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Abstract

In this paper we present an overview of the state of the art in Kalman filtering
and dynamic Bayesian linear and nonlinear models. We present some of the

basic results including the derivation of Kalman filtering equations as well as

recent advances in Kalman filter models and their extensions including non-
Gaussian state-space models. In so doing, we take a Bayesian perspective

and discuss parameter learning in state-space models which typically involves

Markov chain Monte Carlo and sequential Monte Carlo methods. We present
particle filtering and Bayesian particle learning techniques for state space mod-

els and discuss recent advances.

Introduction and Overview

In his keynote speech to the 1985 American Control Conference, Arthur Gelb men-

tioned that during the 1960-1984 period about 3000 papers had been published on

Kalman filtering; see Gelb (1986). Today, a search in Google with keyword ”Kalman

filter” gives about 3,370,000 hits and the search in Google Scholar returns more than

735,000 articles and books on the Kalman filter. Since the publication of the origi-

nal paper of Kalman (1960) and Kalman and Bucy (1961) which primarily focused on

problems in control and communication engineering, Kalman filtering and the associ-

ated state space models have found applications in many diverse areas. These include

industrial applications in different branches of engineering [Auger et al. (2013)], ap-

plications in medical sciences and medical imaging [Artemiev et al. (2001) and Prado,

West and Krystal (2001)], in meteorology [Gauthier, Courtier, and Moll (1993)] and

oceanography [Evensen (1992) and Bertino, Evensen, and Wackernage (2003)] as well

as applications in economics and finance as in Schneider (1988), Babbs and Nowman

(1999), and Johannes, Korteweg, and Polson (2014).

Applications in oceanography have contributed to ensemble Kalman filter, see Evensen

(1992) for a review. Interest in real time forecasting and volatility modeling in financial

econometrics contributed to novel applications of Kalman filtering as well as to new
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methodology development; see Lopes and Tsay (2011) and Lopes and Polson (2015).

Most of this work is related to dynamic linear models and Bayesian forecasting in the

sense of Pole, West and Harrison (1994) and West and Harrison (1997). A more recent

discussion on these can be found in Smith and Freeman (2011).

There are several reviews of Kalman filtering and the state-space models. An excellent

compilation of earlier work is the edited volume by Sorenson (1985) which includes

the original papers by Kalman (1960) and Kalman and Bucy (1961) as well as the

historical overview paper by Sorenson (1970). A more technical review of the earlier

work on linear filtering is given by Kailath (1974). More recent reviews can be found

in Chen (2003) which focuses on technical aspects and in Singpurwalla, Polson and

Soyer (2018) which provides a more historical perspective on filtering.

In this review, we will focus on issues that are of interest to statisticians and applied

probabilists in general and emphasize computational aspects of Kalman filtering as

well. In so doing, we first introduce the Gaussian Kalman filter model and present

a Bayesian derivation of Kalman filtering. Forecast distributions as well as smooth-

ing results are also discussed. We next focus on extensions of the ordinary Kalman

filter model including variance learning in state-space models, Bayesian analysis of

state space models using Markov chain Monte Carlo methods, and Kalman filter with

Student t-errors. This will be followed by a discussion of recent advances in non-

Gaussian state space models and their Bayesian analysis. Use of linear Bayesian meth-

ods and Markov chain Monte Carlo techniques are considered. The final section of

our overview considers use of particle filtering methods and Bayesian particle learning

for static parameters in state space models. The overview ends with some concluding

remarks.

Ordinary Kalman Filter Model

We consider the discrete time version of the state space model of Kalman (1960). More

specifically, we let Yt denote the measurement vector (or scalar) at discrete time point

t, and let θt be the state vector (or scalar) at time t. Then the observation (or the

measurement) equation of the state-space model is given by

Yt = Ftθt + vt, (1)

where Ft is a known quantity which is sometimes referred to as the design matrix

and vt is the zero-mean observation (or measurement) error with specified variance-

covariance matrix Vt. The state vector θt follows a Markovian evolution as implied by

the state (or system) equation

θt = Gtθt−1 + wt, (2)

where Gt is a known evolution (or transition) matrix and wt is the zero-mean state

(or system) error with specified variance-covariance matrix Wt. Both vt and wt are

assumed to be white noise processes and furthermore vt’s and wt’s are assumed to
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be uncorrelated with each other. The latter assumption can be relaxed without much

difficulty, see Shumway and Stoffer (2011, p. 354).

As pointed out by Meinhold and Singpurwalla (1983), (Ft, Gt, Vt,Wt), the known

components of the model, may or may not change over time. We will refer to the

model defined by (1) and (2) as the ordinary Kalman filter (OKF) model. The Kalman

filter estimation involves obtaining the estimator of the conditional mean of the state

vector θt given observations Dt = (Y1, Y2, . . . , Yt) available at time t. We denote the

conditional mean by mt, that is, E[θt|Dt] = mt. Without any distributional assump-

tions on vt’s and wt’s the estimator of mt can be obtained as the best linear minimum

mean square error estimator as done in Kalman (1960). Kalman’s derivation of the

state estimator of mt involves using the projection theorem; see Shumway and Stoffer

(2011, pp. 528). An alternative approach involving stochastic differential equations

was considered by Wegman (1982).

As noted by Harrison and Stevens (1976), the OKF model given by (1) and (2) can

be used to describe many well known linear models such as the dynamic regression

models of Cooley and Prescott (1973) and nonhomogeneous autoregressive processes

of Anderson (1978). Once the observation and state error distributions are specified as

Gaussian, it can be shown that the Kalman filter equations can be obtained by using

standard Bayesian prior to posterior updates as discussed in Meinhold and Singpur-

walla (1983) as well as originally pointed out by Harrison and Stevens (1978).

In what follows, we will look at the OKF and its extensions from a Bayesian perspective

and present recent advances in sequential Bayesian analysis. We start our discussion

with the Bayesian analysis of the OKF model.

Bayesian Derivation of the Kalman Filter Results

We consider the OKF model with observation and state equations, (1) and (2), respec-

tively. We assume that both the observation and state errors are normally distributed as

vt ∼ N (0, Vt) and wt ∼ N (0,Wt).

If we assume that at time t − 1, given Dt−1, the state vector θt−1 has a normal distri-

bution with mean mt−1 and covariance matrix Ct−1, denoted as

θt−1|Dt−1 ∼ N (mt−1, Ct−1), (3)

then via the state equation (2) we can obtain

θt|Dt−1 ∼ N (Gtmt−1, Rt), (4)

whereRt = GtCt−1G
′

t+Wt. Note that using the observation equation, the conditional

distribution of Yt can be written as

Yt|θt ∼ N (Ftθt, Vt). (5)

Prior to observing Yt, we can obtain the one-step ahead forecast (or predictive) distri-

bution of Yt as

Yt|Dt−1 ∼ N (FtGtmt−1, Qt), (6)
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where Qt = FtRtF
′

t + Vt.

Given the above set up, the posterior distribution of state vector θt can be obtained by

using the fact that the joint distribution of Yt and θt given Dt−1 is Gaussian as done

by Meinhold and Singpurwalla (1983). Using standard multivariate normal distribution

results [see for example, Anderson (1984)], the posterior distribution of the state vector

is given by a Gaussian form as

θt|Dt ∼ N (mt, Ct), (7)

where Dt = (Yt, Dt−1),

mt = Gtmt−1 +RtF
′

tQ
−1
t (Yt − FtGtmt−1), (8)

and

Ct = Rt −RtF
′

tQ
−1
t FtRt. (9)

Alternatively, the above posterior distribution results can be derived by using the Bayes’

law as

p(θt|Dt) ∝ p(Yt|θt)p(θt|Dt−1) (10)

where the right-hand side terms are given by the the likelihood (5) and the prior (4); see

West and Harrison (1997, pages 104-105) for details. Initial distribution of the OKF

model is specified at time 0 as θ0|D0 ∼ N (m0, C0).

The equations (8) and (9) are the Kalman filtering results obtained via the best lin-

ear mean square error argument of Kalman (1960). It is important to note that the

Kalman filtering results naturally arise as a result of using calculus of probability in the

Bayesian paradigm. The posterior distribution of the state vector at time t given by (7)

is usually referred to as the filtering distribution.

The posterior mean (8) of this distribution can be rewritten as

mt = at +RtF
′

tQ
−1
t et, (11)

where at = Gtmt−1 is the prior mean of state vector θt at time t − 1 and et =
(Yt − Ftat) is the one-step ahead forecast error after Yt is observed at time t. The

multiplier RtF
′

tQ
−1
t of et in (11) is referred to as the Kalman gain matrix. As pointed

out by Meinhold and Singpurwalla (1983), Kalman filtering provides an updating of

the state vector θt by first forming a prior guess and then revising this guess by adding

a correction term based on the one-step ahead forecast error. It is important to note that

as a result of the Gaussian assumption on the error terms, the posterior variance Ct in

(9) is not affected by data. Thus, if (Ft, Gt, Vt,Wt) are known quantities for any time

period, then Ct will be known for all t.

Smoothing and Forecasting in the OKF Model

Smoothing Distributions

The filtering distribution (7) describes uncertainty about state vector θt based on ob-

served data at time t. Uncertainty about state vectors for periods (t− 1), (t− 2), . . . , 1

4



can also be revised at time t to obtain the smoothing distributions p(θt−k|Dt) for k > 1.

This type of retrospective analysis is sometimes referred to as backward filtering; see

for example Pole et al. (1994).

For k = 1 the smoothing distribution p(θt−1|Dt) is given by

p(θt−1|Dt) =

∫

p(θt−1|θt, Dt)p(θt|Dt) dθt, (12)

where p(θt−1|θt, Dt) = p(θt−1|θt, Dt−1) can be obtained via Bayes law as

(θt−1|θt, Dt−1) ∼ N (ht−1, Ht−1), (13)

where

ht−1 = mt−1 + Ct−1G
′

tR
−1
t (θt −Gtmt−1), (14)

Ht−1 = Ct−1 − Ct−1G
′

tR
−1
t GtCt−1. (15)

Using (12) we can obtain the smoothing distribution of θt−1 as

(θt−1|Dt) ∼ N [at(−1), Rt(−1)], (16)

where, following notation of Pole et al. (1994),

at(−1) = mt−1 −Bt−1(at −mt),

Rt(−1) = Ct−1 −Bt−1(Rt − Ct)B
′

t−1,

and Bt = CtG
′

t+1R
−1
t+1.

As shown by West and Harrison (1997), smoothing distributions for any period (t −
k), k < t can be obtained as

(θt−k|Dt) ∼ N [at(−k), Rt(−k)], (17)

where the mean vector and covariance matrix are given by

at(−k) = mt−k −Bt−k[at−k+1 − at(−k + 1)], (18)

Rt(−k) = Ct−k −Bt−k[Rt−k+1 −Rt(−k + 1)]B′

t−k, (19)

respectively, and at(0) = mt and Rt(0) = Ct.

Forecasting Distributions

At time t, given Dt, k-step ahead forecasts for observables and the state vectors can be

obtained if (Ft+k, Gt+k, Vt+k,Wt+k) are known quantities. For example, at time t the

one step ahead forecast distribution of Yt+1 can be easily obtained using (6) as

Yt+1|Dt ∼ N (Ft+1Gt+1mt, Qt+1),
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where Qt+1 = Ft+1RtF
′

t+1 + Vt+1.

For the general case, we can use the observation and state equations

Yt+k = Ft+kθt+k + vt+k,

θt+k = Gt+kθt+k−1 + wt+k

for time period (t + k). Given Dt we can show that the forecast distribution of state

vector θt+k is

θt+k|Dt ∼ N [at(k), Rt(k)] (20)

where

at(k) = Gt+kat(k − 1)

and

Rt(k) = Gt+1Rt(k − 1)G′

t+1 +Wt+k

with at(0) = mt and Rt(0) = Ct as before.

It follows from the observation equation that

Yt+k|Dt ∼ N [Ft+kat(k), Qt(k)], (21)

where Qt(k) = Ft+kRt(k)Ft+1 + Vt+k. We refer to (21) as the k-step ahead forecast

distribution of the OKF. Additional details about smoothing and forecasting can be

found in West and Harrison (1997).

Extensions of the Ordinary Kalman Filter Model

In this section, we consider extensions of the OKF model with observation and state

equations (1) and (2). These include extensions such as variance learning and estima-

tion of other components of the OKF model as well as Student t-distributed observation

and state errors.

Bayesian Parameter Learning in the OKF Model

The OKF model and the associated results presented in the last section are based on

the assumption that (Ft, Gt, Vt,Wt) are known quantities. Earlier Bayesian work on

the estimation dates back to work of Magill (1965) who considered discrete priors for

the unknown components of the OKF model. Other work involved use of multiprocess

models as in Smith and West (1983) and approximate Bayesian methods as in Singpur-

walla and Soyer (1992) who used Laplace type approximations of Lindley (1980) and

Tierney and Kadane (1986) in estimation.

Since the design matrix Ft can be specified in many commonly used dynamic models,

most of the Bayesian literature focused on estimation of the observation and state co-

variance matrices Vt, and Wt; see for example, the earlier work by West (1981) who

used conjugate priors for observation covariance matrix. West, Harrison and Migon

(1985) proposed the concept of ”discount matrix” for specification of the state covari-

ance matrix Wt.
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Variance Learning in the OKF

Following West and Harrison (1997) we consider the case where the observation co-

variance matrix is given by V ∗

t /φ whereV ∗

t is the specified covariance matrix scaled by

unknown precision scalar φ. Following their development we also scale the state co-

variance similary as W ∗

t /φ whereW ∗

t is specified and assume that at t = 0, uncertainty

about φ is specified by a gamma prior denoted as φ|D0 ∼ G(r0/2, d0/2). We also spec-

ify the prior for state vector θ0 at t = 0 as

(θ0|D0, φ) ∼ N (m0, C
∗

0/φ).

Assuming that we have (θt−1|Dt−1, φ) ∼ N (mt−1, C
∗

t−1/φ) at time t − 1, we can

obtain

(θt|Dt−1, φ) ∼ N (at, R
∗

t /φ),

where R∗

t = GtC
∗

t−1G
′

t +W ∗

t . The forecast distribution for Yt can also be obtained as

(Yt|Dt−1, φ) ∼ N (Ftat, Q
∗

t /φ),

where Q∗

t = FtR
∗

tF
′

t + V ∗

t . As before using multivariate normal distribution theory

we can obtain the conditional posterior distribution as

(θt|Dt, φ) ∼ N (mt, C
∗

t /φ), (22)

where

mt = at +R∗

tF
′

t (Q
∗

t )
−1(Yt − Ftat), (23)

and

C∗

t = R∗

t −R∗

tF
′

t (Q
∗

t )
−1FtR

∗

t . (24)

The posterior distribution of φ can be updated as a gamma distribution,

(φ|Dt) ∼ G(rt/2, dt/2), (25)

where rt = rt−1 + 1 and

dt = dt−1 + (Yt − Ftat)
′(Q∗

t )
−1(Yt − Ftat).

The unconditional distribution of θt can be obtained as

p(θt|Dt) =

∫

p(θt|Dt, φ) p(φ|Dt)dφ

giving a Student-t density with rt degrees of freedom

(θt|Dt) ∼ Tp,rt(mt, C
∗

t dt/rt), (26)

where dt/rt can be considered as a posterior point estimate of 1/φ. Similarly

(θt|Dt−1) ∼ Tp,rt−1(at, R
∗

t dt−1/rt−1) (27)
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and

(Yt|Dt−1) ∼ Tm,rt−1(Ftat, Q
∗

tdt−1/rt−1). (28)

West and Harrison (1997) propose to specify W ∗

t using the concept discounting. More

specifically, in R∗

t = GtC
∗

t−1G
′

t+W ∗

t , W ∗

t represents the additional uncertainty in the

state vector going from time (t− 1) to t, that is, the addition of wt to the state equation

represents increase in uncertainty about the state vector. This is easier to see when Gt

is an identity matrix, that is, when R∗

t = C∗

t−1 + W ∗

t . In this case W ∗

t represents

increase in uncertainty from time (t − 1) to t as reflected by the difference of R∗

t and

C∗

t−1. If we can specify this increase in uncertainty then we can specify the state noise

matrix. More specifically, if R∗

t = C∗

t−1/δ,where 0 < δ ≤ 1, then this implies that

W ∗

t = C∗

t−1(
1 − δ

δ
) (29)

and the increase in uncertainty is λ = (1−δ
δ )% .

Bayesian Learning via MCMC Methods

Bayesian methods presented in the last section are quite limited since analytical tractabil-

ity of the posterior and forecast distributions cannot be maintained except in few cases.

An alternative approach is use of Monte Carlo methods and more specifically MCMC

methods that allow us to draw samples from the posterior distributions when analytical

forms are not available; see for example, Gelfand and Smith (1990).

In what follows, we consider the OKF model with static observation and state covari-

ance matrices, that is, we assume Vt = V and Wt = W for all t in (1) and (2). For

both covariance matrices V and W we will consider independent inverse Wishart pri-

ors. More specifically, for the m × m precision matrix Φv = V −1 for observation

errors, we assume a Wishart distribution

p(Φv) ∝ |Φv|
(rv−m−1)/2exp

[

−
1

2
tr
{

ΣvΦv

}]

(30)

where scale matrix Σv and degrees of freedom rv > m are known quantities and

tr{} denotes the trace of the matrix. We denote the Wishart distribution (30) as

(Φv|Σv, rv) ∼ Wish(Σv, rv). Similary, for the p × p precision matrix Φw = W−1

for state errors, we assume a Wishart distribution (Φw|Σw, rw) ∼ Wish(Σw, rw) with

scale Σw and degrees of freedom rw > p.

Given data DT at time T , we are interested in the joint posterior distribution of all

unknown quantities, that is, p(ΘT ,Φv,Φw|DT ), where ΘT = (θ1, θ2, . . . , θT ). Since

the distribution is not analytically available, we can use a Gibbs sampler to draw sam-

ples from the joint posterior. The Gibbs sampler requires drawing samples iteratively

from full conditional posterior distributions of the unknown quantities. As discussed

by Reis, Salazar and Gamerman (2006), there are alternative strategies in drawing from

the full conditionals. One can draw θt’s individually by using full conditionals

p(θt|DT ,Θ
(−t)
T ,Φv,Φw) ∝ p(Yt|θt,Φv)p(θt|θt−1,Φw)p(θt+1|θt,Φw)

8



whereΘ
(−t)
T = {θs|s 6= t}. This can be achieved quite easily since p(θt|DT ,Θ

(−t)
T ,Φv,Φw)

is a normal distribution and the full conditionals p(Φv|DT ,Φw,ΘT ) and p(Φw|DT ,Φv,ΘT )
are available as Wishart distributions. As noted by Reis et al. (2006) due to the corre-

lation between θt’s this strategy my turn out inefficient. The alternative is to draw the

elements of ΘT jointly. We can use the forward filtering backward sampling (FFBS)

algorithm of Fruhwirth-Schnatter (1994) and Carter and Kohn (1994) to draw from

p(ΘT |DT ,Φv,Φw).

Using the Markov structure of the OKF model we can write p(ΘT |DT ,Φv,Φw) as

p(θT |DT ,Φv,Φw) p(θT−1|θT , DT−1,Φv,Φw) · · · · · · p(θ1|θ2, D1,Φv,Φw), (31)

where the first term p(θT |DT ,Φv,Φw) is available from standard OKF updating. We

can start the sampling from θT and then sequentially sample θT−1, . . ., θ1 using den-

sities p(θt−1|θt, Dt−1,Φv,Φw) for t = T − 1, . . . , 2. The required distributions are

given by the smoothing results given by (13), (14), and (15) which are all conditional

on precision matrices Φv and Φw.

The full conditional p(Φv|DT ,Φw,ΘT ) can be obtained as proportional to

|Φv|
(rv+T−m−1)/2exp

[

−
1

2
tr
{(

Σv +

T
∑

t=1

(Yt − Ftθt)(Yt − Ftθt)
′

)

Φv

}]

(32)

which is again a Wishart density with degrees of freedom, (rv + T ), and scale matrix

(

Σv +

T
∑

t=1

(Yt − Ftθt)(Yt − Ftθt)
′

)

.

Similarly, the full conditional p(Φw|DT ,Φv,ΘT ) is given by

|Φw|
(rw+T−p−1)/2exp

[

−
1

2
tr
{(

Σw +

T
∑

t=1

(θt−Gtθt−1)(θt−Gtθt−1)
′

)

Φw

}]

(33)

which is again a Wishart density with degrees of freedom (rw + T ), and scale matrix
(

Σw +
∑T

t=1(θt −Gtθt−1)(θt −Gtθt−1)
′

)

.

Since, one can directly draw samples from the full conditionals (31), (32) and (33),

implementation of the Gibbs sampler is quite straightforward.

Alternative MCMC approaches include blocking strategies of Gamerman and Moreira

(2002) and reparameterization idea of Gamerman (1998) which was implemented for

Bayesian analysis of dynamic generalized linear models. An empirical comparison of

different MCMC strategies for dynamic linear models and discussion of computational

issues can be found in Reis et al. (2006).

It is important to note that the Gibbs sampler will provide us draws from the smoothing

distributions of θt, t = 1, . . . , T − 1, at time T . To be able to obtain samples from the

filtering distributions θt’s, one needs to rerun the Gibbs sampler at each time period t.
This undesirable feature of the Gibbs sampler and other MCMC methods motivated the

development of sequential Monte Carlo methods such as particle filtering; see Gordon,

Salmond, and Smith (1993), Liu and Chen (1998) and Pitt and Shephard (1999).
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Kalman Filter with Student t-Errors

As previously mentioned, the OKF model with Gaussian errors provides the Gaussian

filtering distribution (7) for the state vector where the mean mt depends on the ob-

served data Dt, but the variance Ct does not. Furthermore, as pointed out by Meinhold

and Singpurwalla (1989), the posterior mean (8) is an ”unbounded function” of the

forecast error et implying a nonrobust model. These characteristics of the Gaussian

OKF model have resulted in efforts for robustifying the model by using alternative

error distributions as in West (1981) and Meinhold and Singpurwalla (1989).

In the OKF model of (1) and (2), we assume that Yt is a m × 1 observation vector

and the state vector θt has dimension p × 1. Thus, Ft and Gt are m × p and p × p
matrices, respectively. An alternative to the Gaussian OKF model is a Kalman filter

model with both the observation and state error vectors having Student t-distributions.

More specifically, we assume that the observation error vector vt has an m-dimensional

t distribution with degrees of freedom r, mean vector 0 and m × m scale-matrix Vt

denoted as

vt ∼ Tm,r(0, Vt). (34)

Similarly, the state error vector wt is assumed to have a p-dimensional Student t-

distribution with r degrees of freedom, mean vector 0 and p × p scale-matrix Wt

denoted as

wt ∼ Tp,r(0,Wt). (35)

Following Meinhold and Singpurwalla (1989), at time t − 1, given Dt−1, we assume

a p-dimensional Student t-distribution with degrees of freedom r + (t − 1)m, mean

mt−1 and scale matrix Ct−1 denoted as

θt−1|Dt−1 ∼ Tp,r+(t−1)m(mt−1, Ct−1).

Using properties of multivariate Student t-distribution [see for example, Anderson

(1984)] and the state equation (2), it can be shown that the prior of state vector θt
at time t− 1 is given by the p-dimensional Student t distribution

θt|Dt−1 ∼ Tp,r+(t−1)m(Gtmt−1, c(Dt−1)Rt), (36)

where c(Dt−1) is a function of the observed data at time t − 1 as will be discussed

in the sequel. It was shown in Meinhold and Singpurwalla (1989), that the posterior

distribution of θt at time t is obtained as a Student t with r+ tm degrees of freedom as

θt|Dt ∼ Tp,r+tm(mt, Ct), (37)

where

mt = Gtmt−1 +RtF
′

tQ
−1
t (Yt − FtGtmt−1),

and

Ct = c(Dt)(Rt −RtF
′

tQ
−1
t FtRt). (38)
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Note that the posterior mean is identical to the one from the Gaussian OKF model.

However, the scale matrix of θt is different and it is a function of data through the

c(Dt) term given by

c(Dt) =
r +

∑t
s=1(Ys − fs)

′Q−1
s (Ys − fs)

(r + tm)
(39)

where ft = FtGtmt−1. Thus, the posterior covariance matrix of θt which is propor-

tional to scale matrix Ct is increasing quadratically in forecast error et. This behavior

is referred to as outlier confusion by Meinhold and Singpurwalla (1989).

Non-Gaussian State-space Models

Extension of state space models to non-Gaussian observation models has been given

considerable attention in the literature during the last three decades. A generalization

of univariate Gaussian OKF model was introduced in West, Harrison and Migon (1985)

by assuming that the observations were generated from an exponential family of dis-

tributions. The authors used standard link functions of general linear models (GLMs)

where the regression coefficients were assumed to follow a state equation as in the

OKF model. The resulting models were referred to as dynamic general linear models

(DGLMs). State vector updates in the DGLM set up were obtained only for the first

and second moments using linear Bayesian methods of Hartigan (1969). Miller and

Smith (1986) introduced non-Gaussian state space models using results from Bather

(1965). Harvey and Fernandes (1989) considered related dynamic models for time-

series of counts. Most of these work prior to 1990s emphasized analytical tractability

for posterior distributions. Following the development of MCMC methods, a Bayesian

analysis of DGLMs was presented in Gamerman (1998). In what follows, we present

two examples of non-Gaussian state space models.

Poisson State Space Models

In a recent paper, Soyer, Aktekin and Kim (2015) considered time-series of count data.

Such type of data can arise in numerous fields such as engineering, business, eco-

nomics or epidemiology. For instance, observations under study can be the number of

arrivals to a call center during every five minutes [Aktekin and Soyer (2011)], number

of shopping trips of households in a week [Aktekin, Polson and Soyer (2018)], number

of mortgages defaulted from a particular pool in a given month [see Aktekin, Soyer

and Xu (2013)], number of accidents in a given time interval [Serhiyenko et al. (2014)]

or the number of deaths from a specific disease in a given year [Schmidt and Pereira

(2011)].

Let Nt be the number of occurrences of an event during time interval t, where t =
1, 2, . . ., and let θt be the corresponding latent Poisson rate during the same time. Fol-

lowing Soyer et al. (2015) the number of occurrences during period t is described by

11



the Poisson model

p(Nt|θt) =
θNt

t e−θt

Nt!
. (40)

We refer to (40) as the observation equation of the Poisson state space model and

assume that Nts are conditionally independent given θts. Time evolution of θts is

assumed to follow a Markovian model given by

θt =
θt−1

γ
ǫt, (41)

where (ǫt|Dt−1) ∼ Beta[γαt−1, (1−γ)αt−1] with αt−1 > 0, 0 < γ < 1, and Dt−1 =
{N1, · · · , Nt−1}. We refer to (41) as the state equation of the Poisson state space

model where γ acts like a discount term. It follows from (41) that θt <
θt−1

γ and the

conditional distributions of consecutive rates are all scaled Beta densities,

p(θt|θt−1, Dt−1) =
Γ(αt−1)

Γ(γαt−1)Γ({1− γ}αt−1)

( γ

θt−1

)αt−1−1

θ
γαt−1−1
t

(θt−1

γ
−θt

)(1−γ)αt−1−1

(42)

denoted as (θt|θt−1, Dt−1) ∼ Beta[γαt−1, (1−γ)αt−1; (0,
θt−1

γ )]. The state equation

(41) also implies that E(θt|θt−1, Dt−1) = θt−1, in other words a random walk type of

evolution in the expectation of the Poisson rates.

Based on the measurement and state equations, if we assume that at time 0, (θ0|D0) is

a gamma distribution as

(θ0|D0) ∼ G(α0, β0), (43)

then it is possible to develop an analytically tractable sequential updating for the model.

Given the inductive hypothesis

(θt−1|Dt−1) ∼ G(αt−1, βt−1), (44)

using (42) and (44), we can obtain the distribution of θt given Dt−1 as

(θt|Dt−1) ∼ G(γαt−1, γβt−1). (45)

It follows from the above that E(θt|Dt−1) = E(θt−1|Dt−1), and V (θt|Dt−1) =
V (θt−1|Dt−1)/γ implying an increase in variance.

We can obtain the filtering distribution of (θt|Dt) using the Bayes’ Rule as

p(θt|Dt) ∝ p(Nt|θt)p(θt|Dt−1), (46)

implying that

p(θt|Dt) ∝ θ
γαt−1+Nt−1
t e−(γβt−1+1)θt .

Thus, the filtering distribution of the Poisson rate at time t is a gamma density

(θt|Dt) ∼ G(αt, βt), (47)

where the recursive updating of model parameters is given by αt = γαt−1 + Nt and

βt = γβt−1 + 1.

12



Furthermore, the one-step ahead forecast distribution of counts at time t given Dt−1

can be obtained as

p(Nt|Dt−1) =

∫

∞

0

p(Nt|θt)p(θt|Dt−1)dθt, (48)

where (Nt|θt) ∼ Poisson(θt) and (θt|Dt−1) ∼ G(γαt−1, γβt−1). Therefore,

p(Nt|Dt−1) =

(

γαt−1 +Nt − 1

Nt

)

(

1−
1

γβt−1 + 1

)γαt−1
( 1

γβt−1 + 1

)Nt

. (49)

which is a negative binomial model denoted as

(Nt|Dt−1) ∼ Negbin(rt, pt), (50)

where rt = γαt−1 and pt = γβt−1

γβt−1+1 . Given (50), one can carry out one step ahead

predictions and forecast interval calculations in a straightforward manner.

Although the k-step ahead predictive density is not analytically available, the k-step

ahead predictive means can be easily obtained. Using a standard conditional expecta-

tion argument one can obtain E(Nt+k|Dt) as follows

E(Nt+k|Dt) = Eθt+k
{E(Nt+k|θt+k, Dt)} = E(θt+k|Dt). (51)

Furthermore, using the state equation we have

E(θt+k|Dt) = E(θt|Dt)
t+k
∏

n=t+1

E(ǫn|Dt)

γ
= E(θt|Dt) =

αt

βt
, (52)

where E(ǫn|Dt) = γ for any n. Therefore, combining (51) and (52), we can write

E(Nt+k|Dt) = E(θt+k|) =
αt

βt
. (53)

Due to the random walk type of structure introduced in (42), the above result simply

indicates that k-step ahead forecasts given that we have observed counts up to time

t are equal to αt/βt. In recognition of this feature, Aktekin et al. (2013) proposed

an extension of the Poisson state space models by incorporating covariates into the

state equation. The Poisson state-space model is member of the class of exact marginal

likelihood models considered by Gamerman et al. (2013). A multivariate version of the

Poisson-state space models are proposed in Aktekin, Polson and Soyer (2018) where

authors develop particle filtering methods for Bayesian analysis.

Dynamic Probit Models

Bayesian state-space models for categorical time series have been considered in Car-

lin and Polson (1992), Cargnoni, Mueller and West (1997) and Gamerman (1998). As

noted by Soyer and Sung (2013), Bayesian analysis of some of the models are based on

13



Metropolis-Hastings algorithm [see Chib and Greenberg (1995)] which requires spec-

ification of proposal densities in high dimensions. Soyer and Sung (2013) proposed a

probit-type state-space models and developed Bayesian analysis using an exact Gibbs

sampler. They also considered generalizations such as Student t link functions and

presented marginal likelihood computations along the lines of Chib (1995).

Consider a binary time-series Yit for individual i such that

Pr{Yit = 1|πit} = πit

with probit link

πit = Φ(Fitθt) (54)

where Fit is a covariate vector for individual i and θt is a p dimensional vector of

regression parameters. We define the state equation for θt as

θt = Gtθt−1 + wt,

where wt’s are uncorrelated multivariate normal error vectors with mean 0 and co-

variance matrix Wθ and Gt is known. For example, in Soyer and Sung (2013) Gt is

assumed to be an identity matrix.

Following Albert and Chib (1993), the probit model can be represented by using inde-

pendent latent variables Zit such that

Yit =

{

1 if Zit > 0

0 otherwise.

IfZit’s are normally distributed with meanFitθt and variance 1, that is, Zit ∼ N (Fitθt, 1), then

we have the probit model πit = Φ(Fitθt).

Given data DT = {Yit; t = 1, . . . , T }, Bayesian analysis can be developed by us-

ing a Gibbs sampler with full conditionals p(ΘT |DT , Z
T
i ) and p(ZT

i |DT ,ΘT )where

ΘT = (θ1, θ2, . . . , θT ) and ZT
i = (Zi1,Zi2, . . . , ZiT ). For drawing samples from

p(ZT
i |DT ,ΘT ), we note that Zit’s are independent random variables and use

(Zit|θt, Yit = 1) ∼ N (Fitθt, 1) I(Zit > 0)

(Zit|θt, Yit = 0) ∼ N (Fitθt, 1) I(Zit < 0).

We can directly draw from p(ΘT |DT , Z
T
i ) = p(ΘT |ZT

i ) using the FFBS algorithm of

Fruhwirth-Schnatter (1994) as in (31). We define Zt
i = (Zt−1

i , Zit), t = 1, . . . , T and

write p(ΘT |Z
T
i ) as

p(θT |Z
T
i ) p(θT−1|θT ,ZT−1

i ) · · · · · · p(θ1|θ2, Z
1
i ), (55)

where the first term p(θT |ZT
i ) is the filtering distribution at time T . Each element of

(55) follows a normal distribution as

(θt−1|θt, Z
t−1
i ) ∼ N (ht−1, Ht−1)
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where ht−1 and Ht−1 can be obtained from (14) and (15) with

mt = Gtmt−1 +RtF
′

it(1 + FitRtF
′

it)
−1et

where et = Zit − FitGtmt−1 is a scalar, Rt = GtCt−1G
′

t +Wθ , and

Ct = Rt −RtF
′

it(1 + FitRtF
′

it)FitRt.

Note that the above results are all conditional on Wθ . Using a Wishart prior for W−1
θ

W−1
θ |Σ, r ∼ Wish(Σ, r),

where r > p, the full conditional of Wθ can be obtained as a Wishart density with

degrees of freedom, (r + T ), and scale matrix
(

Σ+
∑T

t=1(θt − θt−1)(θt − θt−1)
′

)

.

Thus, the proposed approach provides an exact Gibbs sampler for Bayesian inference.

The algorithm can be easily generalized to M individuals for T time periods as dis-

cussed in Soyer and Sung (2013).

Particle Filtering and Bayesian Particle Learning

The particle filter (PF) is commonly used by engineers and statisticians in diverse areas

such as signal processing, internet traffic, online marketing, etc. The PF may be easily

understood when cast as a problem of Bayesian learning and employing some well-

known updating rules for mixture models. The PF can also be used to perform static

parameter learning. The original PF was introduced by Gordon, Salmond, and Smith

(1993) for Bayesian state estimation. An excellent review of particle filtering is given

in Doucet and Johansen (2011) and Bayesian methods for particle learning for static

parameters are discussed by Carvalho et al. (2010).

Consider the Gaussian OKF model defined by (1) and (2) and assume that we have the

filtering distribution p(θt|Dt) as given by (7). What is meant by a particle distribution

approximation are the draws θ
(i)
t , i = 1, . . . , N , such that

pN(θt|Dt) =
1

N

N
∑

i=1

δ
θ
(i)
t

(56)

where δ denotes a Dirac measure.

Particle methods will rely on the law of large numbers as N → ∞ rather than ergodic

distribution to guarantee convergence to an equilibrium distribution as required by the

Markov chain Monte Carlo (MCMC) methods. A PF can be viewed as the evolution of

N interacting stochastic processes whose marginal distributions are designed to match

the required sequence of filtering distributions p(θt|Dt). One simply simulates the

N particles of the stochastic process using a resampling and propogation step. As
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N → ∞, the law of large numbers will guarantee weak convergence to the appropriate

filtering distribution.

Since the MCMC methods provide us with samples from the smoothing distribution

p(θ1, θ2, . . . , θT |DT ), obtaining samples sequentially from the filtering distributions

p(θt|Dt), t = 1, 2, . . . , T , requires rerunning the MCMC each time. The PF provides

us with an efficient way of drawing from the filtering distributions sequentially.

Recursive Estimation Procedure

As pointed out by Johannes and Polson (2009), updating of the state vector θt can be

viewed in two ways by factoring the joint distribution as

p(Yt+1, θt+1|θt) = p(Yt+1|θt+1)p(θt+1|θt) (57)

or

p(Yt+1, θt+1|θt) = p(Yt+1|θt) p(θt+1|θt, Yt+1). (58)

The former factorization given by (57) is the more traditional Kalman filtering ap-

proach. In PF language we propogate with p(θt+1|θ
(i)
t ) and resample with p(Yt+1|θ

(i)
t+1).

More specifically, in obtaining the new filtering distribution p(θt+1|Dt+1) we use the

prediction for θt+1, that is,

p(θt+1|Dt) =

∫

p(θt+1|θt)p(θt|Dt)dθt

for propogation. Given particles θ
(i)
t we draw θ

(i)
t+1, i = 1, . . . , N and then use the

Bayes’ rule

p(θt+1|Dt+1) ∝ p(Yt+1|θt+1)p(θt+1|Dt)

for resampling θ
k(i)
t+1 by drawing the index k(i) from a multinomial distribution with

weights

w
(i)
t+1 =

p(Yt+1|θ
(i)
t+1)

∑N
j=1 p(Yt+1|θ

(j)
t+1)

. (59)

We then set θ
(i)
t+1 = θ

k(i)
t+1 . This is known as the sample importance resampling (SIR)

approach; see for example, Liu and Chen (1998). Note that in the resampling step the

likelihood P (yt+1|θt+1) weighs the prior p(θt+1|Dt) for updating. This is sometimes

referred to as weighted bootstrap; see Smith and Gelfand (1992). As noted by Johannes

and Polson (2009) the SIR approach in PF can lead to degeneracies in the filtering dis-

tribution since particles may collapse on few values. One way to alleviate this problem

is to implement a resample first-propagate next strategy as in the auxiliary particle filter

method of Pitt and Shephard (1999).

The latter factorization given by (58) leads to a mixture approximation to the next

posterior p(θt+1|Dt+1) given a particle representation

p(θt|y1:t) =
1

N

N
∑

i=1

δ
θ
(i)
t

.
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In this case, we first resample θt’s using the smoothing distibution

p(θt|Dt+1) ∝ p(Yt+1|θt)p(θt|Dt)

obtained by Bayes’ rule. Thus, we draw θ
k(i)
t by drawing the index k(i) from a multi-

nomial distribution with weights

w
(i)
t =

p(Yt+1|θ
(i)
t )

∑N
j=1 p(Yt+1|θ

(j)
t )

. (60)

We then set θ
(i)
t = θ

k(i)
t and propogate using

p(θt+1|Yt+1) =

∫

p(θt+1|θt, Yt+1)p(θt|Dt+1)dθt.

More specifically, the mixture approximation to the posterior p(θt+1|Dt+1) is given by

p(θt+1|Dt+1) =
N
∑

i=1

p(Yt+1|θ
(i)
t )

∑N
j=1 p(Yt+1|θ

(j)
t )

p(θt+1|θ
(i)
t , Yt+1). (61)

This is known as the exact particle filtering approach; see Johannes and Polson (2009)

and it does not suffer from the degeneracy problem of SIR when Yt+1 is an outlier.

Example: PF for the Steady Model

The special case of the OKF model where Yt and θt are scalars, and Ft = Gt = 1, for

all t, is referred to as the steady model or first-order polynomial model; see West and

Harrison (1997). We also specify Vt = σ2
v , and Wt = σ2

w for all t in the model. In

other words we can write the observation and the state equations of the model as

Yt = θt + vt, (62)

where vt ∼ N (0, σ2
v), and

θt = θt−1 + wt, (63)

where wt ∼ N (0, σ2
w).

We first consider the case where σ2
v and σ2

w are known quantities. As previously dis-

cussed, the filtering, smoothing and forecast distributions can all be obtained analyt-

ically in this model. We next illustrate the SIR and exact PF approaches presented

above.

SIR PF:

Propogation Step: Given particles θ
(i)
t we draw θ

(i)
t+1, i = 1, . . . , N from

θt+1|θ
(i)
t ∼ N (θ(i), σ2

w).
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Resampling Step: Given θ
(i)
t+1, we resample θ

k(i)
t+1 using weights proportional to normal

density N (θ
(i)
t+1, σ

2
v), that is,

w
(i)
t+1 ∝ p(Yt+1|θ

(i)
t+1) = N (θ

(i)
t+1, σ

2
v)

for i = 1, . . . , N .

Exact PF:

Resampling Step: Given particles θ
(i)
t , i = 1, . . . , N , we first resample θt’s using

weights proportional to normal density N(θ(i), σ2
v + σ2

w), that is,

w
(i)
t ∝ p(Yt+1|θ

(i)
t ) = N (θ(i), σ2

v + σ2
w)

for i = 1, . . . , N .

Propogation Step: Given resampled θ
(i)
t ’s, we draw θ

(i)
t+1, i = 1, . . . , N from θt+1|θ

(i)
t , Yt+1 ∼

N (m
(i)
t+1, 1/φ), where φ = 1/σ2

v + 1/σ2
w and

m
(i)
t+1 =

1/σ2
v

φ
Yt+1 +

1/σ2
w

φ
θ
(i)
t .

Parameter Learning and Sufficient Statistics

As previously discussed, in many filtering problems we also need to learn about other

unknown parameters to obtain the filtering distributions. We denote these unknown

parameters by λ. It is possible to develop a particle learning algorithm for these pa-

rameters in PF. This can be efficiently done if there exists a conditionally conjugate

probability model for λ given the state variables; see for example Lopes, Polson and

Carvalho (2012). In such cases, there exists a sufficient statistic st for λ at time t de-

fined by the deterministic recursion S(·) as st+1 = S(st, θt+1, Yt+1). Then, the PF

algorithms can be easily extended to incorporate learning about λ by tracking particles

of st at each period; see Lopes et al. (2011) and Lopes and Polson (2015) for some

recent work on particle learning.

In the exact PF method we can write

p(Yt+1, θt+1|θt, λ = p(Yt+1|θt, λ) p(θt+1|θt, λ, Yt+1) (64)

with the filtering distribution given by

p(θt+1|Dt+1) ∝

∫

p(Yt+1|θt, λ) p(θt+1|θt, λ, Yt+1)p(θt, λ|Dt)dλdθt. (65)
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Given particles (θ
(i)
t , λ(i), s

(i)
t ), i = 1, . . . , N , (θ

k(i)
t , λk(i), s

k(i)
t ) can be resampled

with weights proportional to p(Yt+1|θ
k(i)
t , λk(i)) and s

k(i)
t = S(s

(i)
t , θ

k(i)
t , Yt+1). This

is followed by propogation to p(θt+1|Dt+1) by drawing θ
(i)
t+1, from p(θt+1|θ

k(i)
t , λk(i), Yt+1),

for i = 1, . . . , N . Next the sufficient statistic can be updated as

st+1 = S(s
k(i)
t , θ

(i)
t+1, Yt+1), (66)

for i = 1, . . . , N , which represents a deterministic propogation. Finally, parameter

learning is completed by drawing λ(i) using p(λ|s
(i)
t+1) for i = 1, . . . , N .

We show below an implementation of the particle learning algorithm by using an ex-

tension of the steady model where the state variance σ2
w is treated as unknown.

Particle Learning in the Steady Model

Consider an extension of the steady model given by

Yt = θt + vt, vt ∼ N (0, σ2
v)

and

θt = θt−1 + wt, wt ∼ N (0, 1/λ),

where θ0 ∼ N (m0, C0), λ ∼ G(r0/2, s0/2), and θ0 is independent of λ at t = 0. Note

that s0 may also be random with density p(s0), but without loss of generality, here, we

assume that s0 is fixed.

In this example, the filtering and smoothing distributions of θt’s as well as the pos-

terior distribution of λ cannot be obtained analytically, but a Gibbs sampler based on

the FFBS algorithm of Fruhwirth-Schnatter (1994) can be developed as previously dis-

cussed. This approach is not efficient for obtaining the filtering distributions since it

requires rerunning the Gibbs sampler for each time period t.

The exact PF for this model is as follows:

Resampling Step: Given particles (θ
(i)
t , λ(i), s

(i)
t ), i = 1, . . . , N we first resample

(θ
k(i)
t , λk(i)) using weights proportional to normal density N (θ(i), σ2

v + 1/λ(i)), and

obtain resampled sufficient statistic values s
k(i)
t = S(s

(i)
t , θ

k(i)
t , Yt+1) for i = 1, . . . , N .

Propogation Step: Given resampled θ
(i)
t ’s, we draw θ

(i)
t+1, i = 1, . . . , N from

θt+1|θ
k(i)
t , λk(i), Yt+1 ∼ N(m

(i)
t+1, σ

2
v + 1/λk(i)),

where

m
(i)
t+1 =

1/σ2
v

λk(i) + 1/σ2
v

yt+1 +
λk(i)

λk(i) + 1/σ2
v

θ
k(i)
t .
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We update the sufficient statistic via

s
(i)
t+1 = S(s

k(i)
t , θ

(i)
t+1, Yt+1) = s

k(i)
t + (θ

(i)
t+1 − θ

k(i)
t )2 (67)

for i = 1, . . . , N .

Updating Step: Given the sufficient statistic s
(i)
t+1, i = 1, . . . , N we draw λ(i), i =

1, . . . , N using p(λ|s
(i)
t+1) which is G(rt+1/2, s

(i)
t+1/2) where rt+1 = rt + 1.

It is easy to see that the approach can be performed more efficiently if we can reduce

the dimension by integrating out λ. We note that in our example, initially, p(Y1|θ0, s0)

is a Student t-density. Thus, at t = 0, given s0 and N particles θ
(i)
0 i = 1, . . . , N , from

the t-density, the resampling weights are

w
(i)
0 =

p(Y1|(θ0, s0)(i))
∑N

j=1 p(Y1|(θ0, s0)(j))
, (68)

where (θ0, s0)
(i) = (θ

(i)
0 , s0). Given the weights w

(i)
0 , we can resample new particles,

(θ0, s0)
k(i), i = 1, . . . , N and track these at each stage in our approach.

For example, we can propogate to stage 1 by drawing θ
(i)
1 from p(θ1|(θ0, s0)k(i),Y1),

which is Student t, and update the sufficient statistic as s
(i)
1 = s

k(i)
0 + (θ

(i)
1 − θ

k(i)
0 )2.

In summary, the approach requires only keeping track of (θt, st)
(i), for i = 1, . . . , N ,

for any time period t. Since the particles of the sufficient statistic st are available we

can always draw samples from the posterior distribution of λ.

Furthermore, we note that a SIR based particle learning approach can also be devel-

oped. This starts with the propogation step where we draw θt+1, using the Student

t-distribution p(θt+1|θ
(i)
t , s

(i)
t ). We follow with the resampling step where we draw

particles θ
k(i)
t+1 ’s using weights proportional to p(Yt+1|θ

(i)
t+1, s

(i)
t ) and update the suffi-

cient statistic via s
(i)
t+1 = S(s

(i)
t , θ

k(i)
t+1 , Yt+1), for i = 1, . . . , N . As before, given s

(i)
t+1

we can draw particles λ(i), using p(λ|s
(i)
t+1) to evaluate the posterior distribution of λ.

Concluding Remarks

In this paper we have given an overview of Kalman filtering and state-space models and

discussed their role in Bayesian time-series analysis. In so doing, we have presented

some key results in ordinary Gaussian Kalman filter model, considered some impor-

tant extensions and discussed parameter learning and related computational issues. We

have also covered some recent advances in non-Gaussian state space models and their

Bayesian analysis using MCMC and sequential MCMC methods such as particle filter-

ing.

Other recent developments in dynamic Bayesian modeling and computational aspects

of sequential learning can be found in Prado and West (2010). The boom of big data
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brings in new challenges both in terms of modeling high dimensional data and efficient

computing for sequential Bayesian learning. Scott et al. (2016) discuss some advances

in ”Consensus Monte Carlo” algorithms for big data.
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