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Abstract
Comparison of relative importance of predictors is a subject of discussion of research findings in many disci-
plines, as well as being input for decision-making in business practice. Relative importance methodologists
have proposed measures for specific problems such as normal linear regression and logit. Some attempts
have been made to set requirements for relative importance of predictors, given a measure of “importance”,
without characterizing the notion of “importance” itself. The main objective of this paper is to fill this gap
by providing a notion of importance of predictors sufficiently general so as to be applicable to various models
and data types, yet to admit a unique interpretation. The importance of predictors is characterized by the ex-
tent to which their use reduces uncertainty about predicting the response variable, namely their information
importance. Uncertainty associated with a probability distribution is a concave function of the density such
that its global maximum is a uniform distribution reflecting the most difficult prediction situation. Shannon
entropy is used to operationalize the concept. For nonstochastic predictors, maximum entropy characteriza-
tion of probability distributions provides measures of information importance. For stochastic predictors, the
expected entropy difference gives measures of information importance, which is invariant under one-to-one
transformations of the variables. Applications to various data types leads to familiar statistical quantities for
various models, yet with the unified interpretation of uncertainty reduction. Bayes inference for importance
and relative importance of predictors is presented. An illustrative example shows the information impor-
tance analysis and versatility of the invariance for normal regression. Two other examples show applications
providing assessments of relative importance of some attributes needed for business decision-making.

Keywords: Contingency table; Entropy; Exponential family regression; Invariance; Mutual Infor-
mation; Linear regression; Logit analysis.

1 Introduction

Assessment of importance and relative importance of explanatory variables is very common in

reports of research studies in numerous fields, as well as in decision-making practice. In an effort

to gain insight into approaches used by researchers in various fields, Kruskal and Majors (1989)

conducted an extensive literature survey across diverse disciplines: economics, political science,
∗Corresponding author.

Email addresses: retzerjj@maritz.com, esoofi@uwm.edu, soyer@gwu.edu



history, psychology, sociology, education, physics, chemical engineering, biology, and medicine.

While they found that assessing importance was clearly of great interest, the authors expressed a

disappointment:

“We were depressed by the frequency of use of statistical significance as a measure of

relative importance. Even though we had half expected that misuse, it was sad to see

significance testing so often and inappropriately employed.” (Kruskal and Majors 1989,

p. 3)

There is a general agreement among relative importance methodologists that quantities such as

significance levels, correlations and variable coefficients (standardized or not) are not appropriate

for assessing relative importance of predictors. A measure of statistical significance maps the

analyst’s strength of confidence in making inference about an unknown parameter based on a

statistic. Relative importance measures, proposed by statisticians, econometricians, educational

psychologists, decision scientists, and others, refer to quantities that compare the contributions

of individual explanatory variables to prediction of a response variable (Azen and Budescu 2003,

Budescu 1993, Cox 1985, Genizi 1993, Johnson 2000, Kruskal 1984, Kruskal 1987, Kruskal and

Majors 1989, Lindeman et al 1980, Pourahmadi and Soofi 2000, Pratt 1990, Schemper 1993, Soofi

1992, Soofi et al 2000, Theil and Chung 1988). Relative importance measures are defined as

functions of distributional parameters such as correlation coefficients. When the parameters are

known (e.g., population data, simulation study), there is no uncertainty involved and inference is

irrelevant, yet assessing the relative importance of a set of variables might be of interest. When

the parameters are unknown, the measures of relative importance like other parameters of interest

are also subject to statistical inference.

In real-world practice, attribute relative importance assessment is a mainstay in many decision

making situations. Decision makers routinely demand reporting relative importance weights of

decision variables in data analysis reports, in the same vein as multiattribute decision making

problems. For example, practitioners in market research rely heavily on importance assignment to

drivers of customer behaviors, e.g. loyalty/re-purchase as well as customer attitudes toward the

product and the company, e.g. satisfaction. Market researchers, along with practitioners in other

areas, have increasingly become aware of the inappropriateness of measures such as significance

levels, correlation and standardized regression coefficients for measuring importance. Many have

therefore begun adopting new methodologies for importance assignment and, in doing so, have

realized a competitive advantage through a greater understanding of their customers.

Thus far, the relative importance methodology literature has focused on developing “relative”

importance measures for specific problems, mainly regression (Azen and Budescu 2003, Genizi

1993, Johnson 2000, Kruskal 1984, Kruskal 1987, Lindeman et al 1980, Pratt 1990, Theil and

Chung 1988, Grömping 2007). Specific measures for other problems include logit (Soofi 1992,
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1994), survival analysis (Schemper 1993), ANOVA (Soofi et al 2000), and time series (Pourahmadi

and Soofi 2000). Some attempts have been made to define requirements and properties of relative

importance measures: game-theoretic type axioms for risk allocation (Cox 1985, Lipovetsky and

Conklin 2001), Dominance Analysis for linear regression (Budescu 1993), Analysis of Importance

(ANIMP) framework (Soofi et al 2000). Little attention however, has been given to characterizing

the more general, underlying notion of “importance” itself. The lack of a unifying concept of im-

portance is consequential for practice. Presently, “importance” is interpreted differently in different

problems (e.g., linear regression, ANOVA, logit) and when a new measure is developed for a new

problem encountered (e.g., contingency table), it may or may not be based on the criteria for the

existing measures, or share a common interpretation. The wide spectrum of problems encountered

in research and practice requires a general concept of importance which provides measures that

admit a common interpretation in various applications.

The relative importance literature mainly has dealt with linear regression where the impor-

tance of an explanatory variable is defined in terms of reduction of the predictive error variance

(see Grömping (2007) and references therein). Conceptualizing predictive ability in terms of vari-

ance reduction leads to squared correlation measures, which do not apply much beyond normal

linear regression. Variance reduction is not sufficiently general to provide appropriate measures

for varieties of problems encountered in practice such as, qualitative response and/or explanatory

variables, or when the random variables are not normally distributed. For a qualitative response

variable the variance is meaningless. For some well known continuous distributions (e.g., Cauchy)

the variance does not exist.

This paper has two objectives: (a) proposing a notion of importance that is sufficiently general

to be applicable for various data structures and models with a common interpretation, and (b)

developing Bayesian inference for relative importance of explanatory variables for commonly used

models. We conceptualize importance in terms of the information provided by a predictor for

reducing uncertainty about predicting the outcomes of the response variable. We will show that

the concept of importance drawn from information theory is in accord with our intuitive notion of

information and offers appropriate measures for diverse problems in a unified manner. We measure

prediction error in terms of entropy loss instead of the squared error loss.

The information is a general probabilistic concept that provides measures of importance for

categorical and discrete variables, as well as continuous variables regardless whether or not their

distributions are normal. For nonstochastic predictors, Maximum Entropy (ME) characterization of

probability distributions provides measures of information importance. For the case of exponential

family regression the ME formulation leads to the deviance measure. For stochastic predictors, the

expected entropy difference gives measures of information importance, which is invariant under one-

to-one transformations of the variable. Theil and Chung (1988) introduced a logarithmic function
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of the squared correlation in the relative importance literature, which is the information importance

measure for normal regression. We will show that the invariance property of expected information

makes this measure applicable to non-normal variables if normality can be achieved by one-to-one

transformations of the variables.

The information measures are functions of the model parameters, hence subject to inference.

Bayesian inference about the information importance is proposed. The posterior distributions of

the importance measures are computed from the posterior distributions of the parameters. The

procedure is computational. The posterior outcomes of information measures are simulated from the

joint posterior distribution of the model parameters. In addition, when the posterior distribution of

the model parameters is not available analytically, Markov Chain Monte Carlo (MCMC) is needed.

Three examples illustrate implementation of the information importance measures and the

Bayesian inference for three types of data structures. The first example is purely illustrative

showing versatility of the information importance and Bayesian inference about relative importance

of predictors in normal linear regression. The other two examples are drawn from actual business

practice. An example on the choice of long distance provider illustrates the relative importance of

satisfaction with firm’s reputation as an industry leader, the price, and long distance plan offering,

for the choice of long distance phone service provider. In this case all explanatory variables are

qualitative, so the data can be summarized in a contingency table. A technology adoption example

compares the relative importance of hospital size and three product attributes (price, efficiency and

quality) for the adoption of new technology in the medical industry. In this case the response is

qualitative and explanatory variables are both categorical and continuous.

Section 2 presents the notion of information importance. Section 3 presents maximum entropy

information importance measure for nonstochastic predictors. A subsection presents exponential

regression and another subsection presents logit. Section 4 presents the expected information

measure for stochastic predictors with a subsection on the normal regression model. Section 5

describes Bayesian inference about information importance and relative importance of predictors.

Section 6 presents three examples. Section 7 gives the concluding remarks.

2 Notion of Information Importance

Let x = (x1, · · · , xp) be a vector of predictors of a variable Y , where the prediction is probabilistic.

The importance of a predictor x for Y is the extent to which the use of x reduces uncertainty in

predicting outcomes of Y . We conceptualize uncertainty in terms of unpredictability of outcomes

of Y . The most unpredictable situation is when we are unable to forecast in favor or against any

values for the response variable. In most unpredictable situation we invoke Laplace’s ”Principle of

Insufficient Reason” and assign equal probabilities to all possible values (intervals of equal width

in the continuous case) of Y . This establishes uniformity of the probability distribution as the
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reference point for quantifying uncertainty in terms of predictability.

The uncertainty associated with a probability distribution F having a density (mass) function

f is defined by

U(f) ≤ U(f∗), (1)

such that U(f) is concave U [αf1 + (1 − α)f2] ≥ αU(f1) + (1 − α)U(f), 0 ≤ α ≤ 1 and f∗ is the

uniform density (improper when the support of F is unbounded). That is, U(f) is a measure

of uniformity (lack of concentration) of probabilities under the distribution. The requirement of

mapping uniformity in the definition of U(f) is a modification proposed by Ebrahimi et al (2007) for

the uncertainty function defined by Goel and DeGroot (1981) where the only requirement for U(f)

was to be a concave function F . Their examples include U(f) = V arf (Y ). However, variance is not

a general measure of uniformity of the probability distribution. The variance is meaningless when

outcomes of Y are categorical. For quantitative variables, variance may not be defined, and when

defined, it does not necessarily map uncertainty in the sense of difficulty of predicting outcomes

of the variable; e.g., under a beta distribution Be(α, β) with α, β < 1, intervals of equal width at

the tail are more likely than at the center, but variance is higher than the uniform distribution

where all intervals of equal width are equally likely and more difficult to predict the outcomes; see

Ebrahimi et al (1999).

Without the predictors, the probabilistic prediction of the response is made based on the distri-

bution FY having a density (mass) function fY . With the predictors, the prediction is made based

on the distribution FY ;x which depend on x but not on the position of xk in the vector, and has a

density (mass) function fY ;x. For a stochastic predictor, FY ;x is the conditional distribution and

fY = Ex[fY |X ]. For a nonstochastic predictor such a relationship is absurd.

The worth of x for the prediction of Y is mapped by the uncertainty difference

∆U (Y ;x) = U(fY ) − U(fY ;x). (2)

In general, ∆U (Y ;x) can be positive, negative, or zero, mapping in turn the gain, loss, or no change

of information due to the use of x for predicting the outcomes of Y . A loss of information occurs

when FY ;x is less concentrated and hence it makes more difficult to predict Y than using FY . In

this case, x is useless for predicting Y .

When a predictor makes prediction more difficult, the verdict on its information importance

worth is clear, hence ∆U (Y ;x) < 0 is of no particular interest in the present context. We provide

formulations that are sufficiently general satisfying (1) and give nonnegative information importance

functions. We therefore proceed with the case when ∆U (Y ;x) ≥ 0.

The proper information importance of a predictor vector x is defined by the following property

IU(Y ;x) = U(fY ) − U(fY ;x) ≥ 0. (3)
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We should note that IU(Y ;x) does not depend on the position of xk in the vector.

For a stochastic predictor the information importance of outcomes x of X for predicting Y is

given by the expected uncertainty change

IU (Y |X) = Ex[∆U (Y |X)] = U(fY ) − Ex[U(fY |x)] ≥ 0, (4)

where the inequality changes to equality if and only if X and Y are independent. The non-

negativeness is implied by concavity of U and characterizes the expected gain of using the outcomes

of X for the prediction. It is reasonable to require that using outcomes of X , on average, will yield

some information useful for making predictions about Y . At worst, the long-run use of a variable

has no information importance for predicting outcomes of another variable (DeGroot 1961).

For any subvector of length r < p the incremental (partial) contribution of xr+1, · · · , xp to the

information importance of (x1, · · · , xp) is given by

IU (Y ;xr+1, · · · , xp|x1, · · · , xr) = U(Y ;x1, · · · , xr) − U(Y ;x1, · · · , xp) ≥ 0. (5)

The first inequality is apparent (add and subtract U(FY )) and inequality is implied by properness

(3). We therefore have the decomposition property,

IU (Y ;x1, · · · , xp) = IU(Y ;x1, · · · , xr) + IU(Y ;xr+1, · · · , xp|x1, · · · , xr), (6)

Successive application of (6) gives the following chain rule:

IU(Y ;x1, · · · , xp) =
p∑

k=1

IU (Y ;xk|x1, · · · , xk−1), (7)

where IU(Y ;x1|x0) ≡ IU (Y ;x1), and IU (Y ;xk|x1, · · · , xk−1) is the incremental contribution of xk

to the information importance of (x1, · · · , xk).

2.1 Relative Importance

The incremental information function IU(Y ;xk|x1, · · · , xk−1) provides measures of relative impor-

tance of predictor xk in the sequence x1, · · · , xp. The Analysis of Importance (ANIMP) framework

proposed by Soofi et al (2000) encapsulates two properties found to be desirable by many researchers

in the relative importance literature: additively separable, and order-independence in the absence

of a natural ordering. The additive decomposition (7) is a general representation satisfying the first

property. However, in general, decomposition (7) depends on the position of xk in (x1, · · · , xp), so

it does not satisfy order-independence. For satisfying the order-independence condition of ANIMP,

the relative information importance can be computed by an averaging over all orderings of the

explanatory variables:

IU (Y ;xk) =
p!∑

q=1

wqIU(Y ;xk|x1, · · · , xk−1;Oq), (8)
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where wq is the weight attached to the importance of xk in the arrangement of the n predictors

Oq, q = 1, · · · , p!. The most commonly used weights are uniform, justified on various basis, including

“tradition in statistics” (Kruskal 1987), game theoretic axioms (Cox 1985), mathematical argument

(Chevan and Sutherland 1991), and maximum entropy principle (Soofi et al 2000). Use of unequal

weights is equally plausible.

2.2 Shannon Entropy

The most well-known example of an uncertainty function is Shannon entropy U(F ) = H(F ), defined

by

H(Y ) ≡ H(F ) = −
∫

f(y) log f(y)dy (continuous case)

= −
∑

f(y) log f(y) (discrete & categorical cases).

(9)

The entropy maps the concentration of probabilities under F and decreases as concentration in-

creases. For the discrete distribution over n outcomes, 0 ≤ H(F ) ≤ log n, where H(F ) = 0 holds if

and only if f(y) = 1 for a single point and f(y) = 0 for all other points; hence perfect information

about Y and absence of uncertainty. The equality H(F ) = log n holds if and only if the probabil-

ity is uniformly distributed; hence complete absence of information about favoring an outcome of

Y , and maximum uncertainty. When F is continuous, then −∞ < H(F ) < ∞ and H(F ) is not

invariant under one-to-one transformations of the variable. However, interpretation of continuous

entropy essentially remains the same as the discrete case, i.e., H(F ) orders distributions according

to the lack of concentration, and hence lack of information for prediction.

The entropy difference

∆H(Y ;x) = H(Y ) − H(Y ;x) (10)

gives a measure of change in uncertainty for prediction of Y due to the use of x for predicting Y .

The entropy difference (10) may be positive or negative. The outcome x is informative about Y if

FY ;x is more concentrated than FY . (In a Bayesian context where y is a parameter, x is the data,

and ∆U (Y ;x) is the difference between the prior and posterior entropies, the case of ∆H(Y ;x) < 0

is referred to as a “surprise”; Lindley 1956). In our formulation of information importance (Section

3), the entropy difference is always nonnegative, IH(Y ;x) = ∆H(Y ;x) ≥ 0.

The information content of FY ;x and FY can also be compared using an information divergence

function such as the Kullback-Leibler information (relative entropy),

K(Y ;x) ≡ K(FY ;x : FY ) =
∫

fY ;x(y) log
fY ;x(y)
fY (y)

dy (continuous case)

=
∑

fY ;x(y) log
fY ;x(y)
fY (y)

(discrete & categorical cases).

(11)
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This information function is always non-negative, but in general it only quantifies the change in the

concentration of the distribution of Y due to x and does not indicate which of the two distributions

is more concentrated. In some formulations of information importance, K(Y ;x) = IH(Y ;x), hence

signifying more concentration of FY ;x.

Normalized information indices map IH(Y ;x) into the unit interval. For the discrete case, the

information importance index is defined by the fraction of uncertainty reduction due to x:

I(Y ;x) = 1 − H(Y ;x)
H(Y )

=
IH(Y ;x)

H(Y )
. (12)

For the continuous case the entropy reduction index (12) is not meaningful and the information

index is computed by exponential transformation

I(Y ;x) = 1 − e−2IH(Y ;x). (13)

In both cases the indices range from zero to one: I(Y ;x) = 0 mapping the case when the predictor

does not reduce the uncertainty at all, and I(Y ;x) = 1 mapping the case when the predictor

reduces the uncertainty completely.

3 Maximum Entropy Information

An approach that always provides nonnegative uncertainty difference (2), as well as providing a

unified interpretation of predictor importance for wide varieties of applications is the Maximum

Entropy (ME) information formulation. In this approach, FY = F ∗
Y is the ME model in a class of

distributions subject to some constraints free from x and FY ;x = F ∗
Y ;x is the ME model in a class

of distributions subject to some additional constraints involving x.

In a very general set up, the ME approach begins with a class of distributions

ΩFY
= {F : EF [Ta(Y )] = θa, a = 1, · · · , A}, (14)

where Ta(Y ) are real-valued integrable functions with respect to dF (y) and θa, a1 = 1, · · · , A are

specified moments. The ME model in ΩFY
is the distribution whose density maximizes (9).

The set of linearly independent moments defining ΩFY
is denoted by

TY = TY = {Ta(Y ), a = 1, · · · , A}. (15)

For example, T (Y ) = Y, T (Y ) = Y 2, T (Y ) = log Y , and T (Y ) = δ(S`) where δ(S`) is an indicator

function of a subset of support of F are all legitimate, provided that they are integrable. If the

expected value of elements of a moment set TY can be obtained from the expected value of elements

of another moment set T ∗
Y , the two sets yield the same ME distributions.

The ME model in (14), if exists, is unique and has density in the following form:

f∗
Y (y) = C(λ)eλ1Ta(y)+···+λATA(y), (16)
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where λ = (λ1, · · · , λA) is the vector of Lagrange multipliers given by θa = − ∂

∂λa
log C(λ). For all

F ∈ ΩFY
,

H∗(Y ) ≡ H(F ∗
Y ) = − log C(λ) − λ1θ1 − · · · − λAθA ≥ H(FY ); (17)

see Ebrahimi, Soofi, and Soyer (2007).

In order to assess the information importance of a predictor x we expand the moment set TY

as

T = TY ∪ TY ;x = {Ta(Y ), a = 1, · · · , A} ∪ {Tb(Y ;x), b = 1, · · · , B}, (18)

where TY ;x is a set of moments of Y in terms of x. For example, for single variable x, we may

expand TY by T (Y ;x) = xY or T (Y ;x) = log(1+x)Y . The information moment set (18) generates

a class of distributions ΩFY ;x ⊆ ΩFY
. The density of ME distribution F ∗

Y ;x ∈ ΩFY ;x is in the form

of (16) with additional parameters,

f∗
Y ;x(y) = C(λ(x))eλ1(x)Ta(y)+···+λA(x)TA(y)+β1(x)TA+1(y;x)+···+βBTA+B(x)(y;x), (19)

where λ(x) = (λ1(x), · · · , λA(x), β1(x) · · · , βBTA+B(x)).

When F ∗
Y and F ∗

Y ;x are ME distributions in ΩFY
and ΩFY ;x generated by (15) and (18), the

entropy difference (10) provides measures of information importance of x for predicting Y :

IΘ(Y ;x) = H∗(Y ) − H∗(Y ;x) ≥ 0, (20)

where Θ denotes the vector of all parameters involved. The equality in (20) is due the additional

constraints reducing the maximum entropy (Jaynes 1957, Jaynes 1968, Soofi 1992, Soofi 1994).

Clearly, IΘ(Y,x) admits the chain rule decomposition (6).

The quantity IΘ(Y,x) provides measures of information importance for various types of data

and models, all with the same interpretation. For example, distributions with densities in exponen-

tial family having finite entropy are ME in appropriately defined ΩF (Ebrahimi et al 2007). The

traditional exponential family regression assumes that the underlying data distribution is known

to be a particular parametric family, but its parameters are unknown. In the ME approach, no

such strong distributional assumption is needed. Instead, the weaker moment assumptions (15)

and (18) are formulated such that: (a) the ME models F ∗
Y and F ∗

Y ;x are in the same exponential

family; and (b) the constraints are formulated such that moment values are statistics θk = θ̂k (see

e.g., Soofi 1992). Such ME formulations gives:

I
Θ̂

(Y,x) = 2n
[
H

Θ̂
(F ∗

y ) − H
Θ̂

F ∗
y|x)

]

= −2 log




fY ;x(y)|
Θ(x)=Θ̂(x)

fY (y)|
Θ=Θ̂




= 2K̂(F ∗
Y ;x : F ∗

Y ).
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The middle quantity is the likelihood ratio statistic and K̂(F ∗
Y ;x : F ∗

Y ) is known as the deviance

in the exponential family regression literature. Thus, by (20), the deviance is also an estimate

of the ME difference providing a measure of the information importance of predictors in terms of

uncertainty reduction for the exponential family regression.

The remainder of this section presents two examples where the ME approach lead to exponential

regression and logit models. The most celebrated member of the exponential family, the normal

distribution, will be presented in Section 4 to illustrate application of expected information. We

should note that (20) is a general information importance measure applicable to any ME distrib-

utions, beyond the exponential family regression. Any distribution with a density in the form of

(16) having finite entropy is an ME model (Ebrahimi et al 2007). Thus, (20) provides information

measures for evaluating importance of types of additional moments to be included in (15) in terms

of their incremental contributions to uncertainty reduction.

3.1 Exponential Regression

The ME model subject to constraint E(Y ) = θ1 is the exponential distribution with density f∗
Y (y) =

λe−λy, where the Lagrange multiplier is given by λ = θ−1
1 . The maximum entropy is H∗

Y = 1−log λ.

The ME model subject to the additional constraint E(xY ) = θ2 is the exponential distribution with

density f∗
Y ;x = λ(x)e−λ(x)y, where λ(x) = β0 +β′x. The maximum entropy is H∗

Y ;x = 1− log λ(x)

and θ(x) = (β0 + β′x)−1.

The information importance of predictor x is

Iθ(Y ;x) = H∗
Y − H∗

Y ;x = log
λ

λ(x)
= log

θ(x)
θ1

≥ 0.

For a sample of n observations, using MLE λ̂ and λ̂(x) = β̂0 + β̂1x we have the ME information

importance in terms of the log-likelihood ratio statistic and deviance:

I
Θ̂

(Y ;x) = 2n
[
Ĥ(f∗

y ) − Ĥ(f∗
y|x)

]

= −2 log

[
fY ;x(y)|λ(x)=λ̂(x)

fY (y)|λ=λ̂

]

= 2nK̂(F ∗
Y ;x : F ∗

Y ).

3.2 Logit

For qualitative and discrete variables, the ME solution (16) is a logit model. The ME formulation

that leads to the logit solution equivalent to the logit model estimated by the MLE is given by

Soofi (1992, 1994). Briefly, for a sample of n individuals, we have y = (y1, · · · , yn) where yi =

Yi(Aj) = yij, i = 1, · · · , n, j = 1, · · · , J are indicator functions of J choices with probability
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distribution fYi = πi = (πi1, · · · , πiJ). Assuming independence among the individuals, the joint

probability distribution of Y is given by fY =
∏n

i=1 πi and the joint entropy is given by H(Y ) =

H(π) =
∑n

i=1 H(πi), where the n probability vectors π = {πi = (πi1, · · · , πiJ), i = 1, · · · , n} to be

estimated. The information constraints may be formulated in terms of predictors x representing the

individual and/or the choice attributes. In order to distinguish between the two types of attributes

we denote ui = (ui1, · · · , uiA)′ for the attributes of the ith individual and vij = (vij1, · · · , vijB)′ for

scores (values) given to the attributes of jth alternative by the ith decision maker.

The ME solution is the following logit model:

π∗
ij =

eα
′
jui+β′vij

∑J
`=1 eα

′
`
ui+β′vi`

, (21)

where αj and β are the vectors of Lagrange multipliers, i.e., logit coefficients. The maximum

uncertainty is given by the sum of the entropies of n probability distributions (21),

H∗
Θ(Y ; u, v) = Hα,β(π∗;u, v) =

n∑

i=1

H(π∗
i).

The constraints can be formulated in terms of sampled values such that the ME solutions that

are equivalent to the maximum likelihood estimate (MLE) of the logit model (21) when assumed

a priori; details are given in Soofi (1992, 1994). Then the information importance of predictors is

given by the log-likelihood statistic

I
α̂,

ˆβ
(Y ; u, v) = = H∗(Y ) − H∗

α̂,
ˆβ
(Y ; u, v)

= −2 log




πY ;x|
(α,β)=(α̂,

ˆβ)

πY |π=π̂




= 2nK̂(π∗
Y ;x : π∗

Y ),

(22)

where H∗(Y ) is found as follows. When only the individuals’ attributes are included, TY =

{δ(Aj), j = 1, · · · , J − 1} with θj = θ̂j is the set of indicator function of J − 1 choices under

consideration. In this case, the ME solution is the sample proportions (null MLE), π̂i = π̂ =

(π̂1, · · · π̂J), i = 1, · · · n, and the maximum uncertainty is the sum of the entropies of n identical

distributions of the sample proportions, H∗(Y ) = H(π∗
Y ) = H(π̂Y ) = nH(π̂). When the choice

attributes are included such indicator functions create singularity, so TY is set as empty. In this

case, the ME solution (null MLE) is the uniform distribution π∗
i = 1/J, i = 1, · · · , n, j = 1, · · · , J

and the global maximum uncertainty is the sum of the entropies of n uniform distributions over J

outcomes, H∗(Y ) = H(1/J) = n log J .

Relative information importance for attributes of interest can be found by decompositions

IΘ(Y ; u, v) = Iα(Y ; u) + Iβ(Y ; v|u) = Iβ(Y ; v) + Iα(Y ; u|v). (23)
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4 Expected Information

For the case of stochastic predictors the expected value of entropy difference (10) and the infor-

mation divergence (11) are equal, and the unique measure is referred to as the mutual information

between Y and X,

M(Y,X) = Ex[∆H(Y |x)] = Ex[K(Y |x)] ≥ 0. (24)

The interpretation and properties of mutual information are the same for discrete and continuous

random variables. Other useful and insightful representations of the mutual information are:

M(Y,X) = K(FX ,Y : FXFY ), (25)

= H(X) + H(Y ) − H(X , Y ) (26)

= H(Y ) − H(Y |X). (27)

Representations (25)-(27) provide three interpretations of the mutual information. By (25), M(Y,X)

is the information divergence between the actual joint distribution FX ,Y and the distribution

formed as if Y and X were stochastically independent, GX ,Y (x, y) = FX (x)FY (y). This represen-

tation shows that the mutual information is well-defined only when FX ,Y is absolutely continuous

relative to FXFY .

Representation (26) facilitates computation of mutual information using entropy expressions

in terms of the distributional parameters, which are available for many multivariate distributions

(Nadarajah and Zografos 2005).

In (27), H(Y |X) = Ex[H(Y |x)] is the conditional entropy of Y given X. The conditional

entropy H(Y |X) is the mean value of the entropies of the conditional distributions for all outcomes

of the explanatory variable X. Thus (27) is the representation of the mutual information as the

long-run average of uncertainty reduction by the explanatory variable. By (27), H(Y |X) ≤ H(Y ),

where the equality holds if and only if X and Y are stochastically independent.

Both indices (12) and (13) are defined in terms of (27); for this case I(Y,X) = 0 if and

only if the two variables are independent, and I(Y,X) = 1 if and only if the two variables are

functionally related in some form, linearly or nonlinearly. The mutual information admits the

chain-rule decomposition of type (6); see Cover and Thomas (1991).

An important property of the mutual information measures is invariance under one-to-one

transformations of the variables. For example, let Y = S(W ) and Xj = Tj(Vk), j = 1, · · · , k, where

S and Tj are one-to-one transformations. Then,

M(Y,X) = M(W,X) = M(Y,V ) = M(W,V ).

The invariance is a powerful property in the present context in that the importance of an explana-

tory variable is independent of the functional form of the relationship between the variables. This

12



feature of the mutual information distinguishes it from all other measures thus far proposed in the

relative importance literature. For example, correlations and other regression quantities are not

invariant under nonlinear transformations.

As a final remark, we should note that in general, the equalities in (25)-(27) do not hold for

other uncertainty functions and the corresponding information divergence measuring dependence.

For example, for Rényi entropy and information divergence measuring dependence, the equalities

in (25)-(27) do not necessarily hold.

4.1 Normal Model

When Y has a normal distribution FY = N(µ, σ2
y), its entropy is Hσ(Y ) = .5 log

(
2πeσ2

y

)
. If the

conditional distribution FY |x = N(zγ, σ2), where z = (1,x) and γ = (β0,β)′ are p+1 dimensional

vectors, then its entropy is Hσ,ρ(Y ;x) = .5 log
[
2πeσ2

y{(1 − ρ2(Y,X)}
]
, where ρ2(Y,X) = 1−σ2/σ2

y

is the squared multiple correlation. We note that for the normal model, Hσ,ρ(Y ;x) does not vary

with the outcomes x. Thus, the normal mutual information is equal to the entropy difference (10),

and is given by

MΘ(Y,X) = IΘ(Y ;x) = −.5 log[1 − ρ2
Θ(Y,X)], (28)

where Θ = (γ, σ2) is the p + 2 dimensional vector of parameters.

The normal distribution is the ME model in the class of distributions subject to the mean and

variance constraints. Hence the ME information importance (20) is applicable and leads to the

same result as the expected information importance (28). For the normal model the information

importance is determined by the squared correlations since the form of the functional relationship

can only be linear. In this case, the mutual information index is the same as the squared correlation.

Decomposition (6) for the normal regression is given by the partial mutual information

MΘ(Y,Xk|X1, · · ·Xk−1) = −.5 log[1 − ρ2
Θ(Y,Xk|X1, · · ·Xk−1)]

= MΘ[Y, (X1, · · ·Xk)] − MΘ[Y, (X1, · · ·Xk−1)]

=
1
2

log

(
1 − ρ2

Θ[Y, (X1, · · ·Xk−1)]

1 − ρ2
Θ[Y, (X1, · · ·Xk)]

)
,

(29)

where ρ2
Θ(Y,Xk|X1, · · ·Xk−1) is the partial correlation between Y and Xk, given X1, · · · ,Xk−1.

Successive application of (29) provides chain rule for normal mutual information. Theil and Chung

(1988) proposed measuring the relative importance of variables in univariate and multivariate

regression models based on transforming the regression R2 as in (28).

Formula (28) for normal mutual information is very simple, but the normality of the distrib-

utions is crucial for its validity. For non-normal data, transformations to normality are therefore

crucial. Suppose that we have data on a set of variables W,V = (V1, · · · , Vp) and transform the vari-

ables as Y = S(W ) and Xk = Tk(Vk), where all transformations are one-to-one and (Y,X1, · · · ,Xp)
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are normal. Then, by the invariance property of the mutual information, we can compute the

importance of the original explanatory variables V for prediction of W by

MΘ(W,V ) = MΘ(Y,X) = −.5 log[1 − ρ2(Y,X)]. (30)

Derivation of MΘ(W,V ) directly from the joint distribution of (W,V ) could be difficult or im-

possible. However, transformation to normality often is achieved in regression analysis. Invariance

is a very useful property of an importance measure. For example, Box-Cox transformations are

one-to-one, but not linear. Consequently, all regression quantities must be interpreted in terms

of the transformed data. However, mutual information retains its interpretation in terms of the

original data.

5 Bayesian Inference

The information importance measures IΘ(Y ;x) and MΘ(Y,X) are functions of the model pa-

rameters Θ. Usually Θ is unknown and induces uncertainty about the information importance

measures. We present Bayesian inference for these information measures by describing prior un-

certainty about the parameter vector Θ via specifying a prior distribution g(Θ). Given the data

D = (yi,xi), i = 1, · · · , n we update the prior g(Θ) to the posterior distribution g(Θ|D) via the

Bayes rule

g(Θ|D) ∝ L(Θ;D)g(Θ),

where the form of the likelihood function L(Θ;D) is determined by the probability model. For some

models, e.g, the normal regression, the posterior distribution of Θ can be evaluated analytically

using conjugate priors, but for many other cases such as logit models, the posterior distribution of

Θ is not available analytically and inference requires use of Markov Chain Monte Carlo (MCMC)

methods.

Once the posterior distribution g(Θ|D) is available either in analytical form or via simulation,

the posterior distribution of information importance measures IΘ(Y ;x) and MΘ(Y,X) can be

obtained. If the posterior distribution g(Θ|D) is analytically available, it may be possible to eval-

uate the posterior distributions of information importance measures analytically for some simple

cases. However, in general, the information measures are not simple functions of the model pa-

rameters and must be approximated using standard Monte Carlo methods by generating samples

from g(Θ|D). Posterior means and other moments can also be approximated using a Monte Carlo

procedure. For example, the posterior mean of IΘ(Y ;x) is approximated as

E[IΘ(Y ;x|D)] ≈ 1
S

S∑

s=1

[
IΘ(s)

(Y ;x)
]
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based on posterior samples Θ(s), s = 1, · · · , S, from g(Θ|D). Posterior distributions for other

importance measures, such as the mutual information index MΘ(Y,X), can also be obtained in a

similar manner. Some special cases will be discussed next.

5.1 Bayesian Inference for the Normal Model

For the normal regression we can specify a conjugate multivariate normal-inverse gamma prior for

Θ = (γ, σ2) as

g(Θ) = g(γ, σ2) = g(γ|σ2)g(σ2)

where g(γ|σ2) is a multivariate normal and g(σ2) is an inverse gamma density. Standard Bayesian

updating yields a multivariate normal-inverse gamma posterior density; see for example Zellner

(1971). If the precision matrix of the multivariate normal g(γ|σ2) is specified as the zero matrix

and the scale parameter of the inverse gamma density g(σ2) is set to zero then an improper joint

prior is obtained. A commonly used form is given by

g(γ, σ2) ∝ 1
σ

.

Let Z = [1 : X̃] where 1 is an n × 1 vector of ones and X̃ denotes the data matrix on X.

It is well known that if Z′Z is nonsingular, then the posterior distribution g(γ, σ2|D) is a proper

multivariate normal-inverse gamma density. Then the posterior mean of γ given σ2 is given by

the least squares estimator γ̂ and the posterior variance is σ2(Z′Z)−1. In the regression model

application of Section 6, we will use the improper prior.

Following Press and Zellner (1978) we can write the squared multiple correlation as

ρ2
Θ(Y,X)) =

β′Qβ

β′Qβ + nσ2
, (31)

where n is the number of observations and

Q = X̃
′
X̃ − 1

n

(
X̃

′
11′X̃

)
.

It is important to note that in the above representation β excludes the intercept term and σ2 is

the conditional variance of Y .

The posterior distribution of ρ2
Θ(Y,X) can be approximated by Monte Carlo simulation drawing

samples from g(γ, σ2|D) and computing (31). Then the posterior distribution of mutual information

MΘ(Y,X) is approximated using (28). Posterior distributions of the components of the decom-

position (29) can be evaluated in a similar manner using regression models with different numbers

of predictors. By using the chain rule, we can also evaluate the relative information importance

based on all orderings of the predictors as given by (7). More specifically, we can evaluate partial

mutual information (29) for k = 1, · · · , p and for all p permutations and take an average. Note that
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by (29) for any set of the variables ρ2
Θ of the set must be more than ρ2

Θ of all of its subsets. The

posterior sample values not satisfying such constraints will be rejected. If we define the average

relative importance for Xk as MΘ(Y,Xk) then we can obtain its posterior distribution based on

the samples from the posteriors.

5.2 Bayesian Inference for the Logit Model

For the logit model (21), for any choice of prior distribution g(Θ) = g(α, β), the posterior distrib-

ution can not be obtained in analytical form. However, Bayesian analysis for the logit model can

be developed using MCMC techniques such as Gibbs sampling or Metropolis-Hastings algorithm;

see for example Casella and George (1992) and Chib and Greenberg (1995). Such analysis can be

easily performed in an environment such as WinBUGS.

It is common to use diffused but proper normal priors for components of g(α, β). Once the

samples from the posterior distribution g(α, β|D) are generated via MCMC methods the logit

probabilities are evaluated via πij(α, β). This provides a posterior distribution g(πij |D) for the

choice probabilities πij ’s. Then the entropy of the logit model for n individuals given by the

posterior distribution of H∗
α, β(π; u, v) and can be obtained from (21) by using samples from

g(α, β|D). The normalized ME information index and the chain rule for the logit can be obtained

similar to case of normal regression model.

6 Applications

6.1 Financial Data

This example demonstrates the versatility of mutual information for measuring importance and

shows Bayesian inference about relative importance of predictors in linear regression. We use a

subset of variables chosen from the Stock Liquidity data described in Frees (1996, p. 263). The

variables are: the trading volume for a three month period in millions shares (Volume W ), total

number of transactions for the three months (Transaction V1), number of shares outstanding at the

end of the three month period in millions (Share V2), and market value in billion dollars (Value

V3). We have chosen these variables for the purpose of illustration. Figure 1 shows the residual

plots of the linear regression for these variables and for their log-transformations, Y = log W, Xk =

log Xk, k = 1, 2, 3. Clearly the normality assumption is violated for the original data, but the

conditional normality seems plausible for the transformed data.

Table 1 shows the regression results and information analysis for the data. Panel (a) of Table

1 shows the least squares regression results and joint information importance of three predictors.

The regression results for original and transformed variables are different. The regression results

for the original data are not valid, but for the transformed data are valid. We do not need the
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Figure 1: Residual plots of linear regression of financial variables and their log-transformations.

regression results for the original data for computing the information importance for Transaction,

Share, and Value for predicting the Volume. Since we were able to transform the data to normality,

we can use the R2 of the of transformed variables (R2 = 84.3%) for computing and comparing the

information importance of Transaction, Share, and Value for the Volume. By (30), our information

importance analysis is applicable to the original as well as the transformed variables.

Panel (b) of Table 1 shows the F -ratio, R2, mutual information and posterior results for the

information importance of each subset of the predictors. Again note that F and R2 are interpretable

in terms of the transformed variables, yet the results for information importance are interpretable

in terms of the original as well as the transformed variables. The posterior intervals of information

importance are useful for inference about subset models. We note that the posterior intervals for

the single variable models do not intersect, so we can infer that the importance of model containing

X1 is the highest, X3 is the lowest, and X2 is in between. For the two variable models we can

infer that the importance of the models containing X1 are not different from one another, but are

different from the model not containing X1. Furthermore, we can infer that the importance of

the models containing X1 are not different, but are different from the models that not containing

X1. This analysis establishes that for predicting Volume, the models containing Transaction are

of higher importance those not containing it. These inferences are based on the 95% probability

intervals for each model. An adjustment (Bonferroni type) is needed for the probability of the

inference about model comparison.

Panel (c) of the Table 1 gives the decompositions of the joint information importance into

the relative importance of each variable (7) for all six orderings of the variables. The entries are
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Table 1. Regression results and information importance for log-normal and transformed data.

(a) Regression results
Original data Transformed data

V1 V2 V3 X1 X2 X3

Coefficient .002 .009 - 0.040 .750 .236 .037
S.E. .0001 .0071 .0894 .0682 .0786 .0581
F-ratio, d.f.’s (2,97) 203.10 213.30
R2 83.7% 84.3%
Mutual information .926 .926

(b) Information importance of all subsets of variables
Data (Likelihood) Bayes (Posterior)

Subset F d.f.’s R2 Information Mean SD 95% Interval
X1 493.21 122, 1 .803 .812 .743 .032 (.704, .809)
X2 259.50 122, 1 .682 .573 .536 .032 (.498, .601)
X3 163.04 122, 1 .574 .427 .408 .030 (.371, .470)
X1, X2 322.17 122, 2 .843 .926 .847 .037 (.801, .922)
X1, X3 295.03 122, 2 .831 .889 .815 .036 (.770, .886)
X2, X3 129.87 122, 2 .684 .576 .572 .053 (.506, .678)
X1, X2, X3 213.30 122, 3 .843 .926 .855 .043 (.801, .942)

(c) Information importance of three variables for all orderings
Ordering X1 X2 X3 (X1, X2, X3)
X1X2X3 .812 .113 .000 .926
X1X3X2 .812 .037 .077 .926
X2X1X3 .353 .573 .000 .926
X2X3X1 .350 .573 .003 .926
X3X1X2 .462 .037 .427 .926
X3X2X1 .350 .149 .427 .926
Average .523 .247 .156 .926

Posterior results for averages
Mean .462 .237 .157
S.D. .009 .018 .016
95% Interval (.450, .480) (.215, .273) (.136, .189)

Pairwise differences (Column - Row)
X1 X2

X2 (.204, .235)
X3 (.287, .314) (.079, .083)

computed using the subset MLE information measures. The orderings are shown in the first column.

Each of the middle three columns shows the relative importance for the position of the variable

in the sequence shown in the first column. The last column gives joint importance, which is the

row sum. The relative information importance of each variable is strongly order-dependent. The

average information importance measures shown in the last row is computed using equal weights

wq = 1/6 in (8). These results indicate the overall average relative importance of the three variables.
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Figure 2: Posterior distributions of importance measures of predictors for Financial Data.

The average information importance of Transaction is more than twice that of Share and is more

than three times that of Value.

Posterior intervals for the average importance of each variable and the pairwise differences

between them are also shown in Panel (c) of Table 1. We can infer that overall, Transaction (X1)

is the most important variable, followed by Share (X2), followed by Value (X3), and that the

importance of three variables are different. Posterior distributions for the joint importance and

overall average importance of the three variables are shown in Figure 2. We note that the posterior

distribution for the joint importance is skewed. The posterior distributions for the average relative

importance of variables are close to normal, due to central tendency.

6.2 Choice of Long Distance Provider

This example uses a subset of data collected for Sprint by Maritz Research via non-sponsored tele-

phone interviews. The respondents were asked to evaluate their current long distance provider and

at least one alternative company based on past usage and/or current consideration. The questions

were reflective of the respondents’ satisfaction with the company’s attributes. The response variable

is the long distance provider (Y ) with three outcomes: Sprint, AT&T, and MCI. The explanatory

variables are overall satisfaction with the company’s: reputation as an industry leader (X1), price

(X2), and offering calling plans that meet the customers needs (X3). Each explanatory variable

has two categorical outcomes: low and high. Assessment of relative importance of these variables

was needed for inputs to a business decision. Soofi and Retzer (2002) reported derivations and

assessments of some information theoretic models for this data.
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Table 2. Information importance of three explanatory variables for long distance providers.

(a) Data
Reputation (X1) Low High

Price (X2) Low High Low High

Plans (X3) Low High Low High Low High Low High Total
Service Provider (Y )

Sprint 113 35 19 36 21 27 8 74 333
AT&T 98 18 8 9 60 66 8 113 380
MCI 73 17 7 15 5 9 6 32 164
Total 284 70 34 60 86 102 22 219 877

(b) Information importance of all subsets of variables
Data (Likelihood) Bayes (Posterior)

Subset Information Chi-sq. d.f. Mean SD 95% Interval
X1 .041 72.79 2 .041 .004 (.034, .049)
X2 .001 1.93 2 .003 .001 (.002, .004)
X3 .002 4.21 2 .004 .001 (.002, .004)
X1, X2 .050 86.82 6 .055 .005 (.046, .063)
X1, X3 .048 83.31 6 .049 .004 (.039, .057)
X2, X3 .006 9.82 6 .009 .001 (.007, .010)
X1, X2, X3 .060 104.91 14 .063 .004 (.054, .071)

(c) Information importance of three variables for all orderings
Ordering X1 X2 X3 (X1, X2, X3)
X1X2X3 .041 .008 .011 .060
X1X3X2 .041 .013 .006 .060
X2X1X3 .048 .001 .011 .060
X2X3X1 .055 .001 .004 .060
X3X1X2 .045 .013 .002 .060
X3X2X1 .055 .003 .002 .060
Average .047 .007 .006 .060

Posterior results for averages
Mean .048 .009 .006
S.D. .0037 .0004 .0004
95% Interval (.041, .055) (.008, .009) (.005, .007)

Pairwise differences (Column - Row)
X1 X2

X2 (.032, .046)
X3 (.036, .049) (.002, .003)

Table 2 shows the data and importance analysis. Panel (a) of Table 2 shows the data in a 3×2×
2×2 contingency table. Panel (b) of Table 2 shows the information importance, the information chi-

square, their degrees of freedom, and posterior results for all subsets of the explanatory variables.

The information importance is mutual information computed using the cell frequencies. These
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Figure 3: Posterior distributions of Importance and Relative Importance of Predictors for Long
Distance Provider Data.

measures can also be obtained by ME formulations subject to marginal constraints (Gokhale and

Kullback 1978, Soofi and Retzer 2002). The information chi-square statistics are found by Ξ2 =

2nI(Y,X). The information measure and chi-square can also be obtained using outputs of the

exponential family regression by log-linear or logit models that include all the interactions between

the variables. The posterior results are obtained via the logit formulation.

The posterior intervals of information importance shown in Panel (b) suggest the following

inferences for subset models. The posterior intervals for the X1 model does not intersect the

posterior intervals for the models including each of the other two variables singly, so we can infer

among these models, the model containing X1 is of the highest importance,and the other two single

variable models are of equally low importance since their posterior intervals intersect. For the

two-variable models we can infer that the importance of the models containing X1 are not different

from one another, but are different from the model not containing X1. We can also infer that the

importance of the models containing a single variable are less than the importance of the full model

containing all three variables. However, the importance of the full model is not different from any

of the two variable models containing X1, but is different from the two variable model that does

not contain X1. This analysis suggests that for predicting the choice of long distance provider, the

models containing Reputation and any of the other two variables are of importance. Again, these

inferences are based on the 95% probability intervals for each model. An adjustment (Bonferroni

type) is needed for the probability of the inference about model comparison.

Panel (c) of the Table 2 gives the decompositions of the joint information in terms of all six

orderings of the variables. We note that the information importance measures are order-dependent,
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particularly for Price (X2) and Plan offering (X3). The average information importance of Repu-

tation is about seven times that of Price and is about eight times that of Plan offering.

Posterior intervals for the average importance of each variable and the pairwise differences

between them are shown in Panel (c) of Table 2. We can infer that overall, Reputation (X1) is the

most important variable, far distant Price (X2) and Plan offering (X3), and that the importance

of the three variables are different. The posterior distributions for the joint importance and overall

average importance of the three variables are shown in Figure 3. In this case, all four distributions

resemble normality.

6.3 Adoption of New Technology

This example uses data on revealed choices amongst three types of diagnostic equipment by 121

hospitals. Hospital diagnostic equipment purchasing agents evaluated each technology on the basis

of various attributes. The variables selected for this example are hospital size and three technology

attributes: price, efficiency, and quality of the equipment. Assessment of the importance of the

hospital size and technology attributes (price, efficiency, and quality) was needed for inputs to a

business decision by the technology provider.

The hospital size categories are small, medium, and large. The technology attributes are scores.

The ME procedure (logit analysis) is implemented as follows. Hospital size is represented by

two indicator variables as: U1 for small and U2 for medium; the large size is the base category

(U1, U2) = (0, 0).

For the assessment of the importance of the explanatory variables we compute the ME in-

formation indices. The ME solutions for the choice distributions are given by logit (21). Thus,

the exponential family regression results can be used for the information importance computa-

tions. The information analysis results are obtained using of exponential family regression via logit

formulation.

Table 3 shows the results. Panel (a) of the table gives the logit coefficients (Lagrange multipliers

for the ME derivation). These are obtained using SAS PROC PHREG (Allison 1999) for the model

containing both types of variables. The log-likelihood chi-square statistics for the variables are

related to information measures Ξ2 = 2nI ˆΘ(Y ;xk) = H∗
ˆΘ

(Y ;x(k)) − H∗
ˆΘ

(Y ;x), where x(k) is the

vector excluding xk, k = 1, · · · , 7.
Panel (b) of Table 3 shows the information importance, the chi-square statistics, their degrees of

freedom, and posterior results for the hospital size (two variables), for technology attributes (three

variables), and for both groups (full model). The information chi-square statistics are given by (22).

Since the choice attributes are included, the global ME model (null model) is the uniform distrib-

ution over the three choices πi = (1/3, 1/3, 1/3), i = 1, · · · , 121 and H∗(Y ) = 121 log 3 = 132.93.

The log-likelihood function without variables (null) is −2H∗(Y ). The log-likelihood function with
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Table 3. Information importance for choice of medical technology.

(a) MLE Logit
Organization Size (S) Technology (T )
Small Medium Price Efficiency Quality

j = 1 j = 2 j = 1 j = 2 P E Q
Logit coefficient 2.24 3.29 1.71 2.23 .81 .63 1.11
Standard Error 1.21 1.16 .51 .52 .20 .22 .26
Chi-square (df=1) 3.46 7.98 11.32 18.68 16.16 8.47 18.60

(b) Subset of types of attributes
Data (Likelihood) Bayes (Posterior)

Subset Information Chi-sq. d.f. Mean SD 95% Interval
Hospital size S .148 39.38 4 .164 .035 (.095, .232)
Technology T = (P, E, Q) .289 76.84 3 .299 .049 (.200, .397)
Both types (S, T ) .447 118.94 7 .472 .052 (.367, .567)

(c) Information importance of types of attributes
Ordering S T (S, T )
ST .148 .299 .447
TS .158 .289 .447
Average .153 .294 .447

Posterior results for averages
Mean .168 .304
S.D. .019 .033 Difference T − S
95% Interval (.131, .201) (.236, .366) (.106, .165)

(d) Information importance of technology variables over orderings beyond the size
Ordering P |S E|S Q|S (P, E, Q)|S
PEQ .123 .089 .087 .299
PQE .123 .036 .140 .299
EPQ .091 .120 .087 .299
EQP .070 .120 .109 .299
QPE .091 .036 .172 .299
QEP .070 .057 .172 .299
Average .094 .077 .128 .299

Posterior results for averages
Mean .099 .078 .132 .308
S.D. .005 .005 .007 .017
95% Interval (.089, .107) (.069, .087) (.114, .142) (.272, .335)

Pairwise differences (Column - Row)
E|S (.019, .023)
Q|S (−.035,−.026) (−.056,−.045)

variables (model) is −2H∗
ˆΘ

(Y ;x), where x = v for the hospital size, x = u for technology, and

x = u, v for the two sets combined.

The posterior intervals of information importance shown in Panel (b) suggest the following

inferences for hospital size and technology attributes. The posterior intervals for the submodels
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intersect, so we do not infer the importance of one is higher than the other. The intervals for the

model containing the size variables and the full model do not intersect, leading to inference that

the importance of the full model is higher than the model containing the size variables. But the

intervals for the model containing technology attributes and the full model intersect, leading to the

inference that the importance of these two models are about equal. These inferences are based on

the 95% probability intervals for each model. An adjustment (Bonferroni type) is needed for the

probability of the inference about model comparison.

Panel (c) of Table 3 gives the decompositions of the joint information in terms of two orderings

of the size S = (U1, U2) and technology attributes T = (P,E,Q). We note that the information im-

portance measures are not strongly order-dependent. The average relative information importance

of the hospital size is about half of the technology attributes. Posterior results for the average

relative importance for each group of variables and the difference between the averages of the

two groups are also shown in Panel (c). We can infer that the average importance of technology

attributes is higher than the hospital size.

Panel (d) of Table 3 shows the decomposition of the partial information of the technology

variables P, E, and Q, in addition to the size for all six orderings of P, E, and Q. The results show

rather strong order dependency of the information importance. When each technology variable

is in the first position in the sequence (i.e., is singly added to the size model), the incremental

contributions of price and technology efficiency are almost equally important (IΘ̂(P |S) = .123 and

II ˆΘ(E|S) = .120), but the importance of quality is higher (I ˆΘ(Q|S) = .172). The importance of

each variable when last in a sequence deteriorates to about half for price and quality (IΘ̂(P |EQS) =

.070 and I ˆΘ(Q|EPS) = .087), and to almost one-third for the efficiency (I ˆΘ(E|PQS) = .036).

The average importance over all orderings gives ratios of about 9:8:13 to price, efficiency, and

quality, respectively.

Posterior intervals for the average incremental importance of each variable to the size and the

pairwise differences between them are also shown in Panel (d). We can infer that overall, Quality

(Q|S) is the most important variable, followed by Efficiency (E|S), followed by Price (P |S), and that

the importance of three variables are different. The posterior distributions for the joint importance

and overall average importance of the three variables are shown in Figure 4.

7 Conclusions

The importance methodology research has been mainly concerned with providing warnings against

the use of usual statistical quantities such as P-value and standardized coefficients, suggesting cer-

tain measures, and developing some frameworks for the properties of the importance measures.
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Figure 4: Posterior distributions of Importance and Relative Importance of Hospital size and
Product Attributes for Medical Technology.

Figure 5: Posterior distributions of Importance and Relative Importance of Product Attributes for
Medical Technology in Addition to the Hospital Size.

Little attention has been given to the more general notion of “importance” itself. This paper

characterized the concept of importance of an explanatory variable as its contribution to the re-

duction of uncertainty about predicting outcomes of the response variable, namely, its information

importance. Information measures of importance are applicable to qualitative as well as continuous

random variables. Within the framework of information theory, importance measures for qualita-

tive, categorical, discrete, and continuous explanatory and response variables are provided in a
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unified manner.

In the information theoretic approach uncertainty is mapped by a concave function of proba-

bility density with global maximum at the uniform distribution reflecting the most unpredictable

situation. We conceptualize information importance of predictors in terms of the difference be-

tween the uncertainty associated with the probability distributions of the response variable when

the predictors are absent and present. We operationalized the uncertainty reduction in terms of

Shannon entropy.

For nonstochastic predictors, the ME formulation provides importance measures. The ME

information measure is a versatile measure for quantifying the importance of explanatory variables.

The ME measures are particularly useful when the explanatory variables are continuous or have

several levels, and the response variable is qualitative. In these situations a model is needed

for relating the probabilities of the response outcomes to the explanatory variables. The ME

procedure derives the model along with the importance measures. However, for the exponential

family regression, the ME measures can be obtained using log-likelihood statistics.

For stochastic predictors, the information importance is defined by the expected uncertainty

reduction. The expected difference of Shannon entropies of the response variable’s distributions

without and with use of predictors is the mutual information. We elaborated on conceptual and

practical implications of the invariance property of the mutual information for measuring impor-

tance. The conceptual implication is that the importance of an explanatory variable X does not

depend on the form of its functional relationship with the response variable Y . If X decreases

uncertainty for predicting Y in the long-run, then it does not matter whether we use X or any

function of it, e.g., g(X) to predict a response Y or a different function, e.g., q(Y ), as long as

each variable is identifiable from its transformation. This is reflective of the probabilistic nature of

dependence/independence between two variables. When a distinction between functional forms of

relationship is needed, one may use the entropy difference (10) for a given outcome of the explana-

tory variable or use a measure that is based on a more specific notion of dependence.

The practical implication of the invariance property of the mutual information is that if the

distributions of variables are not normal, but can be transformed to normality, then the multivari-

ate normal mutual information formula can be used for computing the actual mutual information

between the original variables. This was illustrated in the normal regression model using the usual

log transformation of variables that have skewed distributions. With transformation to normal-

ity, the regression results change and must be interpreted in terms of the transformed variables.

However, the information importance of the transformed variables remains unchanged.

An additional contribution of our work is the development of Bayesian inference for the infor-

mation importance measures and illustration of the additional insights that the Bayesian approach

brings into the information analysis. The notion of information importance and the Bayesian in-
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ference methods we present here have potential applications in Bayesian networks that deal with

assessment of conditional independence based on high dimensional data. As shown in Section 3,

in the exponential family regression, the information importance of predictors is given by the log-

likelihood ratio or the deviance. Thus, the Bayesian estimation of information importance provides

a Bayesian posterior analysis of the likelihood ratio as suggested by Dempster (1997). The con-

cept of Bayesian deviance is considered also in deviance information criterion (DIC) proposed by

Spiegelhalter et al. (2002). Our current work investigates this connection and explores information

importance in terms of Bayes factors; see Kass and Raftery (1995) and Bayesian model averaging.

Three examples illustrated implementation and applications of the information importance con-

cept and measures. The first example, serving purely an illustrative purpose, showed the versatility

of the invariance property of mutual information in regression. In this example using textbook

data, we assessed the relative importance of the total number of transactions, number of out-

standing shares and market value of the firm in predicting its trading volume. The distributions

of all four variables were highly skewed, so normal regression analysis was deemed inappropriate.

However, normality could be achieved by a log transformation. The normal regression of the trans-

formed variables allowed assessments of the importance and relative importance of the explanatory

variables.

Two other examples illustrated real world applications. In the choice of long distance provider

example, we assessed the relative importance of long distance company’s reputation, price, and

plan offering for the customer’s choice among three providers. In this example, all variables were

qualitative. In the technology adoption example, we applied the ME procedure to assess the

importance of hospital size and three technology attributes for the prediction of choice of medical

diagnostic equipment. This example demonstrated how the logit output of a statistical package

(e.g. SAS) can be used to derive an ME logit model and compute the ME information indices for

the attributes. The ME measures are applicable to various logit models and can be easily computed

from the logit outputs.

Furthermore, the examples also illustrated how Bayesian information analysis can be developed

using MCMC methods and what additional insights about information importance can be obtained

from the Bayesian analysis. Such analysis can be easily performed using WinBUGS which is publicly

available (www.mrc-bsu.cam.ac.uk/bugs). The Bayesian approach gave us some additional insights

in the analysis. For example, we noted that posterior intervals of information importance of models

with subset variables provided us insights about subset selection.
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