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In this paper we present a modulated Poisson process model to describe and analyze

arrival data to a call center. The attractive feature of this model is that it takes into

account both covariate and time effects on the call volume intensity and in so doing

enables us to assess the effectiveness of different advertising strategies along with

predicting the arrival patterns. A Bayesian analysis of the model is developed and an

extension of the model is presented to describe potential heterogeneity in arrival patterns.

The proposed model and the methodology are implemented using real call center arrival

data.
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1. Introduction and Background

Forecasting call volume data that is based on a specific advertisement or

promotion plan poses a challenging problem for call centers. The need for optimal

scheduling and staffing of telephone operators in call centers has made forecasting models

an important component of decision making in many organizations [see for example,

Andrews and Parsons (1993) and Gans et al. (2003)]. Some of the earlier forecasting
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models include ARIMA processes and transfer function models. These have been

successfully used in forecasting call volumes [see for example Andrews and Cunningham

(1995)]. More recent approaches involve use of queuing models as in Jongbloed and

Koole (2001) and doubly stochastic Poisson models as in Avramidis et al. (2004). The

focus of these previous work was to model the call arrival (demand) process based on

aggregate arrival data.

In addition to modeling call center arrival process, it is desirable to evaluate the

efficiency of and return on advertisement and promotion policies to develop marketing

strategies for call centers. This requires an advertisement specific analysis of arrival

patterns rather than analysis of aggregate arrival data. In a recent project we were faced

with a need to develop models and methods for assessing the impact of individual

advertising campaigns of print media on call arrivals. The predictions produced by such

models have significant implications for marketing and advertising budget decisions as

well as for scheduling and staffing. The models and the statistical methodology presented

here are motivated by this project.

Modeling and analysis of call center arrival data from a marketing point of view

need to address the following issues:

(a) development of a model describing the call volume over time for different

advertising and promotion policies by accounting for covariate effects as well as the life

cycle of advertisements;

(b) assessment of the effectiveness of different advertising strategies by accounting

for the effect of other relevant covariates;

(c) ability to describe heterogeneity in advertisements beyond what is captured by

covariates;

(d) ability to predict call volume over any time interval so that optimal scheduling

of operators can be determined.
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In this paper we present a modulated Poisson process model that provides us with

a framework to address the above issues and develop its Bayesian analysis. Unlike the

previous models used in call arrival analysis, the proposed model allows for advertisement

specific analysis of call arrival data and thus enables us to assess effectiveness of various

advertisement and promotion strategies. In modeling daily call arrival data Avramidis et.

al. (2004) have noted that arrivals during different time partitions are correlated. They

have proposed Poisson models with stochastic arrival intensities to deal with this problem.

In our development, by taking a Bayesian approach we describe our uncertainty about

parameters of the modulated Poisson process model probabilistically via specifying a prior

distribution. This approach yields a model that can be considered as a doubly stochastic

Poisson model as used in Avramidis et. al. (2004) and this results in correlated call arrival

counts. modulated Poisson process modelThus, the Bayesian treatment of the provides an

alternate modeling approach to describe correlated call arrival data. Furthermore, this

introduces a methodology for statistical analysis of call center operations as Gans et al.

(2003) alluded to as a potential research prospect.

In recent years the Bayesian approach have been considered in many marketing

related problems; see Rossi and Allenby (2003) for a review. As pointed out by the

authors, the Bayesian methods provide a more flexible framework in dealing with

heterogeneity. As discussed in Bayesian models have been usedAllenby and Rossi (1999),

in dealing with consumer heterogeneity but they have not been not considered in the

analysis of call center arrival data. In this paper, as an extension of the modulated Poisson

process model, we introduce a random effects type model to describe potential

heterogeneity in advertisements and present Bayesian inference for the model.

In what follows, we present the call arrival data and introduce a modulated

Poisson process model to describe the arrival pattern of calls over time by accounting for

covariate effects. This is done in Section 2. This model enables us to assess the

effectiveness of different advertising venue, of various advertising strategies and provides
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a framework for predicting call volume over time. In Section 3 we present a Bayesian

analysis of the model and discuss how posterior and predictive distributions are obtained

in such an analysis. To consider heterogeneity in different advertisements, a random

effects type extension of the model is considered in Section 3.1 and a model comparison

approach is discussed Section 3.2. An illustrative example is given in Section 4 using real

call volume center data. Conclusions are presented in Section 5.

2. A Model for Call Center Arrivals

2.1 Call Arrival Data

The data we used in our analysis comes from a consumer electronics producer who

offers a limited variety of products. Significant portion of the sales goes through the call

center. Products usually have long life cycles and the life cycle is usually extended by

periodic updates and upgrades. With the aging product line, the advertisement budget has

been increasing drastically.

The data is more detailed than what is commonly available from a typical call

center. The time arrival history is available for each advertisement separately along with

advertisement specific data such as cost, frequency and type. The company issues

advertising in most media venues however majority is in print media. Each advertisement

is targeted and aims at urging the customer to place the call. The company tracks the

origin of the call to the specific advertisement that led to the call, becaues each incoming

call is stamped with advertisement ID. The advertisement ID typically points out the cost

of advertisement, its medium, the advertisement format, and the type of promotion being

offered. The incoming number of calls for each advertisement is available as interval

counts for different periods over the life cycle of the advertisement. An example of call

arrival data for a typical advertisement is shown in Table 1 below.
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Table 1: An Example of Call Arrival Data for an Advertisement

Time Interval (in days) Number of Calls

(0, 1] 6

(1, 2] 5

(2, 3] 1

(3, 4] 3

(4, 5] 2

(5, 6] 2

(6, 7] 2

(7, 8] 0

(8, 9] 2

(9, 10] 2

(10, 18] 0

2.2 Modulated Poisson Process Model

In modeling call arrivals generated by an advertisiment venue such as in Table 1, it

is important to note that the effectiveness of the advertisement decreases by time. In view

of this fact, the number of calls generated by an advertisement in a specified time interval

can be described by a nonhomogeneous Poisson process (NHPP). As pointed out earlier,

it is of interest to assess the effectiveness of different advertising strategies as well as

advertising venues on call volume. Thus, these factors as well as the time effect should be

considered by any model describing the call volume. Modeling the effect of covariates on

the call volume intensity requires a modulation of the Poisson process as proposed in Cox

(1972a).

Let denote the number of calls arrive during a time interval of length as5 ²!³ !�

response to the advertisement and let denote a vector of covariates that�!� � d �A�

describe the characteristics of the advertisement. Typically, will consist of�!� A�

components such as media expense (in $'s), venue type (monthly magazine, daily

newspaper etc.), advertisement format (full page, half page, color etc.), offer type (free

shipment, payment schedule etc.) and seasonal indicators.
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To reflect the fact that effectiveness of advertisement is a function of time,� 5 ²!³�

is described by a NHPP with intensity function

�� �²!³ ~ ,´5 ²!³µ
�

�!
, (2.1)

where � denotes the expectation. The modulated Poisson process model (MPPM),´ µ

assumes that the intensity function of the advertisement is related to the covariate�!�

vector viaA�

� �� � �²!Á ³ ~ ²!³ �A
� Z
A� , (2.2)

where is the baseline intensity function and is a vector of parameters. Note��²!³ � d ��

that (2.2) incorporates both the time and covariate effects on call intensity.

The MPPM's have been considered in survival analysis by Sinha (1993). The

modulated Poisson process model can be thought as a counting process alternative to the

proportional hazards model (PHM) of Cox (1972b) and is sometimes referred to as

proportional intensities model (PIM) in reliability modeling literature [Merrick et. al.

(2004)]. Similar to the PHM, in the PIM ratio of intensity functions

�

�

� �

� �

² c ³²!Á ³

²!Á ³
~ �

A

A

� Z
A A� � (2.3)

does not depend on time. The cumulative intensity (or the mean-value) function of the

MPPM is given by

$ $� � �²!Á ³ ~ ²!³�A
� Z
A� , (2.4)

where . Given , , and , the distribution of , call volume$ � $� � � � ��

!
²!³ ~ ² ³� ²!³ 5 ²!³
 � A

in any interval of length , is given by!

7 ²5 ²!³ ~ �O ²!³ ³ ~ �%�² c ²!³ � ³
² ²!³� ³

�[
� � � �

�
³ �

$ $
$

, , . (2.5)� A
�

�

Z

Z

A

A
�

�
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Similarly, conditional on � , , and , the probability distribution of distribution of$� �² ³ � A

number of calls in a time interval is given by the Poisson model² Á !µ

7 ²5 ²!³ c 5 ² ³ ~ �O ² ³Á Á ³ ~
²!Á ³ c ² Á ³

�[
� � � �

� � � �

�

$

$ $

� � A
A A6 7

. (2.6)d �%� c ´ ²!Á ³ c ² Á ³µF G$ $� � � �A A

In modeling the baseline intensity of the modulated Poisson Process, a$�²!³

parametric form can be specified. For example, an appropriate form for in the$�²!³

analysis of call arrival data can be the which is also used in reliability andpower law model

survival analysis. This is given by

$ ��²!³ ~ !� (2.7)

where and . In the power law model, values of imply that the� � �� � � � � �

effectiveness of an advertisement deteriorates with time. This is typically what is expected

in call volume generated by a given advertisement. The specification of the above form

also implies that the distribution of the time to the first call arrival is a Weibull density with

shape parameter . For this reason the Poisson process with the power law intensity�

function is referred to as .Weibull process

We can investigate the appropriateness of the power law model by obtaining a

scatter plot of cumulative number of calls against time in the log scale. Taking logs on

both sides of (2.7) yields

���´ ²!³µ ~ ��� b ���!$ � �� . (2.8)

The above implies that if the plot of log of the expected number of calls against the log of

time is approximately linear, then the power law model is appropriate. In Figure 1, we

show such a scatter plot for a group of monthly advertisements that are in similar cost
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range. The linear fit that is shown in the figure suggests that the parametric form (2.7) is

reasonable for the cumulative intensity function. In our illustration in Section 4, we will

use the power law as the intensity function of the modulated Poisson process model.

However, it is possible to consider other parametric forms for � or to use a$�² ³

nonparametric setup as discussed in Gelfand (1999).
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Figure 1. Scatter plot of Cumulative Number of Calls versus Time in Log Scale.

Recent studies in modeling aggregate daily arrivals to call centers have noted the

inappropriateness of the standard Poisson process models with deterministic arrival

intensities. Avramidis et. al. (2004) point out that arrival counts in nonoverlapping time

partitions are correlated and propose alternate stochastic models for arrival counts.

In what follows, we will present a Bayesian analysis of the MPPM whose baseline

intensity function is given by the power law model (2.7). The Bayesian approach requires

that uncertainty about all unknown parameters of the MPPM, that is, and covariate� �Á

parameter vector , is described probabilistically by specifying a prior distribution�

�² Á Á ³� � � . Note that the results (2.5) and (2.6), as well as the independent increments
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property of the NHPP, hold only conditional on the parameters and . In other� � �Á

words, unconditionally the process will not have independent increments. Thus, the5 ²!³�

Bayesian treatment of the MPPM provides an alternate modeling framework to alleviate

difficulties arise in analysis of call arrival data.

3. Bayesian Analysis of the Modulated Poisson Process Model

We assume that the call volume data is available in terms of interval arrivals as

shown in Table 1, but the presented approach can easily be modified to incorporate time

of arrivals data. For advertisement , the process is observed at time intervals with� 5 ²!³ �� �

endpoints

! ~ ! ÁÃ Á ! ! � Ã � !�� �� �� ��� �
, and ,

� ~ �ÁÃ Á� �and the call volume data generated by advertisement is given by

+ ~ ¸5 ²! ³ ~ � ²! ³Á � ~ � ÃÁ � Á ¹� � �� � �� � �, ,A

where denotes the covariate vector associated with advertisement . Using theA� �

independent increments property of the NHPP conditional on the parameters, given data

on advertisement , the likelihood function of � and is given by� ² ³$� �

3 ² ² ³Á + ³ ~
´ ²! ³ c ²! ³µ�

´� ²! ³ c �²! ³µ[
� � �

�~�

�
� �� � �Á�c�

� ²! ³c�²! ³

� �� �Á�c�
$

$ $

� ;� �
6 7�

�

� �� �Á�c�
� Z
A

d �%� c ´ ²! ³ c ²! ³µ�F 6 7G$ $� �� � �Á�c�
� Z
A� . (3.1)

Conditional on � and , the 's are assumed to be independent. Thus, given the$� �² ³ 5 ²!³�

call counts for each at , where , for , the5 ²!³ ! ÁÃ Á ! ! � Ã � ! � ~ �ÁÃ Á�� �� �� �� ��� �

likelihood function of � and is$�² ³ �

3² ² ³Á Â+³ ~ 3 ² ² ³Á Â+ ³$ $� � � �

�~�

�

� � (3.2)� ��
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where .+ ~ +��

�~� �

We will assume the power law model for the intensity function � . The$�² ³

Bayesian analysis requires specification of a joint prior distribution for the�² Á Á ³� � �

power ( ), and scale ( ) parameters of the intensity function and for , the parameters of� � �

the covariate vector . Note that the values and signs of the coefficients in the vector� �

provide information about the effectiveness of a covariate in generating calls. For example,

if the covariate is the media expense, then a positive value of the coefficient implies that

higher levels of advertising expenses result in a higher level of call intensity. In our

development we will assume independent priors on these parameters. More specifically

uncertainty about the covariate vector will be described by a multivariate normal prior,�

denoted as , with a specified mean vector and a covariance matrix . In� � 5² Á ³� ' � '

specifying the prior parameters of this distribution we can incorporate any expert

judgment on the effect of media expenses, advertising strategy, etc. into the analysis; see

Lindley (1983) for a formal framework for use of expert opinion in Bayesian analysis.

In specifying the prior distribution of the parameters in the power law model, we

note the fact that both and are nonnegative random variables and furthermore values� �

of reflect the fact that the effectiveness of the advertisements deteriorate� � � ² � �³

(improve) by time. In our development we will specify a gamma prior on and a�

lognormal prior on . Again the prior parameters of these distributions can be chosen in�

such a way to reflect our knowledge or ignorance about them.

Given the above choice of priors or any other form, a fully Bayesian analysis of the

MPPM can not be obtained analytically. In other words, the joint posterior distribution

�² Á Á O+³ � 3² ² ³Á Â+³ �² Á Á ³� � $ � � �� �� � (3.3)

is not in an analytically tractable form. However, a Gibbs sampler similar to that used in

Dellaportes and Smith (1993) for analysis of PHM can be developed to simulate from the

posterior distribution (3.3). Once we have samples from the posterior distribution we can
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obtain predictions of type (2.5) and (2.6). The Gibbs sampler enables us to simulate from

(3.3) by recursively sampling from full conditional distributions �² O Á Á+³Á �² O� � ��

� � �Á Á+³ �² O Á Á+³� �and ; see Gelfand and Smith (1990) for a review of the Gibbs

sampler and implementation details. Given the above selection of priors, the full

conditional distributions for , and can not be obtained in any known form. Thus,� � �

sampling from these requires use of special simulation algorithms. However, it can be

easily shown that all of these distributions are logconcave. Thus, the adaptive rejection

algorithm of Gilks and Wild (1992) can be used for sampling from these distributions.

Given the posterior sample

F G� �
²�³ ²�³ ²�³

:

�~�
Á Á �

from the joint posterior we can make call arrival predictions for any advertisement for any

time interval. Note that the posterior predictive distribution of number of arrivals in an

interval of time units for advertisement is given by! �

7 ²5 ²!³ ~ �O+³ ~ 7²5 ²!³ ~ �O Á Á Á ³ ��² Á Á O+³� � �� � � � �� �A , (3.4)

where is given by (2.5). The above integral can not be7²5 ²!³ ~ �O Á Á Á ³� �� � � A

evaluated analytically, but we can compute it using a Monte Carlo integral approximation

as

7²5 ²!³ ~ �O+³ � 7²5 ²!³ ~ �O Á Á Á ³
�

:
� � �

�~�

:
²�³ ²�³ ²�³ (3.5)� � � � A

for , , Also, we can obtain expected number of calls in a time interval as� ~ �Á � � Ã

,²5 ²!³O+³ � ,²5 ²!³O Á Á Á ³
�

:
� � �

�~�

:
²�³ ²�³ ²�³� � � � A

where

E .²5 ²!³O Á Á Á ³ ~ ²!Á ³ ~ ! �� � � �� � $ �� A A
� � Z

A�
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Similarly, we can approximate the probability of calls in the interval , , for� ² Á !µ  � !

advertisement as�

7 ²5 ²!³ c 5 ² ³ ~ �O+³ � 7²5 ²!³ c 5 ² ³ ~ �O Á Á Á ³
�

:
� � � � �

�~�

:
²�³ ²�³ ²�³ , (3.6)� � � � A

where , , , and is given by (2.6). We can� ~ �Á � � Ã 7²5 ²!³ c 5 ² ³ ~ �O Á Á Á ³� � �� � � A

also evaluate the joint distribution of number of calls for any given type of advertisements

using the conditional independence of 's given for5 ²!³ Á Á Á Á � ~ �Á �Á Ã Á�À� �� � � A

3.1 Modeling Heterogeneity in Advertisements

The MPPM of (2.4) implies that differences between the intensity functions of

advertisements are adequately captured by the included covariates of the model. It is

possible that in many cases certain covariate information may not be available or the

covariates included in the model will not reflect potential heterogeneity in different

advertisements. Modeling heterogeneity in advertisement is essential not only for

improving the predictive performance of the call arrival model but also to assess the

effectiveness of different advertising and promotion strategies in creating the call volume.

Recently, Bayesian models have been used in marketing literature for modeling

consumer heterogeneity; see for example, Allenby and Rossi (1999). However, these

models have not included point process models such as the MPPM and they have not

considered analysis of call center arrival data.

A common strategy to model heterogeneity is to consider a random effects type

extension of the MPPM. This involves reparameterization of the intensity function as

$ ��

� �²!³ ~ !� (3.7)

where the parameter for , is assumed to be drawn from a known��Á � ~ �Á �Á Ã Á�

mixing distribution . This type of extension results in a hierarchical Bayes type setup in.
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the sense of Lindley and Smith (1972). More specifically, in the intensity function (3.7),

we define

���� � �� �~ b , (3.8)

where andom effect terms. We assume that� �� �'s are the r 's are conditionally independent

normal random variables

� � ��O � 5²�Á �° ³

where the unknown precision is described by the gamma prior, � � .²� Á � ³
� �

, with

specified parameters and . As before will have a gamma prior and the coefficient� �
� �

�

vector is assumed to follow a multivariate normal prior. Furthermore, in this setup we�

can also specify a normal prior for in (3.8), which can be incorporated into the�

multivariate normal prior of . In our setup, we assume that apriori and are� �, � �

independent of 's and .� ��

Under the random effect type model, the posterior distribution of interest is

�² Á Á O+³ � 3 ² ² ³Á Â+ ³ �² Á Á ³� � � $ � � �� � � � �, , � , , (3.9)�
�~�

�

� �

�

�

where . As in the original model the posterior distribution (3.9) can not� ~ ² ÁÃ Á ³� �� �

be obtained analytically. Thus, all the posterior and predictive analyses need to be done

using a Gibbs sampler. In this case the required full conditionals also include

�² O Á Á Á+³ �² O Á Á Á Á+³ ~ ¸ O � £ � � ~ �ÁÃ Á�� � � � � � � �� � �and , where , }, as� �
²c�³ ²c�³

well as the full conditionals of and .� �

It follows from the above setup that the full conditional distribution of can be�

obtained as a gamma distribution given by

² O Á Á Á+³ � .²� b �°�Á � b °�³� � �� �
� �

�
�~�

�

�

�
.

The remaining full conditional distributions do not follow any standard forms. However,

since they are all logconcave, the adaptive rejection sampling method can be used to
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sample from these at each iteration of the Gibbs sampler. Similar to the original model,

the predictive distributions (3.5) and (3.6) are obtained once posterior draws are available

from the Gibbs sampler.

3.2 Model Comparison

In comparing the original modulated Poisson process model with its random

effects extension presented above, computation of the Bayes factors [see Kass and Raftery

(1995) for a comprehensive review] marginal likelihoods under the twois difficult. The

competing models can not be directly approximated from the Gibbs sampler to compute

the Bayes factor.

An alternative is to use a model selection criterion such as the Deviance

Information Criterion ( ) of et. al. (2002). For a generic parameter+0* Spiegelhalter

vector , is defined as# +0*

+0* ~ b �
c
D , (3.10)D

where D , is two times the negative loglikelihood D E D and~ c ���� ² ³ Á ~ ´ µc
B # #O��!�

� ~ c ² ³ +0*c V V
D D D , where is the posterior mean. The has the general# #

"fit complexity" form used by many model selection criteria. In (3.10) D represents theb
c

"goodness of the fit of the model where represents a complexity penalty as reflected by�D

the effective number of parameters of the model. Note that also includes the�D

contribution of the random effects parameters to the model.

4. A Real Life Data Illustration

In what follows, we present an illustration of the model using the real call center

data. The data used in the illustration is only a subset of the real data set we have received

from the company. Due to company's specific and structured advertising policy, each call

is traced to the advertisement that led the call. All the characteristics of the advertisement
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are known, such as its cost, specials offered in the advertisement and its format. Our

previous analysis indicated that the cost, which is named as media dollars, has a significant

effect on the calls, both in its volume and its distribution. This variable is used as a

covariate in the model. The results that are presented in this section are based on 142

different print media advertisements. Each advertisement has between 7 to 74 time

intervals where call volumes are available. In our analysis we will use media dollars (in

$000), that is, the cost for the andadvertisement, print media type (weekly or monthly)

the offer type as covariates. There will be a dummy variable which will capture the effect

of media type and the monthly ads will be used as the reference group. There are three

offer types and these are captured by two dummy variables in the model. The standard

offer type will be used as the reference in the model and the first and second offer types

represent interest bearing installment option and free originating and return shipment,

respectively. In our model we also include an interaction term of cost and media type to

allow for differences in cost effect of different media type.

We first consider the original modulated Poisson process model without the

random effect terms and refer to this model as the fixed effects model in our discussion.

We note that for the case where we include the offer type and cost of the advertising as

covariates, log of the cumulative intensity function (2.4) can be written as

���´ ²!Á ³µ ~ b ���! b A b A b A A b A b A$ � � � � � � �� � � �� � �� � �� �� � �� 	 ��A (4.1)

where in (2.7),� �~ ��� A A�� ��is cost of the advertisement, is the dummy variable for

media type and and are the dummy variables representing the second and thirdA A�� ��

order types. The model also includes an interaction term of cost and media type. In (4.1)

� ~ ² ³� � � � �� � � � 	 is the covariate vector and for the monthly advertisements with

standard offer type the cumulative intensity becomes
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$ � �� � � ��²!Á ³ ~ ! �%�² A ³A
�

. (4.2)

In our analysis flat but proper priors are used for all the unknown parameters and all the

computations will be done using the BUGS programming environment of etSpiegelhalter

al. (1996). In implementation of the Gibbs sampler, the results are obtained after an initial

burn-in sample of 10,000 iterations. We have experienced no convergence problems and

runs with different starting points gave us very similar results.

Unlike the classical approach, all inferences in Bayesian paradigm are described by

posterior probability distributions of the unknown quantities. Summary statistics such as

mean, mode and variance of the posterior distributions can also be reported. In Figure 2,

we present the posterior distributions of and of the fixed effects model. The posterior� ��

distribution of which is concentrated in the interval 0.48, 0.52� ² ³ indicating that the

effectiveness of the advertisements deteriorates by time. In other words, for a fixed level

of media expense and using a particular offer, as the advertisement ages, the expected

number of calls during any time interval diminishes exponentially. This is an expected

result and consistent with the advertisement literature. In Figure 2, The value of shows��

the impact of each $1,000 spent on the total number of calls received due to that specific

advertisement. The positive values that the distribution concentrated around show that

media expense implies an increase in the expected number of calls during any time interval

for a given offer type.

The posterior distributions of and are shown in Figure 3. Both of these� �� �

distributions are concentrated in the positive region, implying that weekly ads are more

effective than the monthly ads in generating the call volume. Note that the positive values

of represents a higher impact of ad cost for weekly ads on the expected number of calls��

received.
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Alpha
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0
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4
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0
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Figure 2. Posterior Distributions of and .� ��

Posterior distributions of and that are shown in Figure 3 represent� �� 	

uncertainty about expected change in the call volume (in log scale) as a result of using a

special offer. Based on the posterior distribution of somewhereconcentration of the ��

around 0.1, 0.3 , the expected change in call volume due to the² ³ interest bearing

installment option seems to be positive relative to the standard offer. Similarly, as implied

by the posterior distribution of free originating and return shipment" option also�	, the "

yields an expected increase in call volume beyond the standard offer.

Figure 4 displays the posterior predictive distributions of number of calls for four

different time intervals for a monthly advertisement that costs $4,500 and using the third

offer type, that is, Specifically we present thefree originating and return shipment option.

distribution of number of calls during the periods of 0 5, 5 10, 10 15 and 15 20c c c c
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days. As expected, the distribution of the number of calls becomes more concentrated

around smaller values as we move from 0 5 to 15 20 days interval whereas thec c

precision increases. We note that the posterior predictive distribution is helpful for the

analyst particularly in setting the service level in call centers. Scheduling and staffing

around the mean would lead to too many missed calls. By using the predictive distribution,

the call center could run a resource allocation model keeping in mind the trade-offs

between the opportunity cost of missed calls and the cost of staffing.
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Figure 3. Posterior Distributions of 's, .�� � ~ �ÁÃ Á 	
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Figure 4. Posterior Predictive Distributions of Number of Calls for a Monthly A withd

A ~� $4,500 and Standard Offer Type under the Fixed Effect Model.

We have done a similar analysis using the random effects type model of Section

3.1. In so doing, we again used proper but noninformative priors in all cases including the

random effect terms 's and the precision parameter . As before an initial burn-in run of� ��

10000 iterations have been used in the Gibbs sampler and 2000 samples have been

obtained using a lag of 25 between successive samples. No convergence problems have

been experienced in the Gibbs sampler. A comparison of the posterior means and standard

deviations of the common parameters of the fixed and random effect models are given in

Table 2. We note that in all cases, except the distribution of , as expected, we have lot�

higher variability under the random effects model. The distribution of is very similar in�

both cases. When we compare the distributions of under the two models, we see that�	

the positive effect of the offer type two on call volume is more pronounced under the

random effects model. On the other hand, the effect of the first offer type on expected call
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volume, as implied by the distribution of , is less pronounced. The posterior probability��

7�² � �O�� +³ can be obtained as 0.875 under the random effects model.

Table 2: Comparison of Posterior Means and Standard Deviations

Fixed Effects Model Random Effects Model

Mean Std Mean Std

0.4977 0.0058 0.5012 0.0060

0.7730 0.0484 0.5138 0.1593

0.0203 0.0017 0.0274 0.006

�

�

�� 9

0.1542 0.0408 0.0951 0.1601

0.0083 0.0017 0.0066 0.0082

0.1746 0.0289 0.1388 0.1231

0.6536 0.0331 0.8338 0.1459

�

�

�

�

�

�

�

	

Comparison of the posterior distributions of show that the relative� �� �and

effectiveness of weekly ads in generating the call volume is less pronounced under the

random effects model. The posterior probability can be obtained as 0.7267�² � �O�� +³

under the random effects model whereas under the fixed effects model the posterior

distribution was concentrated in the positive region. Similarly, under the random effects

model, the posterior probability 0.795 implies weaker evidence for the7�² � �O�� +³ ~

higher impact of ad cost for weekly ads on the expected number of calls received.

In Figure 5 we present the posterior distributions of random effect parameters 's��

for thirty arbitrarily selected advertisements. We note that there are clear differences

between these distributions. This suggests presence of heterogeneity in intensity of call

arrivals generated by specific s.advertisement

These differences also yield a more diffused posterior predictive distribution for

the number of calls during the intervals of 0 5, 5 10, 10 15 and 15 20 days asc c c c

shown in Figure 6. If we compare the posterior predictive distributions given in Figure 6

with those of Figure 4, we see that the posterior predictive distributions under the random

effects model are more right skewed.
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Figure 5. Posterior Distributions of 's for Selected Advertisements.��

A comparison of the two models is made using the in Table 3. We note that+0*

the under fixed effects model is lot higher than the one obtained under the random+0*

effects model. In other words, the data provides a strong support in favor of the random

effects model. When we look at the estimated values of the effective number of

parameters, that is, the �D values, we see that in the fixed effects model this is 6.9 where

the actual number is 7. On the other hand, under the random effects model the effective

number of parameters is 130. We note that 8 of these are the actual parameters and the

remaining ones represent the random effects. In other words, among the advertisements

which we have analyzed, there are differences that can not be captured by the fixed

covariates.
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Figure 6. Posterior Predictive Distributions of Number of Calls for a Monthly withAd

A ~� $4,500 and Standard Offer Type under the Random Effects Model.

Table 3: Comparison of the Models using DIC

Model

Fixed Effects 25430.4 6.9

Random Effects 23810.0 129.6

DIC �D

5. Concluding Remarks

In this paper we have presented a modulated Poisson process model for describing

call center arrival data and developed its Bayesian analysis using Gibbs sampling. In order

to incorporate potential heterogeneity in advertisements, we have considered a random

effects type extension of the model and discuss Bayesian model comparison.

The proposed approach and the models have been implemented using real call

arrival data on 142 advertisements and type of insights that can be obtained from the

Bayesian analysis have been illustrated. The analysis of the data has shown that the

effectiveness of advertisements deteriorates by time and certain offer types increase the
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call volume. The analysis using the random effects model suggests presence of

heterogeneity in call volume generating ability of the advertisements that can not be

described by the covariates. Our comparison of the fixed and random effects type models

using has shown a strong support for the random effects model.+0*

The presented analysis has assumed a power law model for the baseline cumulative

intensity. The appropriateness of this choice for a given call volume data can be

investigated by considering alternate models for the baseline cumulative intensity and

using to compare these models. Alternatively, a semi-parametric modeling strategy+0*

can be used by treating the baseline cumulative intensity as a nonparametric form$�²!³

and by specifying a parametric prior for This is an area for future research.�.

Another area of further study is the formal incorporation of prior opinion into the

analysis of modulated Poisson process model. An extension of the methodologies

presented in Campodonico and Singpurwalla (1995), for using expert opinion in analysis

of point process models, can be considered for this purpose.
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