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1 Introduction and Overview

As noted by Ebrahimi, Soofi and Soyer (2010a) in a recentwewdgormation the-
ory provides measures for handling diverse problems in find@nd data analysis
in a unified manner. Information theory statistics have bmmsidered in reliability
modelling and life data analysis; see Ebrahimi and Soofi§12004) for a review
of such work. Information theory based work in reliabiliggcbe grouped into three
main areas as suggested in Ebrahimi and Soofi (2004). Thelselédevelopment
of information functions for reliability analysis, inforation theory-based diagnos-
tics and hypothesis tests for model building and measueggjtrantify the amount
of information for prediction.

Since the seminal work of Lindley (1956), information thgbas played an im-
portant role in Bayesian statistics. The mutual informmatidhich is also known as
Lindley’s measure has been used by Bernardo (1979a) as ffeetex utility for
the decision problem of reporting a probability distrilauti It also has provided the
foundation for the reference priors of Bernardo (1979bhedtuses of Lindley’s
information have been in design problems; see for exampéo@kr and Verdinelli
(1995) for a comprehensive review. An information procegsule has been de-
fined in Zellner (1988) using information measures and Baykeshas been shown
as the optimal solution.
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As noted by Ebrahimi and Soofi (2004) an area of Bayesianhiétinanalysis
where information theory has been often used is the optiesibd of life tests; see
Chaloner and Verdinelli (1995) and the references theiftyesian nonparamet-
ric entropy estimation and Bayesian estimation of infoioraindices for lifetime
modelling by Mazzuchi et al. (2000, 2008) have been anottear af focus of infor-
mation theoretic work.

In this paper we consider some recent advances in use ofmatan theory in
Bayesian reliability analysis. We present a range of inftfan functions for relia-
bility analysis, present their properties and discusg th& in addressing different
issues in reliability. Our discussion focuses on use of Beyeinformation mea-
sures in failure data analysis, prediction, assessmergliability importance and
optimal design of life tests. Below we present some prelaries associated with
Bayesian reliability analysis and introduce notation.t®&c2 presents information
measures such as mutual information that are used in réladmalysis and their
properties. Parameter and predictive information corscep considered and their
properties are discussed in Section 3 with implications ageBian designs. Sec-
tion 4 considers informativeness of observed failures amdigls from life tests
and presents some new results for comparison. The notiomf@fation impor-
tance is presented is Section 5 as an alternative measuwgkatiility importance of
components of a system. Concluding remarks are given inddegt

1.1 Preliminaries

Reliability analysis deals with quantification of uncentgi about certain event(s)
and making decisions. Typical issues of interest inclugef & component (or a
system) performs its mission; (ii) if time to failure of a cponent (or a system) ex-
ceeds a specified (mission) time, and (iii) if mean time tlufaiexceeds a specified
time. For example, i¥ denotes lifetime of a component (or a system) then the event
of interest isY > y wherey is the specified mission time. The quantity

P(Y >y|8) = Prob{Y >y|0} Q)

as a function of/ is known as the reliability function, whegis a parameter which
can be a scalar or a vector.fify|0) denotes the the density function of the failure
model forY, then we can write the reliability function as

P(Y > y|6) = /Oyf(x|6)dx )

Decision problems that involve reliability assessmenitide design of life tests,
system design via reliability optimization, and develagpioptimal maintenance
strategies. In Bayesian reliability analysis, uncertaathout is described prob-
abilistically via the prior distributiorf (6). Prior to observing any data uncertainty
statements about a future lifetinYg is made using the prior predictive distribution
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fy) = [ towle)f(o)de. ©)

Givenn observationsy = (y1,Y2,---,¥n) from f(y|0), posterior inference fof
is obtained via the posterior distribution

f(6ly) D £(8)f(y[6). (4)

The posterior predictive distribution for the future lifeeY,, is given by

f(yuly) = [ f(yo[8)1(6ly)de. ©)

2 Information Functions for Reliability Analysis

Let Q be an unknown quantity of interest which can be a scalar octou€ may

be a parametdé® such as failure rate or may represent a future outcgyrsich as
component lifetime oQ = (0,Y,). We denote the distribution d@ by F and its
probability mass or density function Hy

The unpredictability ofQ depends solely on the concentration of its distribu-

tion measured by an uncertainty functién(f). As pointed out by Ebrahimi et al.
(2010a), two desirable properties of the uncertainty fiamcare: (i) (-) is con-
cave. (i) (f) <« (f*), wheref* is the pdf of the uniform distribution (the least
concentrated model). An uncertainty function with thesgpprties is Shannon en-

tropy
H(Q) = H(1) = - [ f(@logf(@da ©)

The uncertainty abou® is measured by (Q) andl(Q) = —H(Q) is information
aboutQ; see Lindley (1956).
Information provided by the dataaboutQ is measured by the entropy difference

AH(y;Q) =H(Q) —H(Qly) (7)

whereH (Qly) is obtained using the posterior distributid(g|y). In (7) AH(y; Q) is
referred to a®bserved sample informati@boutQ and can be positive or negative.

The information discrepancy betweéfg|y) and f(qg) can also be measured by
the Kullback-Leibler divergence

f(qly)
f(q)

where the equality holds if and only ff(gly) = f(qg) almost everywhere. The in-
formation discrepancy is@lative entropywhich only detects changes between the
prior and the posterior, without indicating which of the tdistributions is more
informative. It is invariant under all one-to-one transh@tions ofQ.

KIf(aly): f(q)] = [ f(aly)log - dg=0. ®)
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Expected sample information measures are obtained byngilie information
measures as functions of datand averaging them with respect to the distribution
of y. Conditional entropy o) giveny is defined as

H(Qy) =E/{HQY)} = [HQy)f(¥)dy. ©)

The conditional informationis then defined as” (Qly) = —2#(Qly). It follows
from the above that the expected sample information is diyen

Ey[AH(Y;Q)] =H(Q) —-#(Qly) =0, (10)

which is always nonnegative.
The expected entropy difference and expected KL divergpnméde the same
measure, known as timutual information

M(y;Q) = Ey{AH(y:Q)} = By {K[f(aly) : f(a)]}. (11)
Another representation of the mutual informatibhy; Q), is given by
M(y;Q) = H(Q) —Z(Qly) =K[f(a,y) : f(a)f(y)]. (12)

These representations are in terms of the expected umtgrtaduction, and im-
ply that the mutual information is symmetric @ andy. We note the following
properties of mutual information:

1. M(y; Q) > 0, where the equality holds if an only@ andy are independent.
2. We can writeM(y; Q) as

M(y; Q) =H(Q)+H(y) —H(Q.y).

3. The conditional mutual information is defined k¥ (y; Q|S) = Es[M(y; Q|s)] >
0, where the equality holds if an only@ andy are conditionally independent.
4. M(y; Q) is invariant under one-to-one transformation€xdndy.

For Q = O, the expected sample information about the parambtéy; ©) is
known as Lindley’s measure; Lindley (1956). It is also redgerto as theparameter
information Lindley’s measure has been widely used in Bayesian optitesign.
It was first considered by Stone (1959) in the context of nbtimear models. El-
Sayyed (1969) used Lindley’s measure for information lags th censoring in the
exponential model and Polson (1993) considered it in desfigncelerated life tests.

3 Parameter and Predictive Information and Bayesian Desigs

The predictive version of Lindley’s measure is referreddpredictive information
For Q =Y,, the expected informatiokl(y;Y, ) is referred to as the predictive in-
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formation; see for example, San Martini and Spezzaferr84)@&nd Amaral and
Dunsmore (1985). Verdinelli et al. (1993) proposed prexidnformation for opti-
mal design of accelerated life tests with lognormal lifegsn

Verdinelli (1992) considered a linear combination of thegpaeter and predictive
information as design criteria

U(Y;0,Yy) =wiM(Y;0) +waM(Y}Yy), (13)

wherewy > 0, k = 1,2 reflect the relative importance of the parameter and pre-
diction. As noted by Ebrahimi et al. (2010b), sin®eandY,, are not independent
quantitiesM(Y;©) andM(Y;Y,) are not separable. The weights in the above do
not take into account the dependence between the predaibthe parameter.
Taking the dependence between the parameter and predictedaccount re-
quires the joint information. Following Ebrahimi et al. (b), if we letQ = (O,Y,)
then the observed and expected information measures ae gypAH[y; (0,Yy)]
andM[Y;(0,Y,)]. The jointinformation measures enable us to explore tlaiosl-
ship betweeM(Y;©) andM(Y;Y,) as given by the following result.

Theorem 1.Let V,Yz, - have distributions \f g, i = 1,2,--- which, giveno, are
conditionally independent, then

1. AH(y; @) = AHy; (0,Y,)];
2. M(Y;0) =MIY;(O.Y,)];
3. M(Y;Yy) < M(Y;0).

Proof of the theorem is given in Ebrahimi et al. (2010b). Fridart (1) of the
Theorem, we note that information provided by the (obsérsathple about the pa-
rameter, is the same as jointinformation about the pararaateprediction. Part (2)
of the theorem provides a broader interpretation of Lingl@yformation, namely
expected information provided by the data about the parmaetd for the predic-
tion. The inequality in (3) is the Bayesian version of theommfiation processing
inequality of information theory. As suggested by Ebrah@nal. (2010b), it may
be referred to as thBayesian data processing inequaliyapping the information
flow Y — @ —Y,. We note that parts (2) and (3) of Theorem 1 are due to the
decomposition:

MIY; (O,Y)] =M(Y;0)+.Z (Y;Yy|O) =M(Y;Yy) + .4 (Y;0Yy). (14)

An immediate implication of Theorem 1 is that the design maxingM(Y;©)
also maximizes sample information about the parameter aedigtion jointly.
However, such optimal design may not be optimal according(td;Y, ). Similarly,
the optimal design maximizingl(Y;Y, ) may not be optimal according M(Y; ©).

WhenY;, i =1,2,--- are not conditionally independent giventhe information
decomposition is given by

MIY:(0,Y,)] = M(Y:O) +.7(Y:Y,|0) > M(Y.;0) (15)



6 Nader Ebrahimi, Ehsan S. Soofi and Refik Soyer

where.Z (Y;Y,|6) > 0 is the measure of conditional dependence which reduces to
0 in the conditional independent case. For the conditigriEdpendent case we have

M(Y;Yv) <M(Y;0) <= Z(Y;0Yy) > #(Y;Y|O) (16)

We note that under strong conditional dependence the pireglicformationM(Y;Y,)
can dominaté(Y; ©) the parameter information.

4 Failures versus Survivals

In a probe of the common belief that observing failures ie liésting is always
more informative than survivals, Abel and Singpurwallag4Pposed the following
question:

During the conduct of the test, what would you rather obseavfailure or a survival?

The answer to the question has practical implications. kample, if a failure is

preferred for inference, then one may wait until a failurews or perhaps even

induce a failure through an accelerated environment. At &ingpurwalla showed

that the answer to the question depends on the inferenjettke of the life test.
The authors considered an observagieayg from the exponential model,

f(y|6) = 0~

and assumed a gamma prior #®mwith parametersr and3. They used Shannon
entropy for measuring observed information utility

H(®lyo) = —Eoyy,[109 (61yo)]

As the posterior distribution a® is gamma with(a + 1) and (3 + yo) for the case
of a failure atyp and witha and(f + yo) for the case of a survival g, they were
able to compare the gamma entropies.

The entropy of a gamma distribution with parameteandb is given by

Ha(a) —log(b),

where
Hc(a) =logr (a) — (a—1)y(a) +a.

Since the scale parameter is the same, the comparison d@ifilvefand the survival
implies that
He(a +1) > Hg(a). a7

Thus, for the failure rat® survival gives more information than failure.
However, if the objective is to make inference about the mgan1/0, then
the failure provides more information than the survivalvidg the gamma prior on
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O implies an inverse gamma priof® and it can be shown that in this case the
comparison gives
Hce(a+1) < Hg(a). (18)

It is important to note that the entropy is not invariant undansformations 0®
or the data. Thus, the comparison of information about amater depends on the
parameterization of the lifetime model.

As pointed out by Ebrahimi et al. (2013), findings by Abel andgpurwalla
raises some questions:

Is the exponential case a counter example due to the mes®pteperty ?
Can the result be generalized to other life models?

What could possibly explain the preference for failures?

What would you rather observe, a failure or a survival, fadiction of the life-
time of an untested item?

In order to address the above questions Ebrahimi et al. j2it3idered a more
general setup whei@, = (y1,---,Yn) andDy = (Y1, , Yk, Vi 15" - »Yn) denote the
data provided by the failure and survival scenarios with andy;'s representing
failure and survival times, respectively. The setup imgptieat the sufficient statistic
for parametei© is the same for both scenarios, thattigy) = tk(y). The corre-
sponding likelihood functions fa® are given by

n k n
f(DnIG)Dj]f(yile), f(DkIG)Dj]f(inG) [1 Svil6),

i=k+1

whereS(y|8) = P(Y > y|0) the survival function.
As before, we leQ denote the unknown quantity of interest such as a parameter
O, a function of the parameter such g4, or the lifetime of an untested itel)
with a distributionf(-). Using the Abel and Singpurwalla set up, the saniplds
said to be more informative thdd, aboutQ whenever

H(QIDn) < H(Q|Dy). (19)

The comparison is well-defined for improper priors ®ras long asf (q|Dn) and
f(q|Dk) are proper. With proper prior, the above is equivalent tootheerved infor-
mation criteria

AH(Dn; Q) = H(Q) —H(QIDn) > H(Q) —H(Q|Dx) = AH(Di; Q). (20)
Ebrahimi et al. (2013) considered the class of models wittigal function
_ — a0ty
Syl8) =P(Y >y|6) = : (21)
whereY = ¢(X), S(x|8) = e %, andg is an increasing function such that0) =
Oandg(e) = c0. Since the survival function of is exponential, the class of models

is referred to as the time-transformed exponential (TTE)jet®and is referred to
as theproportional hazardparameter; see Barlow and Hsiung (1983). Examples of
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lifetime models in the TTE family are given in Table 1. Thefsiént statistics for
the proportional hazard parameter under the two scenaedba same

) =taly) = 5 001

Using the conjugate gamma prior f@ with parametersx and 3, denoted as
G(a, ), the posterior distributions based on samples from modetss TTE fam-
ily under both scenarios are gamma

f(9|Ds) = G(a+ns,B+tn),nS: k,n

For the TTE family models, by the observed information ciitewe have:

1. For®
He(a +n) > He(a + k),

that is, survival is more informative than failure about fireportional hazard
paramete0,;
2. ForY/o
Hic(a +n) <Hic(a +Kk),

that is, failure is more informative than survival about iineerse parameter.

Table 1 Examples of Time Transformed Exponential Family

TTE model o(x)
Exponential X
Weibull xt/P

Linear Failure Rate%(a2 +bx)1/2
Pareto Type | agt

Pareto Type Il e—-1

Pareto Type IV (e—1)%?

Extreme Value logl +Xx)

As noted by Abel and Singpurwalla (1994), "The aim of lifetbeg is to better
predict the life lengths of untested items.” In view of thiEyrahimi et al. (2013)
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investigated if the failure is more informative than thewual to predict future life
lengths in the exponential model. Using the gamma (iar, 3) in the exponential
model the predictive distributions & will be Pareto. Thus, the posterior predictive
entropies are given by

H(Yv|ns,tn) = HP(a+ns) +|Og(B +tn)7 aaB 2 Oa Ns = kv n,

where 1
Hp(a) = o loga +1.

SinceHp is decreasingly ordered ly, we have
Hp(a +n) < Hp(a +k), k<n. (22)

In other words, for the exponential model, failure is morfeimative than survival
about prediction oY,,. Using the conjugate gamma prior f@r, the result holds for
most members of the TTE family for fixed values of other paremsa andb.

As shown by Ebrahimi et al. (2013), a more general result @aoliained in
comparing informativeness of failures and survivals alpetliction by ordering
entropies of predictive distributions. The important qutsifor the stochastic or-
dering of the predictive distributions is

n

A®)= ] A(i16), (23)

i=k+1

whereA (y|0) is the hazard (failure) rate functiondf The following result provides
a comparison of the entropies of predictive distributions.

Theorem 2.Given the definition of\ (©) in (23)

1. If the predictive density function\fy|Dn) is decreasing (increasing), therys
more (less) informative thanCabout the prediction ofY if and only if

COVI[S(yv|©), A(©)Dy] < 0.

2. If 6 orders the survival function(g|60), thenCOV [S(y,|©), A(©)|Dy] < O.

The termsS(y,|©) andA(©) are functions of® and their covariance is obtained
under the posterior distribution8|D).

It is important to note that the Theorem 2 enables us to coeniber entropies
of predictive distributions for many lifetime models witltoa need to specify any
prior distribution. The result is applicable to many of th€Ermodels. Also, all
decreasing failure rate (DFR) distributions have decrepdensity functions and
mixtures of DFR distributions are also DFR. Thus, if the motlg/|0) is DFR,
then the predictive density is also DFR, and the decreasindition in the result is
satisfied. For example, the result holds for DFR models ssétageto Type |, Pareto
Type Il, and Half-logistic, Weibull wittb < 1, gamma witha < 1, and generalized-
gamma withab < 1, but it is not limited to the DFR models. It also applies to
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the IFR models: linear failure rate, Extreme Value, and nsdéh non-monotone
failure rates such as Half-Cauchy. Table 2 gives some exeswghered orders the
survival function. When the conditions of the Theorem 2 dohmd, one can do
the comparison directly by computing entropy of predictimaer both scenarios.

Table 2 Examples where Survival (S) or Failure (F) is more Informfor Prediction

Model (More informative) Density and Support
Half-normal (F) f(y|0) = %e—g ,y>0
2 v\

- == — e >
Half-Cauchy (F) f(y|0) — (1+ 92> ,y>0
Half-logistic (F) fyl) = 0% 0

alf-logistic =~ y>
g y (1+e79y)2 y
62 140
< = — @ lg % >
Gammaa<1) (F) f(yla,0) @ e y>0
i b6% ap-1 —0yP
Generalized gamm@b < 1) (F) f(y|a,b,0) = wy"" eV y>0
. - >0,6<0
Generalized Paret@ > 0,,0 # 1) B gy\ /01 y=9,
9<1(F)6>1(S) ]f(yw)—a(l—; 7 gixéﬁa/e,
Power @ <1,F) (0 >1,S) f(yg) =0yt 0<y<1
Beta@ <1,S) 0 >1,F) fyl0)=0(1-y) 1 o<y<1

Ebrahimi et al. (2013) considered expected sample infoomais an alternative
criterion to the observed information for a plausible exjlé#on for the perception
that failures are more informative. The expected infororatvas measured by the
conditional entropy?#’(Q|Ds) given by

H#(QD) =EH(QDY} = [ HQDOfy)dy, k=0.1-.n,  (24)

whereEy denotes averaging with respectftdy). Using the conditional entropy cri-
teria and the conjugate gamma prior @ythe authors showed that for all members
of the TTE family, failure is more informative than survivatbout prediction of a
new lifetimeY,, the proportional hazard parame®@y and its inverse @. Further-
more, they showed that unlike the observed information oreaksby—H (©|Dy),
the expected information measured by?’(©|Dy) is increasing in the number of
failuresk.
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This result may be interpreted as, on average, observiniduaeféas more infor-
mative than observing a survival. As noted by Kruskal (1981hking in terms of
averages is a tradition in statistics, and this providesagible explanation for the
perception that failures are more informative.

5 Reliability Importance of System Components

Birnbaum (1969) defined reliability importance of a compatridor coherent sys-
tems as F )

t

1B(t) = —2L, 25

whereF(t) is the system reliability andFi(t) is the componenits reliability at
timet. Barlow and Proschan (1975) introduced another measusdative reliabil-
ity importance as the conditional probability that the eyst failure is caused by
component’s failure. It can be shown that

190 = [ 1B aR()t (26)

whereF; (t) is the distribution function for lifetime of componenands; 18P(t) =
1. Alternative measures of reliability importance weregoeed by Natvig (1979),
Natvig (1985), and Armstrong (1995). More recent resuléesgiven in Natvig and
Gsemyr (2009). All these measures are in terms of contdbuif a component to
the reliability of the system.

Ebrahimi et al. (2014) noted that reliability importancendae interpreted in
terms of how knowledge of status of a component changes cawlkdge of the
system. In other words, their interpretation is in terms dick component’s sta-
tus knowledge matters most in reducing our uncertainty bbygatems’ status. The
authors suggested an alternative notion of component itapoe in terms of infor-
mation measures.

Consider a system that consists ottomponentsC,,--- ,C, that collectively
determine a random variable of intere3tfor the system. LelQ; be the cor-
responding random variable associated wWithi = 1,--- .n. More formally, let
Qi = Qi(C),Q = (Q1---Qn) and define theystem structure functicas

Q=0¢(Q),p:0"— 0. (27)

We note tha); can be the indicator variable of the state (failure/sutyivathe life
length of a component ar@ is the respective random variable for the system.
The information notion of importance maps the expectedtytif the compo-
nent variable; for prediction of the system variab@ in terms of the dependence
implied by the joint distributior (g, qi). More specifically, it is defined as follows.
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Definition 1. The importance of compone& is defined by the expected infor-
mation utility of C; for the system measured by the mutual informatib(@; Q),
provided thaf (g, gi) < Fy(q)Fi(gi). ComponenC; is more important than the com-
poneniC; for the system if and only iM(Q; Qi) > M(Q; Q;).

Under the information notion of importance compon€nis more important
than the compone; for the system if and only if

M(Q Q) =M(QQj) < J(QQ) =7 (QQj), (28)

where.# (Q|Qi) = —2(Q|Q;) is the conditional information.

LetTy,---, T, denote independent random variables representing thietifghs
of component&,,---,C, and T denote the life length of the system. The survival
of system is defined as the survival up to a mission timgVe define the binary
variables for the states of the component and system as

Qi(G) =X(1)=1(0), if Ti>1 (Ti<T)

and
Q=X(1) = @(X4(1),..., % (1)) = 1(0), if T>71 (T<71),

whereg: {0,1}" — {0,1}.

The marginal distributions of; (1) and the conditional distribution &€(1) given
X (1) = % are Bernoulli with parametens = p;(7) = Fi(T) and pyx = Pyx (T) =
P(X(1) = x|Xi(T) = %) fori = 1,...n, respectively. For each mission tinte we
obtain the conditional informatios [(X(T)|Xi(T)] as

XX ()] = pi(DHX(T) X (1) = 1+ (1= pi(T)THX(A)Xi(t) = 0] (29)

Note that this measure ranks the importance of componengsficed mission time
T.

The following result by Ebrahimi et al. provides a orderirfglte components
for three types of systems at a fixed time paipt 7.

Theorem 3.Consider a system with n independent components such tXat=P
H=p,i=1--,n.

1. If the system is series, then the compongiig Gore important than the compo-
nentG, for pj < pi, i,j=1,---,n.

2. If the system is parallel, then the componepigdnore important than the com-
ponent@, for p; > pi, i,j=1,---,n.

3. If the system is k-out-of n and for any |,{B(i>(x(r)) > k} = pi(k) > > i —
1,---,n, then the component@ more important than the component C
where

SHV =S Ve A ={L-,i-Li+1-,n}
ke

for a vectorv = (vi,---,Vpn).
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The information measure (28) orders the components in tne say as the reli-
ability importance index of Birnbaum (1969). The infornwettianalog of Barlow and
Proschan’s (1975) measure of component’s importance sxqbected mutual infor-

mationk; {M (X(r),xi (r))} where the expected value is with respect to the distri-

bution ofT;. Thus, we can order the components by evaluaﬁrﬁgf (X(r) 1% (r))}
As shown in Ebrahimi et al. (2014), stochastic orderingfeftimes of the com-

st st
ponentsT; < ... < T, is sufficient for Theorem 3 to hold. The next example illustra
tions the implementation of the Theorem.

Example

Consider a system of two components with independentrifesi

1. Bernoulli Distributions

We can obtain the conditional information measures for #rges and parallel
systems as

7 (X@X(D) = pO1Xi(0) and 7 (X(@)X(1)) = (2= (D)X (1),

respectively. ThusZ; is more (less) important for a series system than for a par-
allel system whenevar> (<) median lifetime.

2. Proportional Hazard Distributions

Suppose that the components’ lifetimég,i = 1,2, have proportional hazard
(PH) distributions

R(T)=[Fo(1)]%, >0, 6 >0.

t
For 81 > 6>, we haveTy % T,. Thus for any mission time, p1(7) < pz(7) and
by Theorem I, is more (less) important thady for the series (parallel) system.

3. TTE Family of Distributions

Suppose that the components’ lifetimgsi = 1,2, having TTE family of dis-
tributions as defined in Section 4. Note that the TTE modelP$Hamodel and

therefore we can conclude that f6r > 6,, T; < < T,. Thus, for any mission time
T, p1(T) < p2(7) andC; is more (less) important thay for the series (parallel)
system.

The information based analog of Barlow-Proschan impogamdex can also be
computed for TTE models. It can be shown tE#J( )X (t ))] for the series

and parallel systems are functionstof g decreasing (increasing) fér< (>)1.
j
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The notion of information importance is also applicable éonponent and sys-
tem lifetimes as continuous random variables. As shown nal&mi et al. (2014), it
is possible to develop results for convolutions and ordsistics. For convolutions,
results in entropy ordering can be used to obtain compongmbitance ordering.
Considering parallel and series systems with continudesrties, the system life-
time being order statistics leads to singular distribugionhere the mutual infor-
mation is not well-defined. In order to alleviate this prahlea modification of the
information importance index was used by the authors.

Ebrahimi et al. (2014) also considered an entropy-basearitapce measure
using the Maximal Data Information Prior (MDIP) criteriomgposed by Zellner
(1977). The MDIP criterion which was originally proposed fiteveloping priors
for Bayesian inference, provides the same importance imglef the components
as the mutual information.

6 Concluding Remarks

Information measures play an important role in Bayesiaraéity analysis. In
this paper our focus was on Bayesian information measuréslure data analy-
sis, prediction, assessment of reliability importance @piimal design of life tests.
Other uses of these measures include failure model setddli@zzuchi et al. (2000,
2008)], characterization of univariate and multivariatiéure models and character-
ization of dependence for system reliability [Ebrahimike{2008)].

Computation of information functions can be quite chaliegdn many applica-
tions but decomposition type results given in Ebrahimi e{2008) can be helpful
for certain problems. Parametric and nonparametric Bapesstimation of infor-
mation functions and related indices [see Dadpay et al. {gQre required for
multivariate life models. Recent advances in Bayesian adim@, especially, those
in efficient Markov chain Monte Carlo methods can be exptbitemany cases.
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