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1 Introduction and Overview

As noted by Ebrahimi, Soofi and Soyer (2010a) in a recent review, information the-
ory provides measures for handling diverse problems in modelling and data analysis
in a unified manner. Information theory statistics have beenconsidered in reliability
modelling and life data analysis; see Ebrahimi and Soofi (1998, 2004) for a review
of such work. Information theory based work in reliability can be grouped into three
main areas as suggested in Ebrahimi and Soofi (2004). These include development
of information functions for reliability analysis, information theory-based diagnos-
tics and hypothesis tests for model building and measures that quantify the amount
of information for prediction.

Since the seminal work of Lindley (1956), information theory has played an im-
portant role in Bayesian statistics. The mutual information which is also known as
Lindley’s measure has been used by Bernardo (1979a) as the expected utility for
the decision problem of reporting a probability distribution. It also has provided the
foundation for the reference priors of Bernardo (1979b). Other uses of Lindley’s
information have been in design problems; see for example Chaloner and Verdinelli
(1995) for a comprehensive review. An information processing rule has been de-
fined in Zellner (1988) using information measures and Bayesrule has been shown
as the optimal solution.

Nader Ebrahimi
Division of Statistics, Northern Illinois University, DeKalb, IL e-mail: nader@math.niu.edu

Ehsan S. Soofi
Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee, Milwaukee, WI e-
mail: esoofi@uwm.edu

Refik Soyer
Department of Decision Sciences, The George Washington University, Washington, DC e-mail:
soyer@gwu.edu

1



2 Nader Ebrahimi, Ehsan S. Soofi and Refik Soyer

As noted by Ebrahimi and Soofi (2004) an area of Bayesian reliability analysis
where information theory has been often used is the optimal design of life tests; see
Chaloner and Verdinelli (1995) and the references therein.Bayesian nonparamet-
ric entropy estimation and Bayesian estimation of information indices for lifetime
modelling by Mazzuchi et al. (2000, 2008) have been another area of focus of infor-
mation theoretic work.

In this paper we consider some recent advances in use of information theory in
Bayesian reliability analysis. We present a range of information functions for relia-
bility analysis, present their properties and discuss their use in addressing different
issues in reliability. Our discussion focuses on use of Bayesian information mea-
sures in failure data analysis, prediction, assessment of reliability importance and
optimal design of life tests. Below we present some preliminaries associated with
Bayesian reliability analysis and introduce notation. Section 2 presents information
measures such as mutual information that are used in reliability analysis and their
properties. Parameter and predictive information concepts are considered and their
properties are discussed in Section 3 with implications on Bayesian designs. Sec-
tion 4 considers informativeness of observed failures and survivals from life tests
and presents some new results for comparison. The notion of information impor-
tance is presented is Section 5 as an alternative measure of reliability importance of
components of a system. Concluding remarks are given in Section 6.

1.1 Preliminaries

Reliability analysis deals with quantification of uncertainty about certain event(s)
and making decisions. Typical issues of interest include: (i) if a component (or a
system) performs its mission; (ii) if time to failure of a component (or a system) ex-
ceeds a specified (mission) time, and (iii) if mean time to failure exceeds a specified
time. For example, ifY denotes lifetime of a component (or a system) then the event
of interest isY > y wherey is the specified mission time. The quantity

P(Y > y|θ ) = Prob{Y > y|θ} (1)

as a function ofy is known as the reliability function, whereθ is a parameter which
can be a scalar or a vector. Iff (y|θ ) denotes the the density function of the failure
model forY, then we can write the reliability function as

P(Y > y|θ ) =
∫ y

0
f (x|θ )dx. (2)

Decision problems that involve reliability assessment include design of life tests,
system design via reliability optimization, and developing optimal maintenance
strategies. In Bayesian reliability analysis, uncertainty aboutθ is described prob-
abilistically via the prior distributionf (θ ). Prior to observing any data uncertainty
statements about a future lifetimeYν is made using the prior predictive distribution
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f (yν ) =

∫

f (yν |θ ) f (θ )dθ . (3)

Givenn observations,y = (y1,y2, · · · ,yn) from f (y|θ ), posterior inference forθ
is obtained via the posterior distribution

f (θ |y) ∝ f (θ ) f (y|θ ). (4)

The posterior predictive distribution for the future lifetimeYν , is given by

f (yν |y) =
∫

f (yν |θ ) f (θ |y)dθ . (5)

2 Information Functions for Reliability Analysis

Let Q be an unknown quantity of interest which can be a scalar or a vector.Q may
be a parameterΘ such as failure rate or may represent a future outcomeYν such as
component lifetime orQ = (Θ ,Yν). We denote the distribution ofQ by F and its
probability mass or density function byf .

The unpredictability ofQ depends solely on the concentration of its distribu-
tion measured by an uncertainty functionU ( f ). As pointed out by Ebrahimi et al.
(2010a), two desirable properties of the uncertainty function are: (i)U (·) is con-
cave. (ii)U ( f ) ≤ U ( f ∗), wheref ∗ is the pdf of the uniform distribution (the least
concentrated model). An uncertainty function with these properties is Shannon en-
tropy

H(Q) = H( f ) =−

∫

f (q) log f (q)dq. (6)

The uncertainty aboutQ is measured byH(Q) andI(Q) = −H(Q) is information
aboutQ; see Lindley (1956).

Information provided by the datay aboutQ is measured by the entropy difference

∆H(y;Q) = H(Q)−H(Q|y) (7)

whereH(Q|y) is obtained using the posterior distributionf (q|y). In (7) ∆H(y;Q) is
referred to asobserved sample informationaboutQ and can be positive or negative.

The information discrepancy betweenf (q|y) and f (q) can also be measured by
the Kullback-Leibler divergence

K[ f (q|y) : f (q)] =
∫

f (q|y) log
f (q|y)
f (q)

dq≥ 0, (8)

where the equality holds if and only iff (q|y) = f (q) almost everywhere. The in-
formation discrepancy is arelative entropywhich only detects changes between the
prior and the posterior, without indicating which of the twodistributions is more
informative. It is invariant under all one-to-one transformations ofQ.
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Expected sample information measures are obtained by viewing the information
measures as functions of datay and averaging them with respect to the distribution
of y. Conditional entropy ofQ giveny is defined as

H (Q|y) = Ey{H(Q|y)}=
∫

H(Q|y) f (y)dy. (9)

The conditional informationis then defined asI (Q|y) = −H (Q|y). It follows
from the above that the expected sample information is givenby

Ey[∆H(y;Q)] = H(Q)−H (Q|y)≥ 0, (10)

which is always nonnegative.
The expected entropy difference and expected KL divergenceprovide the same

measure, known as themutual information

M(y;Q) = Ey{∆H(y;Q)}= Ey {K[ f (q|y) : f (q)]} . (11)

Another representation of the mutual information,M(y;Q), is given by

M(y;Q) = H(Q)−H (Q|y) = K[ f (q,y) : f (q) f (y)]. (12)

These representations are in terms of the expected uncertainty reduction, and im-
ply that the mutual information is symmetric inQ andy. We note the following
properties of mutual information:

1. M(y;Q)≥ 0, where the equality holds if an only ifQ andy are independent.
2. We can writeM(y;Q) as

M(y;Q) = H(Q)+H(y)−H(Q,y).

3. The conditional mutual information is defined byM (y;Q|S) = Es[M(y;Q|s)]≥
0, where the equality holds if an only ifQ andy are conditionally independent.

4. M(y;Q) is invariant under one-to-one transformations ofQ andy.

For Q = Θ , the expected sample information about the parameter,M(y;Θ) is
known as Lindley’s measure; Lindley (1956). It is also referred to as theparameter
information. Lindley’s measure has been widely used in Bayesian optimaldesign.
It was first considered by Stone (1959) in the context of normal linear models. El-
Sayyed (1969) used Lindley’s measure for information loss due to censoring in the
exponential model and Polson (1993) considered it in designof accelerated life tests.

3 Parameter and Predictive Information and Bayesian Designs

The predictive version of Lindley’s measure is referred to aspredictive information.
For Q = Yν , the expected informationM(y;Yν) is referred to as the predictive in-
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formation; see for example, San Martini and Spezzaferri (1984) and Amaral and
Dunsmore (1985). Verdinelli et al. (1993) proposed predictive information for opti-
mal design of accelerated life tests with lognormal lifetimes.

Verdinelli (1992) considered a linear combination of the parameter and predictive
information as design criteria

U(Y;Θ ,Yν ) = w1M(Y;Θ)+w2M(Y;Yν), (13)

wherewk ≥ 0, k = 1,2 reflect the relative importance of the parameter and pre-
diction. As noted by Ebrahimi et al. (2010b), sinceΘ andYν are not independent
quantities,M(Y;Θ) andM(Y;Yν) are not separable. The weights in the above do
not take into account the dependence between the predictionand the parameter.

Taking the dependence between the parameter and predictioninto account re-
quires the joint information. Following Ebrahimi et al. (2010b), if we letQ=(Θ ,Yν )
then the observed and expected information measures are given by∆H[y;(Θ ,Yν )]
andM[Y;(Θ ,Yν)]. The joint information measures enable us to explore the relation-
ship betweenM(Y;Θ) andM(Y;Yν) as given by the following result.

Theorem 1.Let Y1,Y2, · · · have distributions fyi |θ , i = 1,2, · · · which, givenθ , are
conditionally independent, then

1. ∆H(y;Θ) = ∆H[y;(Θ ,Yν )];
2. M(Y;Θ) = M[Y;(Θ ,Yν )];
3. M(Y;Yν )≤ M(Y;Θ).

Proof of the theorem is given in Ebrahimi et al. (2010b). FromPart (1) of the
Theorem, we note that information provided by the (observed) sample about the pa-
rameter, is the same as joint information about the parameter and prediction. Part (2)
of the theorem provides a broader interpretation of Lindley’s information, namely
expected information provided by the data about the parameter and for the predic-
tion. The inequality in (3) is the Bayesian version of the information processing
inequality of information theory. As suggested by Ebrahimiet al. (2010b), it may
be referred to as theBayesian data processing inequalitymapping the information
flow Y → Θ → Yν . We note that parts (2) and (3) of Theorem 1 are due to the
decomposition:

M[Y;(Θ ,Yν )] = M(Y;Θ)+M (Y;Yν |Θ) = M(Y;Yν)+M (Y;Θ |Yν). (14)

An immediate implication of Theorem 1 is that the design maximizingM(Y;Θ)
also maximizes sample information about the parameter and prediction jointly.
However, such optimal design may not be optimal according toM(Y;Yν). Similarly,
the optimal design maximizingM(Y;Yν) may not be optimal according toM(Y;Θ).

WhenYi , i = 1,2, · · · are not conditionally independent givenθ , the information
decomposition is given by

M[Y;(Θ ,Yν )] = M(Y;Θ)+M (Y;Yν |Θ)≥ M(Y, ;Θ) (15)
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whereM (Y;Yν |θ )> 0 is the measure of conditional dependence which reduces to
0 in the conditional independent case. For the conditionally dependent case we have

M(Y;Yν)≤ M(Y;Θ)⇐⇒ M (Y;Θ |Yν)≥ M (Y;Yν |Θ) (16)

We note that under strong conditional dependence the predictive informationM(Y;Yν)
can dominateM(Y;Θ) the parameter information.

4 Failures versus Survivals

In a probe of the common belief that observing failures in life testing is always
more informative than survivals, Abel and Singpurwalla (1994) posed the following
question:

During the conduct of the test, what would you rather observe, a failure or a survival?

The answer to the question has practical implications. For example, if a failure is
preferred for inference, then one may wait until a failure occurs or perhaps even
induce a failure through an accelerated environment. Abel and Singpurwalla showed
that the answer to the question depends on the inferential objective of the life test.

The authors considered an observationy= y0 from the exponential model,

f (y|θ ) = θe−θy

and assumed a gamma prior forθ with parametersα andβ . They used Shannon
entropy for measuring observed information utility

H(Θ |y0) =−EΘ |y0
[log f (θ |y0)]

As the posterior distribution ofΘ is gamma with(α +1) and(β + y0) for the case
of a failure aty0 and withα and(β + y0) for the case of a survival aty0, they were
able to compare the gamma entropies.

The entropy of a gamma distribution with parametersa andb is given by

HG(a)− log(b),

where
HG(a) = logΓ (a)− (a−1)ψ(a)+a.

Since the scale parameter is the same, the comparison of the failure and the survival
implies that

HG(α +1)> HG(α). (17)

Thus, for the failure rateΘ survival gives more information than failure.
However, if the objective is to make inference about the meanµ = 1/Θ , then

the failure provides more information than the survival. Having the gamma prior on



Information Theory and Bayesian Reliability Analysis: Recent Advances 7

Θ implies an inverse gamma prior 1/Θ and it can be shown that in this case the
comparison gives

HIG(α +1)< HIG(α). (18)

It is important to note that the entropy is not invariant under transformations ofΘ
or the data. Thus, the comparison of information about a parameter depends on the
parameterization of the lifetime model.

As pointed out by Ebrahimi et al. (2013), findings by Abel and Singpurwalla
raises some questions:

• Is the exponential case a counter example due to the memoriless property ?
• Can the result be generalized to other life models?
• What could possibly explain the preference for failures?
• What would you rather observe, a failure or a survival, for prediction of the life-

time of an untested item?

In order to address the above questions Ebrahimi et al. (2013) considered a more
general setup whereDn = (y1, · · · ,yn) andDk = (y1, · · · ,yk,y∗k+1, · · · ,y

∗
n) denote the

data provided by the failure and survival scenarios withyi ’s andy∗i ’s representing
failure and survival times, respectively. The setup implies that the sufficient statistic
for parameterΘ is the same for both scenarios, that is,tn(y) = tk(y). The corre-
sponding likelihood functions forΘ are given by

L (Dn|θ ) ∝
n

∏
i=1

f (yi |θ ), L (Dk|θ ) ∝
k

∏
i=1

f (yi |θ )
n

∏
i=k+1

S(y∗i |θ ),

whereS(y|θ ) = P(Y > y|θ ) the survival function.
As before, we letQ denote the unknown quantity of interest such as a parameter

Θ , a function of the parameter such as 1/Θ , or the lifetime of an untested itemYν
with a distributionf (·). Using the Abel and Singpurwalla set up, the sampleDn is
said to be more informative thanDk aboutQ whenever

H(Q|Dn)< H(Q|Dk). (19)

The comparison is well-defined for improper priors forΘ as long asf (q|Dn) and
f (q|Dk) are proper. With proper prior, the above is equivalent to theobserved infor-
mation criteria

∆H(Dn;Q) = H(Q)−H(Q|Dn)> H(Q)−H(Q|Dk) = ∆H(Dk;Q). (20)

Ebrahimi et al. (2013) considered the class of models with survival function

S(y|θ ) = P(Y > y|θ ) = e−θφ −1(y), (21)

whereY = φ(X), S(x|θ ) = e−θx, andφ is an increasing function such thatφ(0) =
0andφ(∞) = ∞. Since the survival function ofX is exponential, the class of models
is referred to as the time-transformed exponential (TTE) models andθ is referred to
as theproportional hazardparameter; see Barlow and Hsiung (1983). Examples of
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lifetime models in the TTE family are given in Table 1. The sufficient statistics for
the proportional hazard parameter under the two scenarios are the same

tk(y) = tn(y) = tn =
n

∑
i=1

φ−1(yi).

Using the conjugate gamma prior forΘ with parametersα and β , denoted as
G(α,β ), the posterior distributions based on samples from models in the TTE fam-
ily under both scenarios are gamma

f (θ |Ds) = G(α +ns,β + tn),ns = k,n.

For the TTE family models, by the observed information criteria, we have:

1. ForΘ
HG(α +n)> HG(α + k),

that is, survival is more informative than failure about theproportional hazard
parameterΘ ;

2. For 1/Θ
HIG(α +n)< HIG(α + k),

that is, failure is more informative than survival about theinverse parameter.

Table 1 Examples of Time Transformed Exponential Family

TTE model φ(x)

Exponential x

Weibull x1/b

Linear Failure Rate
1
b
(a2+bx)1/2

Pareto Type I aex

Pareto Type II ex−1

Pareto Type IV (ex−1)1/a

Extreme Value log(1+ x)

As noted by Abel and Singpurwalla (1994), ”The aim of life testing is to better
predict the life lengths of untested items.” In view of this,Ebrahimi et al. (2013)
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investigated if the failure is more informative than the survival to predict future life
lengths in the exponential model. Using the gamma priorG(α,β ) in the exponential
model the predictive distributions ofYν will be Pareto. Thus, the posterior predictive
entropies are given by

H(Yν |ns, tn) = HP(α +ns)+ log(β + tn), α,β ≥ 0, ns = k,n,

where

HP(α) =
1
α
− logα +1.

SinceHP is decreasingly ordered byα, we have

HP(α +n)< HP(α + k), k< n. (22)

In other words, for the exponential model, failure is more informative than survival
about prediction ofYν . Using the conjugate gamma prior forΘ , the result holds for
most members of the TTE family for fixed values of other parametersa andb.

As shown by Ebrahimi et al. (2013), a more general result can be obtained in
comparing informativeness of failures and survivals aboutprediction by ordering
entropies of predictive distributions. The important quantity for the stochastic or-
dering of the predictive distributions is

Λ(θ ) =
n

∏
i=k+1

λ (y∗i |θ ), (23)

whereλ (y|θ ) is the hazard (failure) rate function ofY. The following result provides
a comparison of the entropies of predictive distributions.

Theorem 2.Given the definition ofΛ(Θ) in (23)

1. If the predictive density function f(yν |Dn) is decreasing (increasing), then Dn is
more (less) informative than Dk about the prediction of Yν , if and only if

COV[S(yν |Θ), Λ(Θ)|Dk]< 0.

2. If θ orders the survival function S(y|θ ), thenCOV[S(yν |Θ), Λ(Θ)|Dk]< 0.

The termsS(yν |Θ) andΛ(Θ) are functions ofΘ and their covariance is obtained
under the posterior distributionf (θ |Dk).

It is important to note that the Theorem 2 enables us to compare the entropies
of predictive distributions for many lifetime models without a need to specify any
prior distribution. The result is applicable to many of the TTE models. Also, all
decreasing failure rate (DFR) distributions have decreasing density functions and
mixtures of DFR distributions are also DFR. Thus, if the model f (y|θ ) is DFR,
then the predictive density is also DFR, and the decreasing condition in the result is
satisfied. For example, the result holds for DFR models such as Pareto Type I, Pareto
Type II, and Half-logistic, Weibull withb≤ 1, gamma witha≤ 1, and generalized-
gamma withab≤ 1, but it is not limited to the DFR models. It also applies to
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the IFR models: linear failure rate, Extreme Value, and models with non-monotone
failure rates such as Half-Cauchy. Table 2 gives some examples whereθ orders the
survival function. When the conditions of the Theorem 2 do not hold, one can do
the comparison directly by computing entropy of predictionunder both scenarios.

Table 2 Examples where Survival (S) or Failure (F) is more Informative for Prediction

Model (More informative) Density and Support

Half-normal (F) f (y|θ ) =
√

2θ
π

e−
θ
2 y2

, y≥ 0

Half-Cauchy (F) f (y|θ ) =
2

πθ

(

1+
y2

θ 2

)−1

, y≥ 0

Half-logistic (F) f (y|θ ) =
θe−θy

(1+e−θy)
2 ,y≥ 0

Gamma(a≤ 1) (F) f (y|a,θ ) =
θ a

Γ (a)
ya−1e−θy, y≥ 0

Generalized gamma(ab≤ 1) (F) f (y|a,b,θ ) =
bθ a

Γ (a)
yab−1e−θyb

,y≥ 0

Generalized Pareto(a> 0, ,θ 6= 1)
θ < 1 (F) θ > 1 (S)

f (y|θ ) = a

(

1−
θy
a

)1/θ−1

,







y≥ 0,θ < 0
0< y≤ a/θ ,
θ > 0

Power (θ < 1, F) (θ > 1, S) f (y|θ ) = θyθ−1, 0< y≤ 1

Beta (θ < 1, S) (θ > 1, F) f (y|θ ) = θ (1− y)θ−1, 0≤ y≤ 1

Ebrahimi et al. (2013) considered expected sample information as an alternative
criterion to the observed information for a plausible explanation for the perception
that failures are more informative. The expected information was measured by the
conditional entropyH (Q|Ds) given by

H (Q|Dk) = Ek{H(Q|Dk)}=

∫

H(Q|Dk) fk(y)dy, k= 0,1, · · · ,n, (24)

whereEk denotes averaging with respect tofk(y). Using the conditional entropy cri-
teria and the conjugate gamma prior forΘ , the authors showed that for all members
of the TTE family, failure is more informative than survivalabout prediction of a
new lifetimeYν , the proportional hazard parameterΘ , and its inverse 1Θ . Further-
more, they showed that unlike the observed information measured by−H(Θ |Dk),
the expected information measured by−H (Θ |Dk) is increasing in the number of
failuresk.
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This result may be interpreted as, on average, observing a failure is more infor-
mative than observing a survival. As noted by Kruskal (1987), thinking in terms of
averages is a tradition in statistics, and this provides a plausible explanation for the
perception that failures are more informative.

5 Reliability Importance of System Components

Birnbaum (1969) defined reliability importance of a component i for coherent sys-
tems as

IB
i (t) =

∂F(t)

∂F i(t)
, (25)

whereF(t) is the system reliability andF i(t) is the componenti’s reliability at
time t. Barlow and Proschan (1975) introduced another measure of relative reliabil-
ity importance as the conditional probability that the system’s failure is caused by
componenti’s failure. It can be shown that

IBP
i (t) =

∫ ∞

0
IB
i (t)dFi(t)dt (26)

whereFi(t) is the distribution function for lifetime of componenti and∑i I
BP
i (t) =

1. Alternative measures of reliability importance were proposed by Natvig (1979),
Natvig (1985), and Armstrong (1995). More recent results are given in Natvig and
Gsemyr (2009). All these measures are in terms of contribution of a component to
the reliability of the system.

Ebrahimi et al. (2014) noted that reliability importance can be interpreted in
terms of how knowledge of status of a component changes our knowledge of the
system. In other words, their interpretation is in terms of which component’s sta-
tus knowledge matters most in reducing our uncertainty about systems’ status. The
authors suggested an alternative notion of component importance in terms of infor-
mation measures.

Consider a system that consists ofn componentsC1, · · · ,Cn that collectively
determine a random variable of interestQ for the system. LetQi be the cor-
responding random variable associated withCi , i = 1, · · · ,n. More formally, let
Qi = Qi(Ci),Q = (Q1 · · ·Qn) and define thesystem structure functionas

Q= φ(Q),φ : ℜn → ℜ. (27)

We note thatQi can be the indicator variable of the state (failure/survival) or the life
length of a component andQ is the respective random variable for the system.

The information notion of importance maps the expected utility of the compo-
nent variableQi for prediction of the system variableQ in terms of the dependence
implied by the joint distributionF(q,qi). More specifically, it is defined as follows.
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Definition 1. The importance of componentCi is defined by the expected infor-
mation utility of Ci for the system measured by the mutual informationM(Q;Qi),
provided thatF(q,qi)�Fq(q)Fi(qi). ComponentCi is more important than the com-
ponentCj for the system if and only ifM(Q;Qi)≥ M(Q;Q j).

Under the information notion of importance componentCi is more important
than the componentCj for the system if and only if

M(Q;Qi)≥ M(Q;Q j ) ⇐⇒ I (Q|Qi)≥ I (Q|Q j ), (28)

whereI (Q|Qi) =−H (Q|Qi) is the conditional information.
Let T1, · · · ,Tn denote independent random variables representing the lifelengths

of componentsC1, · · · ,Cn andT denote the life length of the system. The survival
of system is defined as the survival up to a mission timeτ. We define the binary
variables for the states of the component and system as

Qi(Ci) = Xi(τ) = 1(0), i f Ti > τ (Ti 6 τ)

and
Q= X(τ) = φ(X1(τ), . . . ,Xn(τ)) = 1(0), i f T > τ (T 6 τ),

whereφ : {0,1}n →{0,1}.
The marginal distributions ofXi(τ) and the conditional distribution ofX(τ) given

Xi(τ) = xi are Bernoulli with parameterspi = pi(τ) = F̄i(τ) andpx|xi
= px|xi

(τ) =
P(X(τ) = x|Xi(τ) = xi) for i = 1, . . .n, respectively. For each mission timeτ, we
obtain the conditional informationI [(X(τ)|Xi(τ)] as

I [(X(τ)|Xi(τ)] = pi(τ)I [(X(τ)|Xi(τ) = 1]+ (1− pi(τ))I [(X(t)|Xi(t) = 0]. (29)

Note that this measure ranks the importance of components for a fixed mission time
τ.

The following result by Ebrahimi et al. provides a ordering of the components
for three types of systems at a fixed time pointt = τ.

Theorem 3.Consider a system with n independent components such that P(Xi =
1) = pi , i = 1, · · · ,n.

1. If the system is series, then the component Cj is more important than the compo-
nent Ci , for pj < pi , i, j = 1, · · · ,n.

2. If the system is parallel, then the component Cj is more important than the com-
ponent Ci , for pj > pi , i, j = 1, · · · ,n.

3. If the system is k-out-of n and for any i, P
{

S(i)(X(τ)) ≥ k
}

= pi(k) ≥
1
2
, i =

1, · · · ,n, then the component Cj is more important than the component Ci ,
where

S(i)(v) = ∑
k∈Ni

vk, Ni = {1, · · · , i −1, i +1, · · · ,n}.

for a vectorv = (v1, · · · ,vn).
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The information measure (28) orders the components in the same way as the reli-
ability importance index of Birnbaum (1969). The information analog of Barlow and
Proschan’s (1975) measure of component’s importance is theexpected mutual infor-

mationEi

[

M
(

X(τ),Xi(τ)
)]

where the expected value is with respect to the distri-

bution ofTi . Thus, we can order the components by evaluatingEi

[

I

(

X(τ)|Xi(τ)
)]

.

As shown in Ebrahimi et al. (2014), stochastic ordering of life times of the com-

ponentsT1
st
≤ . . .

st
≤ Tn is sufficient for Theorem 3 to hold. The next example illustra-

tions the implementation of the Theorem.

Example

Consider a system of two components with independent lifetimes.

1. Bernoulli Distributions

We can obtain the conditional information measures for the series and parallel
systems as

I

(

X(τ)|Xi(τ)
)

= pi(τ)I(Xj(τ)) and I

(

X(τ)|Xi(τ)
)

= (1− pi(τ))I(Xj (τ)),

respectively. Thus,Ci is more (less) important for a series system than for a par-
allel system wheneverτ > (<) median lifetime.

2. Proportional Hazard Distributions

Suppose that the components’ lifetimes,Ti , i = 1,2, have proportional hazard
(PH) distributions

F̄i(τ) = [F̄0(τ)]θi , τ ≥ 0, θi > 0.

For θ1 > θ2, we haveT1
st
≤ T2. Thus for any mission timeτ, p1(τ) < p2(τ) and

by Theorem 3C1 is more (less) important thanC2 for the series (parallel) system.

3. TTE Family of Distributions

Suppose that the components’ lifetimesTi , i = 1,2, having TTE family of dis-
tributions as defined in Section 4. Note that the TTE model is aPH model and

therefore we can conclude that forθ1 > θ2, T1
st
≤ T2. Thus, for any mission time

τ, p1(τ)< p2(τ) andC1 is more (less) important thanC2 for the series (parallel)
system.

The information based analog of Barlow-Proschan importance index can also be

computed for TTE models. It can be shown thatEi

[

I

(

X(t)|Xi(t)
)]

for the series

and parallel systems are functions ofθ =
θi

θ j
, decreasing (increasing) forθ < (>)1.
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The notion of information importance is also applicable to component and sys-
tem lifetimes as continuous random variables. As shown in Ebrahimi et al. (2014), it
is possible to develop results for convolutions and order statistics. For convolutions,
results in entropy ordering can be used to obtain component importance ordering.
Considering parallel and series systems with continuous lifetimes, the system life-
time being order statistics leads to singular distributions, where the mutual infor-
mation is not well-defined. In order to alleviate this problem, a modification of the
information importance index was used by the authors.

Ebrahimi et al. (2014) also considered an entropy-based importance measure
using the Maximal Data Information Prior (MDIP) criterion proposed by Zellner
(1977). The MDIP criterion which was originally proposed for developing priors
for Bayesian inference, provides the same importance ordering of the components
as the mutual information.

6 Concluding Remarks

Information measures play an important role in Bayesian reliability analysis. In
this paper our focus was on Bayesian information measures infailure data analy-
sis, prediction, assessment of reliability importance andoptimal design of life tests.
Other uses of these measures include failure model selection [Mazzuchi et al. (2000,
2008)], characterization of univariate and multivariate failure models and character-
ization of dependence for system reliability [Ebrahimi et al. (2008)].

Computation of information functions can be quite challenging in many applica-
tions but decomposition type results given in Ebrahimi et al. (2008) can be helpful
for certain problems. Parametric and nonparametric Bayesian estimation of infor-
mation functions and related indices [see Dadpay et al. (2007)] are required for
multivariate life models. Recent advances in Bayesian computing, especially, those
in efficient Markov chain Monte Carlo methods can be exploited in many cases.
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