estimate based on exponential data is close to one), the values of pos-

terior mean (BID) index should be similar for the two models. This is the case in Table 3. The

exponential BID is always lower than the lognormal BID. The consistency of the BID estimate is

observed in the cases of histogram partition and tessellation partition with m = 10. In these cases

the BID indices of the exponential and gamma models are relatively much lower than the BID

index of lognormal model.

Tables 4 shows the prior and posterior means and standard deviations of the normalized in-

formation fit index for three candidate models for the gamma and lognormal data. For each data
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Table 3. Prior and Posterior means and standard deviations of fit indices for exponential data
Candidate Models

Exponential Gamma Lognormal
Mean S.D. Mean S.D. Mean S.D.

Histogram
Prior .274 .136 .319 .152 .542 .152
Posterior .032 .006 .023 .008 .082 .013

Tessellation
m = 0

Prior .967 .012 .964 .014 .961 .016
Posterior .509 .021 .508 .021 .555 .021

m = 1
Prior .939 .021 .934 .025 .929 .029
Posterior .349 .023 .347 .023 .406 .025

m = 2
Prior .889 .034 .878 .047 .875 .040
Posterior .209 .022 .208 .022 .279 .026

m = 5
Prior .773 .067 .755 .072 .745 .068
Posterior .085 .017 .084 .019 .164 .025

m = 10
Prior .623 .100 .596 .108 .598 .096
Posterior .030 .015 .030 .015 .108 .024

set, the BID for the true model is the lowest among the three candidate models. Again, for the

histogram and tessellation with m = 10, differences between the BID indices of gamma and other

two models are relatively substantial.

Figure 3 shows the MED prior and posterior distributions of the information fit index of the

gamma and exponential models for the gamma data. We note that in all cases the posterior

distributions shift toward zero and concentrate relative to the prior, and more so for the gamma

model than for the exponential. That is, the fit index favors the correct model for any partition

type and window size. The posterior distributions for the gamma based on the histogram and

tessellation partition with m = 10 depict the consistency of MED for estimation of Kullback-

Leibler information encapsulated in of Theorem 5. The consistency for the case of m = 0 is not

achieved due to the lack of the required condition ∆ξ → 0, ∀i = 1, · · ·.

Figure 4 shows the MED prior and posterior for the gamma model parameters based on the

gamma data, which is produced through the quantized moment estimation. We note that the

posterior distributions are almost symmetric and concentrate on the true values of the parameters.
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Table 4. Prior and Posterior means and standard deviations of fit indices for gamma and
lognormal data

Candidate Models
Exponential Gamma Lognormal
Mean S.D. Mean S.D. Mean S.D.

Gamma data

Histogram
Prior .448 .144 .391 .139 .541 .138
Posterior .113 .014 .038 .008 .089 .013

Tessellation
m = 0

Prior .960 .021 .965 .012 .965 .013
Posterior .542 .020 .503 .021 .506 .021

m = 1
Prior .930 .031 .937 .021 .936 .021
Posterior .403 .022 .350 .022 .355 .023

m = 2
Prior .878 .046 .887 .032 .886 .033
Posterior .282 .022 .219 .021 .229 .022

m = 5
Prior .765 .072 .769 .060 .765 .057
Posterior .175 .019 .099 .016 .125 .018

m = 10
Prior .627 .097 .611 .092 .611 .087
Posterior .130 .018 .044 .013 .086 .013

Lognormal data

Histogram
Prior .169 .083 .339 .154 .361 .174
Posterior .118 .026 .105 .034 .026 .017

Tessellation
m = 0

Prior .963 .015 .960 .023 .964 .013
Posterior .553 .022 .552 .023 .513 .021

m = 1
Prior .933 .026 .927 .032 .936 .023
Posterior .407 .025 .404 .026 .354 .024

m = 2
Prior .878 .046 .887 .032 .886 .033
Posterior .282 .022 .219 .021 .229 .022

m = 5
Prior .765 .066 .744 .079 .756 .066
Posterior .159 .029 .157 .027 .083 .019

m = 10
Prior .619 .098 .588 .107 .591 .095
Posterior .097 .029 .094 .029 .020 .013
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Figure 3: MED prior and posterior distributions of information index of fit for two alternative
models for gamma data
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Figure 4: MED prior and posterior distributions of parameters of gamma distribution
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6 Concluding Remarks

We have introduced a quantized entropy which provides a general representation of various versions

of sample entropy measures found in the literature. We have developed a Bayesian alternative to

the sampling theory entropy based approach for assessing the fit of parametric models. The fit is

measured by an estimate of a Kullback-Leibler information. Prior and posterior distributions for

the quantized entropy are obtained from the Dirichlet process prior for the unknown data generating

distribution. We then showed how prior and posterior distributions for the information index can

be obtained based on the maximum entropy characterization of the parametric model. The ME

model is used as the expectation in the Dirichlet prior. In addition to providing Bayesian inference

for the entropy and information index of fit, the MED procedure produces prior and posterior

distributions for the model parameters and the moments.

We have derived the exact expression and a simple approximate formula for the posterior mean

of the quantized entropy. The posterior mean provides a semiparametric Bayes estimate of entropy,

which becomes nonparametric when the data dominate the prior. The posterior variance is also

available, but is not included in this paper because the expression for the variance and its derivation

are cumbersome. We have shown that the Bayes estimates of entropy and the Kullback-Leibler

information possess appropriate consistent properties. The inference is computer-intensive. All

prior and posterior distributions are found via simulations.

We have reported results of examples of some simulation runs for exponential, gamma, and

lognormal data, where for each set of data, all three distributions were considered as the ME

models. The findings, which are prototypes of MED analysis for these types of data and models

shed some lights on the theoretical results. The examples indicated that MED is as good as the MLE

for producing estimates of parametric model entropy. In addition, MED produces nonparametric

estimate and Bayesian inference of entropy, which for large sample is robust against the best guess

model in the Dirichlet prior. The proposed Kullback-Leibler information index, BID, favored the

correct model in every case. The simulation results indicated that smoothing (through histogram

or large window size) is important for consistency of the Bayes entropy estimate and the Kullback-

Leibler information index. The specific case of m = 0, used in Mazzuchi (2000), although selected

the correct model in all three cases, it failed to verify the it consistency results with a sample as

large as n = 500 and a Dirichlet prior as weak as one signified by B = 6.
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Finally, two points are noteworthy regarding our formulation of the Dirichlet prior. First, in

the MED prior, the initial best guess model is formulated systematically according to the maxi-

mum entropy formalism. Second, the MED formulation extends the traditional maximum entropy

approach by associating uncertainty with the ME model. We therefore have bridged the maximum

entropy and Bayesian approaches in a new context.

Appendix

Proof of Lemma 1. We show the result along the lines of Cover and Thomas (1991, pp. 228-

229). Since the density is absolutely continuous, by the mean value theorem, there exists a point

ξ∗k ∈ (ξk−m, ξk+m) such that

∆Fm,k =
∫ ξk+m

ξk−m

f(x)dx = ∆ξm,kf(ξ∗k).

In particular, ∆Fk = ∆ξkf(ξ∗k). Substituting in (16), we have

Hm,q(F ) = −
q∑

k=1

∆ξkf(ξ∗k) log
∆ξm,kf(ξ∗k)

∆ξm,k

= −
q∑

k=1

∆ξkf(ξ∗k) log f(ξ∗k)

→ −
∫
f(x) log f(x)dx as ∆ξm,k → 0 ∀k.

The limit is due to the fact that since the integral (3) exists, f(x) log f(x) is Riemann integrable.

The following results are needed for proof of Theorem 1.

Lemma 2 Let X be a random variable with Beta density

g(x) =
Γ(u+ v)
Γ(u)Γ(v)

xu−1(1 − x)v−1, 0 ≤ x ≤ 1, u > 0, v > 0.

Then

(i) E(logX) = [ψ(u) − ψ(u+ v)];

(ii) E(X logX) =
u

u+ v
[ψ(u+ 1) − ψ(u+ v + 1)];
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Proof. Part (i) is well known. For (ii) note that for α = 1, 2, · · ·,

E[(X logX)α] =
Γ(u+ v)
Γ(u)Γ(v)

∫ 1

0
(log x)α xu+α−1(1 − x)v−1dx

=
Γ(u+ v)
Γ(u)Γ(v)

∫ 1

0

∂α

∂uα

[
xu+α−1(1 − x)v−1

]
dx

=
Γ(u+ v)
Γ(u)Γ(v)

∂α

∂uα

∫ 1

0
xu+α−1(1 − x)v−1dx

=
Γ(u+ v)
Γ(u)Γ(v)

∂α

∂uα

[
Γ(u+ α)Γ(v)
Γ(u+ v + α)

]
.

The result is obtained upon differentiation and simplification and letting α = 1.

Lemma 3 Let X = (X1, · · · ,Xq−1)′ be a Dirichlet vector with density

g(x|u) =

Γ

( q∑

k=1

uk

)

∏q
k=1 Γ(uk)

q−1∏

k=1

xuk−1
k



1 −

q−1∑

k=1

xk





uq−1

,
q−1∑

k=1

xk ≤ 1, xk ≥ 0, uk > 0, k = 1, · · · , q.

Then

E
g(·|u)

[Xk log Tk(X)] =
uk∑q

k=1 uk
E

g(·|v)
[log Tk(X)],

where Tk(X) =
∑k+b

j=k−aXj and the expectation in the right hand side is with respect to the Dirichlet

density with parameters vj = uk + δ(j = k), δ being the indicator function.

Proof. Since vj = uk+1 when j = k and vj = uk for all j 6= k, we have
∏q−1

j=1 x
vj−1
j = xk

∏q−1
j=1 x

uj−1
j

and
∑q

j=1 vj = 1 +
∑q

k=1 uk. By recursion of the gamma function we have,

Γ

( q∑

k=1

vk

)
= Γ

(
1 +

q∑

k=1

uk

)
=

( q∑

k=1

uk

)
Γ

( q∑

k=1

uk

)

q∏

k=1

Γ(vk) = uk

q∏

j=1

Γ(uj).

Using the above relations in the expectation integral gives the result.

Proof of Theorem 1.

(i) Write the quantized entropy as

Hm,q(F ) =
q∑

k=1

∆Fk log ∆ξm,k −
q∑

k=1

∆Fk log ∆Fm,k.

The expected value of the first summation is obtained by noting that the increments ∆Fk, k =

1, · · · , q are distributed as Beta with parameters B̃∆F̃k and B̃(1−∆F̃k). Thus E(∆Fk) = ∆F̃k.
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The expected value of the second summation is obtained as follows. For m = 0, using part

(ii) of Lemma 2 with u = B̃∆F̃k and v = B̃(1 − ∆F̃k) gives the result. For m 6= 0, first use

Lemma 3 with ∆Fm,k =
∑k+m

j=k−m+1 ∆Fj = Tk(∆F ). Then use the fact that the distribution

of Tk(X) is Beta with parameters Tk(u) and
∑q

k=1 uk − Tk(u) and part (i) of Lemma 2. The

result is obtained upon some simplifications.

(ii) Using the recursion ψ(z + 1) = ψ(z) + z−1 (Abramowitz and Stegun 1970) we can write (23)

as

H̃m,q(F ) = ψ(B̃) +
1
B̃

−
q∑

k=1

∆F̃k

B̃∆F̃m,k

−
q∑

k=1

∆F̃k[ψ(B̃∆F̃m,k) − log ∆ξm,k].

For large B̃ the second and third terms vanish. Also for large B̃, ψ(B̃) ≈ log B̃ (Abramowitz

and Stegun 1970), so

H̃m,q(F ) ≈ log B̃ −
q∑

k=1

∆F̃k(log B̃ + log ∆F̃m,k − log ξm,k),

which gives the result.

Proof of Theorem 2. For large n the sample dominates the prior in (22) and ∆F̃0,k → ∆F̂k as

n→ ∞. Then the consistency of the histogram entropy (Hall and Morton 1993) gives the result.

Proof of Theorem 3. For large n the sample dominates the prior in (22), i.e., ∆F̃m,i → ∆F̂m,i =

(2m)/n as n → ∞. Since n → ∞ and m/n → 0, we can use the approximation (24) with

∆F̃m,i = (2m)/n which gives H̃m,n(F )
p→ Hv(m,n). Then the result follows from the consistency

of Hv(m,n); see Vasicek (1976).

Proof of Remark 1. Since for m = 0, ∆Fm,i = ∆Fi and n is large, the approximation (24) is

applicable. Then the consistency of the empirical distribution implies

H̃m,n(F )
p→ Hm,n(F ), as n→ ∞.

Lemma 1 gives the result.

Proof of Theorem 4. Let ξk = yk, k = 1, · · · , q. Then H(∆F ) = H(f1, · · · , fq). To see that

the uniform prior guess is sufficient, let n = 0 and ∆F ∗
k = q−1 in (26) and obtain the prior average

entropy obtained by Campbell (1995), E[H(∆F )|F ∗
k = k/q,B] = ψ(B + 1) − ψ(B/q + 1); i.e., ρ =

B/q. Also note that with the uniform best guess, α(yk) = kB/q, thus α(yk) − α(yk−1) = B/q ≡ ρ;

i.e. (19) reduces to the symmetric Dirichlet prior (27). Conversely, the uniform distribution is

implied by letting α(yk) − α(yk−1) = ρ in (19) which implies that α(yk) = kρ and B = qρ.
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Proofs of Theorem 5. As n → ∞ the quantized moments approach to the sample moments.

The consistency of the sample moments implies the consistency of H(F ∗|θq). Then results follow

from the uniqueness of the ME density and Theorems 2 and 3.

Proof of Remark 2. Use the same argument as proof Theorem 5.
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