
Essays on Bayesian Modeling of Power Outages

Synopsis

It is essential to have a reliable power system because power outages can

have significant negative impacts on households, businesses, and manufactur-

ers. Outages can lead to financial losses causing damage to perishables goods,

downtime, and lost production. The duration of the outage is as important

as the number of individuals affected. The longer the outage duration is,

the greater the incurred losses are likely to be. Campbell [4] shows that the

estimated cost of only storm-related power outages on the U.S. economy is

between $20 billion and $55 billion. The consequences of a lack of preparation

for power outages can be huge for utility companies. When they do not have

enough resources to deal with a sudden need for a large number of emergency

repair crews and vehicles, waiting for help from state agencies and major power

companies from other areas can take weeks and cause great losses [14]. Accu-

rately estimating the number of power outages can help utility companies be

better prepared and potentially save a lot of money. In order to develop pre-

vention strategies and prepare response policies such as repair crew scheduling

and positioning, it is crucial to be able to predict power outages and forecast

potential damages they may cause.

The effects of power outages are not limited to financial losses mentioned

above. Klinger et al. [8] discuss the impact of power outages on communica-

tion, health, and safety. Not being able to use landlines to dial 911 or charge

phones, loss of functioning home oxygen supplies, carbon monoxide poisoning

caused by the unsafe use of generators for electricity and gas-powered heaters

for cooking and heat generation, lack of temperature and light control, and

compromised drug storage are only some of the health and safety related ef-
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fects of power outages. Therefore, every household affected by a power outage

can be considered as a household whose safety is in jeopardy. Accurately pre-

dicting the number of households affected by the power outages or the total

customer outage hours caused by a power outage would be very valuable to

utility companies for crew and repair scheduling.

A power network consists of many components, including the transmission

substations and lines, distribution substations, overhead and underground ser-

vice lines. Each of these components are vulnerable to different types of risks.

Some might be more exposed to bad weather or might be more sensitive to

natural disasters because of their geographical surroundings. Thus, modeling

and prediction of power outages is a challenging task. Due to its criticality

for utility companies, prediction of power outages and their consequences have

gained considerable attention during the last two decades. A recent review of

literature on power outage prediction can be found in Kabir, Guikema and

Quiring [7].

As weather being one of the major factors affecting the reliability of power

distribution systems, some studies use rough classifications of adverse and

normal weather to model failures of power distribution lines [13] [16] and dis-

tribution feeders [17]. Others use more specific weather related variables such

as wind speed, wind gust, soil moisture and the temperature. Li et al. [9] con-

siders weather predictions provided by Deep Thunder, a deep learning service

by IBM in their hierarchical model. A major challenge with these models is

reliance on accurate weather predictions. As pointed out by Kabir, Guikema

and Quiring [7], the uncertainty in predictors as well as the uncertainty as-

sociated with paramter estimation may contribute to forecast errors. Effect

of hurricanes on power outages in multiple locations have been studied using

various models. Liu et al. [10] develops generalized linear models (GLMs)
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for estimating the spatial distribution of power outages during hurricanes by

using indicator variables for each hurricane. Han et al. [5] develops a GLM to

predict the number of power outages during hurricanes in multiple locations

using different characteristics of the hurricanes. But again these models rely

on hurricane predictions for predicting outages.

Nonparametric models such as Bayesian Additive Regression Trees and

Random Forests are also used to model storm outages [12, 6, 15]. More re-

cently, Kabir, Guikema and Quiring [7] used Boosting Trees, Random Forests

and Support Vector Machines for predicting thuderstorm-induced power out-

ages. As in the majority of machine learning (ML) methods, these models rely

on large number of predictors many of which will not be known for predicting

future outages. For example, in the Random Forest model of Kabir, Guikema

and Quiring [7] majority of the important predictors are weather related and

thus, rely on predictions.

In this dissertation, our objective is to develop Bayesian power outage mod-

els that enable us to predict future outages as well as their consequences in

terms number of households affected or total customer outage hours in differ-

ent locations. In doing so, we present a Markov modulated compound Poisson

process model. This is achieved by taking the homogeneous compound Pois-

son process model and making its rates and jump probabilities dependent on

a random environmental process. The environmental process is governed by a

continuous time Markov chain. The attractive feature of this approach is its

ability to implicitly capture stochastic predictors such as weather conditions

via the environmental process. Furthermore, other deterministic predictors

can be incorporated in the model by deterministic modulation of the rates

and the jump probabilities as will be discussed in Chapter 2 (Essay 1: Mod-

eling Number of Households Affected by Power Outages).
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There are many examples of modulation in the reliability literature. For

example, random environments are used to provide a tractable model of the

stochastic dependence among the components of a device where the environ-

ment is an external process that depicts all physical, structural, operational,

and other conditions which affect the deterioration, aging, and failure of the

system. Since all components are subject to the same environmental condi-

tions, their lifetimes are dependent on their common environmental process.

Thus, the environmental process is actually a factor of variation in the failure

structure of the system. These ideas were introduced by Cinlar and Ozekici

[14] who propose to construct an intrinsic clock which ticks differently in dif-

ferent environments to measure the intrinsic age of the device. This intrinsic

aging model is studied further by Cinlar et al. [15] to determine the conditions

that lead to associated component lifetimes. The association of the lifetimes

of components subjected to a randomly varying environment is discussed by

Lefevre and Milhaud [22]. Singpurwalla [38] provides a review by discussing

potential hazards in reliability modelling. Applications also include hardware

reliability where a device performs a stochastic mission and its failure rate

depends on the stage of the mission. Cekyay and Ozekici [11] discuss issues

related to mean time to failure and availability when the mission or envi-

ronmental process is semi-Markovian. The reader is referred to Cekyay and

Ozekici [13, 12] for issues related to performance analysis and maintenance of

such modulated reliability models. First consideration of modulation in soft-

ware reliability applications was in Ozekici and Soyer [28] who assume that

the failures of the software depend on its operational profile, which is now

the environmental process that represents the sequence of operations that the

software performs. In a recent article, Landon et al. [21] present a tractable

Bayesian approach Markov modulated Poisson model for software reliability.

Use of Markov modulated compound Poisson processes have not been con-
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sidered in the power outage modeling literature. The benefit of using a Markov

modulated compound Poisson process to model power outages and the number

of affected households is that it does not require any weather or geographical

information to capture the effect of any of these factors. The model treats

the environment that system operates in as a stochastic process whose differ-

ent states capture different environmental characteristics. Also, the Markov

modulated compound Poisson process relaxes the independent and stationary

increments properties of the homogeneous compound Poisson process model.

Furthermore, Bayesian analysis of Markov modulated compound Poisson

processes which we present in Chapter 2 and their extensions are new for the

literature in Bayesian inference in stochastic processes. In our development in

Chapter 2, we show that the Markov modulated compound Poisson process

model is a special case of the doubly stochastic Markov jump processes; see

Ay et al. [1]. Thus, the Bayesian methods presented in Chapter 2 can be

adopted for a richer class of Markov modulated Markov jump processes. Other

methodological contributions of Chapter 2 include development of a prediction

algorithm for time to the next outage, number outages over a fixed time period

as well as for number of households affected by each outage. Finally, Markov

modulated nonhomogeous compound Poisson process model and its Bayesian

analysis represents another modest methodological contribution of Chapter 2.

Geographical characteristics play an important role in developing models

for power outage forecasting. Liu et al. [11] and Han et al. [5] have considered

spatial models for outages due to hurricanes and ice storms. These models are

spatial versions of GLMs and they rely on stochastic predictors. In Chapter 3

(Essay 2: A Random Environment Model for Multiple Location Outages) we

present spatial versions of Markov modulated compound Poisson processes.

We start our development by considering multiple location compound Pois-
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son processes affected by a common random environment. Thus, the random

environment model induces both temporal and spatial correlations. Bayesian

analysis of the model requires modification of our Gibbs sampler of Chapter 2

to deal with with superposition of compound Poisson processes. The second

extension of the model involves incorporating location based (derministic) co-

variates (predictors) to further modulate the rates and the jump probabilities.

The introduction of the covariates requires a modification of the Bayesian

analysis by use of Metropolis within Gibbs. In the final part of Chapter 3

we introduce a Markov modulated spatial model where we explicitly describe

spatial correlations using spatial autoregressions in the sense of Besag [3] and

Banerjee, Carlin and Gelfand [2]. To the best of our knowledge, our model-

ing and methodology development in Chapter 3 present contributions to both

the literature in power outage modeling and Bayesian inference in stochastic

processes.
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