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Abstract

The Ehrenfest urn is a model for the mixing of gases in

two chambers. Classic research deals with this system as

a Markovian model with a fixed number of balls, and de-

rives the steady-state behavior as a binomial distribution

(which can be approximated by a normal distribution).

We study the gradual change for an urn containing n

balls from the initial condition to the steady state. We

look at the status of the urn after kn draws. We identify

three phases of kn: The growing sublinear, the linear,

and the superlinear. In the growing sublinear phase the

amount of gas in either chamber is normally distributed,

with parameters that are influenced by the initial condi-

tions. In the linear phase a different normal distribution

applies, in which the influence of the initial conditions is

attenuated. The steady state is not a good approximation

until a superlinear amount of time has elapsed. At the

superlinear stage the mix is nearly perfect, with a nearly

perfect symmetrical normal distribution in which the ef-

fect of the initial conditions is completely washed away.

We give interpretations for how the results in different

phases conjoin at the “seam lines.” The Gaussian results

are obtained via martingale theory.

1 The Ehrenfest urn as a model
for gas mixing

The Ehrenfest urn was first proposed as a model for
the mixing of nonreacting gases [4]. We deal here
with the speed of this mixing across time phases. The
model is for two chambers (say A and B) containing
gases (possibly the same). The two chambers are
connected through a pipe controlled by a valve. The

∗Department of Statistics, The George Washington Univer-
sity, Washington, D.C. 20052, U.S.A.

valve is opened at time 0 and the mixing proceeds
over epochs of time, which we can take as the unity.
In each time unit (mixing step) one molecule of gas
randomly chosen from the population of molecules in
both chambers jumps from its chamber to the other
one. This continual switching of sides affects a grad-
ual mixing; inducing change in the amount of gas in
each chamber. It is of interest to know the amount
of gas (number of molecules) in chamber A after a
certain period of time.

This physical model of gas mixing can be visualized
in terms of a scheme of drawing balls from an urn.
We can think of the molecules in chamber A as balls
of a certain color (say white) and those in chamber
B as balls of an antithetical color (say red). The gas
model with n molecules can then be viewed as n balls
of two colors all residing in one urn, which evolves in
the following manner. At each discrete point in time,
we pick a ball at random from the urn. We paint
that ball with the opposite color and put it back in
the urn. In this equivalent model, the interest is to
know the number of white balls (the amount of gas
in Chamber A) after a certain period of time.

The classic research deals with this system as a
Markovian model with a fixed number of balls, and
derives the steady-state behavior as a binomial distri-
bution; see [1], [2] and [6]; for an overview see [8]. In
a physical system the number of gas molecules is very
large, we shall take it to be n, and is apportioned as
bαnc ∼ αn in chamber A and n − bαnc ∼ (1 − α)n
in Chamber B, for some α ∈ (0, 1). One is interested
in knowing the behavior of the gases after a certain
finite interval of time. So, the question is How many
white balls are in the urn after k = kn draws, for
functions kn of various growth rates?
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2 Scope

We shall identify three phases of kn:

(a) The sublinear phase, when kn = o(n);

(b) The linear phase, when kn ∼ λnn, for some λn >
0 of a magnitude bounded from above and below;

(c) The superlinear phase, when n = o(kn).

We shall prove the following general trends. Triv-
ially, at the very low end of the sublinear phase, when
kn = O(1), as n → ∞, there is not much change in
the content of the two chambers, only a finite per-
turbation on the initial conditions can be felt. How-
ever, when enough time has elapsed, that is when
kn grows sublinearly to ∞, one sees normal behav-
ior in the amount of gas in each chamber, even for a
fairly slowly growing function kn. We call the phase
when kn grows sublinearly to ∞, the growing sub-
linear phase. Functions that are asymptotically as
small as 1

20 ln lnn, for example, are sufficient to give
a normally distributed mix in each chamber. For the
sublinear phase, the initial conditions persist, and the
asymptotic normal result in this case contains the ini-
tial condition α.

Theorem 1 Let Wkn be the number of white balls in
the Ehrenfest urn (molecules in Chamber A) after kn

draws (gas mixing steps) from an urn with n balls,
of which initially the number of white balls is bαnc,
where kn is in the growing sublinear phase. Then,

Wkn − n
(

1
2

+
(
α − 1

2

)(
n−2

n

)kn
)

√
kn

D−→ N
(
0, 4α(1− α)

)
.

Normality continues to hold in the linear and su-
perlinear phases. However, in each phase we get a
different normal distribution. The mean and scale
factors are essentially different. In the linear phase
a different normal distribution (in the usual style of
central limit theorems) is in effect, and the param-
eters of the distribution depend on both the initial

condition α and the coefficient of linearity. However,
the influence of the initial conditions is attenuated as
we get deeper in the linear phase.

Theorem 2 Let Wkn be the number of white balls in
the Ehrenfest urn (molecules in Chamber A) after kn

draws (gas mixing steps) from an urn with n balls,
of which initially the number of white balls is bαnc,
when kn is in the linear phase, where kn ∼ λnn, for
some λn such that 0 < S1 ≤ λn ≤ S2 < ∞. Then,

Wkn −
((

α − 1
2

)
e−2λn + 1

2

)
n

√
e4λn−1−4λn(2α−1)2

4e4λn n

D−→ N (0, 1).

As one might expect, after a very long period of
time, as in the superlinear case, the mixing is nearly
complete, and the result is a central limit theorem
in which the effect of any initial conditions is washed
away.

Theorem 3 Let Wkn be the number of white balls in
the Ehrenfest urn (molecules in Chamber A) after kn

draws (gas mixing steps) from an urn with n balls,
of which initially the number of white balls is bαnc,
where kn is in the superlinear phase. Then,

Wkn − 1
2n

√
n

D−→ N
(
0,

1
4

)
.

To put our results in perspective note that these
Gaussian laws in different phases consider the diffu-
sion of gas when the chambers contain a large num-
ber of particles, tending to infinity. Some earlier re-
search considers the transience in Ehrenfest models
for a fixed number of particles, where the case is a
finite Markov chain possessing a stationary distribu-
tion. Discussion of the variation distance from the
stationary distribution is given in [3], where the dif-
fusion of a fixed number of particles is considered over
an extended number of draws. A cutoff phenomenon
is reported in [3]: The total variation distance stays
high (close to 1) up until a logarithmic number of
draws when it drops sharply to low values near 0.
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3 Organization

The rest of this paper has the following organization.
In Section 4 we set up exact formulas, starting from
an exact stochastic recurrence and going through an
exact calculation of the mean and variance of the
number of white balls after n sample draws. In Sec-
tion 5 we derive the underlying martingale. In Sec-
tion 6 we discuss the three phases: the growing sub-
linear, the linear, and the superlinear, where a sub-
section is devoted for each phase. In these subsections
we prove the announced results.

Throughout, we shall use the following standard
probability notation. We shall denote the normally
distributed random variate with mean 0 and variance
ν2 by N (0, ν2). We shall use the symbols D−→ and
P−→ respectively for convergence in distribution and

in probability. The notation OL1(g(n)) will stand for
a sequence of random variables that is O(g(n)) in
the L1 norm, that is, when we describe a sequence of
random variables Xn to be OL1(g(n)), we mean there
exist a positive constant C and a positive integer n0,
such that E[|Xn|] ≤ C|g(n)|, for all n ≥ n0. We let
Fj be the sigma field generated by the first j draws.

Unless otherwise stated, all asymptotics will mean
asymptotic equivalents and bounds as n → ∞. The
number n/(n−2) will appear often, and we shall give
it the designation ρn. We shall repeatedly use well-
known facts about ρyn

n , for y > 0, such as the fact
that ρyn

n is asymptotically e2y + O(1/n).
We shall also need the backward difference opera-

tor ∇, which when applied to a function h(i), with
integer argument i, gives the difference between two
successive steps; that is, ∇h(i) = h(i) − h(i − 1).

4 Exact moments

Let Wj = Wj(n) be the number of white balls
(molecules in Chamber A) after j such draws (mix-
ing steps). Let IW

n and IR
n respectively be the indi-

cators of picking a white or a red ball in the nth
step. Because of their mutual exclusion, we have
IR
n = 1 − IW

n . There is stochastic dependence be-
tween Wj−1 and Wj. After j − 1 draws, the number
of white balls in the urn is Wj−1, and the number of

white balls will increase by 1 after one drawing, if a
red ball is picked, but will decrease by 1, if a white
ball is picked. And so,

Wj = Wj−1 + IR
n − IW

n = Wj−1 + 1 − 2IW
n .(1)

It follows from the stochastic recurrence (1) that

E[Wj ] = E[Wj−1] + 1 − 2E
[
E[IW

n | Fj−1]
]

= E[Wj−1] + 1 − 2E
[Wj−1

n

]

=
(
1 − 2

n

)
E[Wj−1] + 1.

This recurrence can be solved by unwinding it all the
way back to the initial condition W0. One gets

E[Wj ] =
1
2
n +

(
W0 −

n

2

)(n − 2
n

)j

.(2)

Note that under the assumption that W0 = bαnc ∼
αn, the mean after kn mixing steps experiences
phases according to how fast kn grows. For the grow-
ing sublinear, linear and superlinear phases we have
the mean asymptotics

E[Wkn ] ∼





α n, for kn = o(n);((
α− 1

2

)
e−2λn + 1

2

)
n, for kn ∼ λnn;

1
2

n, for n = o(kn).

Observe how the three phases meet on average at
the seam lines. The linear phase with λn = 0 gives
the result in the growing sublinear phase, and with
λn = ∞ gives the result of the superlinear pase.

Toward a computation of the second moment we
write (1) in its squared form

W 2
j = (Wj−1+1−2IW

n )2 = W 2
j−1+2Wj−1(1−2IW

n )+1.

We follow similar steps as those for the mean: take
expectations to obtain a recurrence for the second
moment and solve it. The variance follows

Var
[
Wj

]
= E[W 2

j ] −
(
E[Wj]

)2

=
1
4
n +

((n

2
− W0

)2

− n

4

)(n − 4
n

)j

−
(n

2
− W0

)2(n − 2
n

)2j

.(3)
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Like the mean, under the assumption that W0 =
bαnc ∼ αn, the variance of the amount of gas in
Chamber A after kn mixing steps experiences phases
according to how fast kn grows. For the growing sub-
linear, linear and superlinear phases we have the vari-
ance asymptotics

Var[Wkn ] ∼





4α(1− α) kn, for kn = o(n);
e4λn−1−4λn(2α−1)2

4e4λn n, for kn ∼ λnn;
1
4 n, for n = o(kn).

5 A martingale underlying gas

mixing

Conditioning the recurrence (1) on the content of
the sigma field Fj−1, one gets

E[Wj | Fj−1] =
(
1 − 2

n

)
Wj−1 + 1.

There is an associated martingale as in the following
lemma.

Lemma 1

Mn := ρj
nWj −

ρj+1
n − ρn

ρn − 1

is a martingale, where ρn = n/(n − 2).

Proof .
Introduce the transformation

Mj = ajWj + bj.

We wish to turn Mn into a martingale with suitable
choices of deterministic sequences an and bn. So, Mn

must satisfy

E[Mj | Fj−1] = Mj−1 = aj−1Wj−1 + bj−1.(4)

We compute

E[Mj | Fj−1] = E[ajWj + bj | Fj−1]
= ajE[Wj | Fj−1] + bj.

From (1) we proceed with

E[Mj | Fj−1] = aj

(
1 − 2

n

)
Wj−1 + aj + bj .

Matching the coefficients of this equality with those
in (4), we arrive at recurrences for aj and bj. We
have aj = ρnaj−1. This recurrence unfolds easily to
give aj = ρj

na0, for any arbitrary value of a0; we take
a0 = 1.

We also have the recurrence bj = bj−1 − aj , which
unwinds into

bj = b0 −
j∑

k=1

ρk
n,

for arbitrary b0; we take b0 = 0 and simplify the sum
to

bj = −ρj+1
n − ρn

ρn − 1
.

The fact that Mj is a martingale is key to proving
Gaussian limits in all the phases. We shall deal with
the centered martingale

M̃j = Mj − W0

(which has mean 0) to employ the martingale central
limit theorem, which requires calculations on a zero-
mean martingale. Sufficient conditions for the central
limit theorem for a zero-mean martingale Xj,n are
the conditional Lindeberg’s condition and the con-
ditional variance condition on the martingale differ-
ences ∇Xj,kn = Xj,kn − Xj−1,kn; (see Theorem 3.2
and Corollary 3.1, P. 58 in [5]).

Specifically in our case, the conditional Lindeberg’s
condition requires that, for some positive increasing
sequence ξn, and for all ε > 0,

Un :=
kn∑

j=1

E
[(∇M̃j

ξn

)2

1{∣∣∣∇M̃j
ξn

∣∣∣>ε

}
∣∣∣Fj−1

]

P−→ 0,(5)

where the indicator 1E is a function of a sample space
that assumes the value 1 if E occurs, and otherwise

12 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



it assumes the value 0, and, for a constant c, a c–
conditional variance condition requires that

Vn :=
kn∑

j=1

E
[(∇M̃j

ξn

)2 ∣∣∣Fj−1

]
P−→ c.(6)

When both conditions hold, the sum∑kn

j=1 ∇M̃j/ξn = (Mkn − M0)/ξn = (Mkn − W0)/ξn

converges to the normally distributed random
variable N (0, c2).

To derive a martingale central limit theorem in
any of the phases, we need to identify the appro-
priate scale ξn for that phase. For calculations in-
volved in conditional Lindeberg’s condition the fol-
lowing lemma is helpful in all the phases.

Lemma 2
|∇M̃j| ≤ 4ρj

n.

Proof .
With the help of (1) write the absolute differences

as

|∇M̃j| =
∣∣(Mj − W0) − (Mj−1 − W0)

∣∣
=

∣∣(ρj
nWj + bj) − (ρj−1

n Wj−1 + bj−1)
∣∣

=
∣∣(ρj

n(Wj−1 + IR
j − IW

j ) + bj

)

−(ρj−1
n Wj−1 + bj−1)

∣∣
≤ ρj−1

n

(
(ρn − 1)Wj−1 + ρn|IR

j − IW
j | + ρn

)

≤ ρj−1
n

( 2
n − 2

Wj−1 +
2n

n − 2

)
.

The number of white balls at any stage is at most n,
and the lemma follows.

For calculations involved in conditional Linde-
berg’s condition we need E

[
(∇M̃j)2 | Fj−1]. After

some laborious calculation involving (1), we get

Vn = − 4
n2ξ2

n

kn∑

j=1

ρ2j
n W 2

j−1 +
4

nξ2
n

kn∑

j=1

ρ2j
n Wj−1.(7)

6 Phases during long-term
drawing

Suppose the gas mixing process is perpetuated indef-
initely. We shall see that as the ball drawing contin-
ues from the Ehrenfest urn the process experiences
different phases.

6.1 The growing sublinear phase

Let kn be in the growing sublinear phase (kn grows to
∞, and kn = o(n)). The number of white balls after
0 ≤ j ≤ kn draws has obvious bounds—if all the
draws are of red balls an increase by j goes in favor
of the number of white balls over their initial number,
and if all the draws are of white balls a deficit of j
occurs against the initial number of white balls. We
have the inequalities

W0 − j ≤ Wj ≤ W0 + j.

We can ascertain that

Wj = αn + O(kn),(8)

for all 0 ≤ j ≤ kn.
Consider 1 ≤ j ≤ kn = o(n). For n large enough

(greater than some N0 > 2),

ρj
n =

( n

n − 2

)j

≤ 2.

It follows from Lemma 2 that

|∇M̃j| ≤ 8.

Proof of Theorem 1.
Recall the expressions for Un (cf. (5)), and Vn

(cf. (6)). For the growing sublinear phase, take the
scale factor ξn =

√
kn. The proof will be complete if

we show that Un converges to 0 in probability, and
Vn converges to a constant in probability.

For the conditional Lindeberg’s condition we have
the uniform upper bound of 8 for |∇M̃j|, for all n
greater than some N0 > 2 (as discussed right before
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this proof). Therefore, for any ε > 0, in the expres-
sion

Un =
kn∑

j=1

E
[(∇M̃j√

kn

)2

1{∣∣∣∇M̃j√
kn

∣∣∣>ε

}
∣∣∣Fj−1

]

the sets {|∇M̃j| > ε
√

kn } are all empty, for all n
greater than some n0(ε) > N0. For large n we have

Un =
n0(ε)∑

j=1

E
[(∇M̃j√

kn

)2

1{∣∣∣∇M̃j√
kn

∣∣∣>ε

}
∣∣∣Fj−1

]

≤ 1
kn

n0(ε)∑

j=1

E
[
(∇M̃j)2 | Fj−1

]

≤ 64n0(ε)
kn

→ 0, as n → ∞.

The conditional Lindeberg’s condition has been ver-
ified throughout the growing sublinear phase.

In (7) replace Wj−1 by the asymptotic equivalent
in (8) to get

Vn = − 4
n2ξn

kn∑

j=1

ρ2j
n

(
αn + O(kn)

)2

+
4

nξn

kn∑

j=1

ρ2j
n

(
αn + O(kn)

)

=
1
kn

(
4α(1 − α) + O

(kn

n

)
+ O

(k2
n

n2

)) kn∑

j=1

ρ2j
n .

Recall that ρn = n/(n − 2), and we can simplify
the remaining sum asymptotically as

kn∑

j=1

ρ2j
n =

(
n

n−2

)2kn+2

− 1
(

n
n−2

)2

− 1
− 1

=
(n − 2)2

4n − 4

(
e
(2kn+2) ln

(
n

n−2

)
− 1

)
− 1

=
(n − 2)2

4n − 4

((
1 +

4kn

n
+ O

(k2
n

n2

))
− 1

)
− 1

= kn + O
(k2

n

n

)
.

And so, we have

Vn =
1
kn

(
4α(1 − α) + O

(kn

n

)
+ O

(k2
n

n2

))

×
(
kn + O

(k2
n

n

))

= 4α(1 − α) + O
(kn

n

)
+ O

(k2
n

n2

)
+ O

(k3
n

n3

)

→ 4α(1 − α).

The 4α(1 − α)–conditional variance condition has
been verified in the growing sublinear phase.

With both conditions checked, the martingale cen-
tral limit theorem gives

kn∑

j=1

(∇M̃j√
kn

)
=

Mkn − W0√
kn

D−→ N
(
0, 4α(1− α)

)
.

Subsequently, we write

ρkn
n Wkn − ρkn+1

n −ρn

ρn−1 − W0
√

kn

D−→ N
(
0, 4α(1− α)

)
.

With (n/(n−2))−kn converging to 1 in the sublinear
phase and an application of Slutsky’s theorem (See
[7], 1993, P. 146–147), we arrive at

Wkn − n
(

1
2 +

(
α − 1

2

)(
n−2

n

)kn
)

√
kn

D−→ N
(
0, 4α(1− α)

)
.

6.2 The linear phase

In the linear phase kn ∼ λnn, for some λn > 0 of a
magnitude uniformly bounded from above and below,
that is, for two positive constants, S1 and S2, and for
all n,

S1 ≤ λn ≤ S2.

At this phase of the gas mixing we have the fol-
lowing asymptotic equivalents (as n → ∞), following
from (2) and (3):

E[Wkn ] = µnn + O(1),(9)
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and
Var[Wkn ] ∼ vnn + O(1),(10)

where
µn =

(
α − 1

2

)
e−2λn +

1
2
,

and

vn =
e4λn − 1 − 4λn(1 − 2α)2

4e4λn
= O(1).

We start with a first-order result for Wkn .

Theorem 4 For kn = λnn + o(n), for some λn > 0
of a magnitude bounded from above and below,

Wkn((
α − 1

2

)
e−2λn + 1

2

)
n

P−→ 1.

Proof .
By Chebyshev’s inequality,

Prob
(∣∣Wkn − E[Wkn ]

∣∣ ≥ εE[Wkn ]
)

≤ Var[Wkn ]
ε2(E[Wkn ])2

∼ vnn

ε2µ2
nn2

→ 0, as n → ∞.

Hence,
Wkn

E[Wkn ]
P−→ 1.

From the convergence E[Wkn ]/(µnn) → 1, and Slut-
sky’s Theorem in its multiplicative form (cf. [7], 1993,
P. 147), we obtain

Wkn

µnn

P−→ 1.

Before we dwell on the proof of a central limit the-
orem for the amount of gas in Chamber A by the
end of some linear phase, we need a technical lemma,
which shows that Wkn grows linearly with n, like its
mean, with correction terms that are OL1(

√
n ). The

purpose of this calculation is for later summation to
verify conditional Lindeberg’s condition.

Lemma 3 Let Wkn be the number of white balls in
the urn after kn draws, where kn = λnn + o(n), for
some λn, such that 0 < S1 ≤ λn ≤ S2 < ∞. Then

Wkn = µnn + OL1(
√

n ),

and
W 2

kn
= µ2

nn2 + OL1(n
3/2),

Proof .
From the asymptotics of the mean and variance, as

given in (9) and (10), for large n we have

E
[(

Wkn − µnn
)2] = Var[Wkn] +

(
E[Wkn ] − µnn

)2

= vn n + O(1)

≤ e4S2 − 1 − 4S1(1 − 2α)2

4e4S1
n

+O(1)
= O(n).(11)

So, by Jensen’s inequality

E
[∣∣∣Wkn − µnn

∣∣∣
]
≤

√
E

[(
Wkn − µnn

)2] = O(
√

n ),

which implies

Wkn = µnn + OL1(
√

n ).

Moreover, by the Cauchy-Schwarz inequality we have

E
[∣∣∣W 2

kn
− µ2

nn2
∣∣∣
]

= E
[∣∣∣Wkn + µnn

∣∣∣
∣∣∣Wkn − µnn

∣∣∣
]

≤
√

E
[(

Wkn + µnn
)2]

E
[(

Wkn − µnn
)2]

.

Obviously, Wkn + µnn ≤ n + ((α − 1
2 )e−2S1 +

1
2 ) n + O(1) = O(n). We employ (11) to bound√

E
[(

Wkn − µnn
)2] by O(

√
n ). Subsequently, we

obtain
E

[∣∣∣W 2
kn

− µ2
nn2

∣∣∣
]

= O
(
n3/2

)
,

which implies

W 2
kn

= µ2
nn2 + OL1

(
n3/2

)
.

Proof of Theorem 2.
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Recall the expressions for Un (cf. (5)), and Vn

(cf. (6)). In this phase we take the scale factor ξn

to be
√

4nvne4λn . The proof will be complete if we
show that Un converges to 0 in probability, and Vn

converges to a constant in probability.
Suppose j ∼ yn, with 0 < y < S2. It follows from

Lemma 2 that

|∇M̃j| ≤ 8e2S2 ,

for all n greater than sum N ′
0 > 2. In view of this

uniform bound, the conditional Lindeberg’s condi-
tion can be argued as follows. The set {|∇M̃j| >

ε
√

4nvne4λn } is empty, for all n greater than some
n0(ε) > N ′

0 > 2. For large n, we have

Un =
n0(ε)∑

j=1

E
[( ∇M̃j√

4nvne4λn

)2

×1{∣∣∣ ∇M̃j√
4nvne4λn

∣∣∣>ε

}
∣∣∣Fj−1

]

≤ 1
4nvne4λn

n0(ε)∑

j=1

E
[
(∇M̃j)2 | Fj−1

]

≤ 16e2S2n0(ε)
nvne4λn

→ 0, as n → ∞.

The conditional Lindeberg’s condition has been ver-
ified in the linear phase.

The asymptotic equivalents in Lemma 3 apply only
in the linear phase. However, before the linear phase
the obvious bound n on Wj−1 is sufficient for our
purpose.

To asymptotically handle the sums in the condi-
tional Lindeberg’s condition (going over the range of
indexes 1 to kn ∼ λnn) let us break them up at some
point near the beginning of the linear phase. Choose
a small positive ε < S1 and break up the sums in Vn

into sums going from 1 to bεnc−1 and sums starting
at bεnc and ending at kn. Applying the asymptotics
of Lemma 3 the 1

4–conditional variance condition can
be verified in the linear phase.

According to the martingale central limit theorem
kn∑

j=1

( ∇M̃j√
4nvne4λn

)
=

Mkn − M0√
4nvne4λn

D−→ N
(
0,

1
4

)
.

Subsequently, we write

ρkn
n Wkn − ρkn+1

n −ρn

ρn−1 − W0√
nvne4λn

D−→ N (0, 1).

Using the asymptotic relation ρkn
n = (n/(n− 2))kn =

e2λn + O(1/n) in the linear phase, and that the ini-
tial condition is W0 = bαnc ∼ αn, the statement of
the theorem follows from an application of Slutsky’s
theorem (See [7], 1993, P. 146–147).

6.3 The superlinear phase

Suppose that the gas mixing continued for a long pe-
riod of time. As seen from the behavior of the av-
erage, the initial conditions are attenuated through
the linear phase and the fixed average component 1

2n
becomes more pronounced and eventually dominates
in the superlinear phase. Many of the principles of
the proof for the linear phase apply within the su-
perlinear phase, so we shall be a bit brief in present-
ing an adjustment of these proofs. For instance, via
the asymptotic equivalents of the mean and variance
in the superlinear phase, we can mimic the proof of
Theorem 4, and get a similar result. Namely, when
n = o(kn), we have

Wkn

n

P−→ 1
2
.

Also, in view of the mean and variance asymptotics
we can replicate the result of Lemma 3. We only
need to replace µn by 1

2 , and the proof goes through
verbatim to obtain

Wkn =
1
2
n + OL1(

√
n ),

and
W 2

kn
=

1
4
n2 + OL1(n

3/2).

In the superlinear phase the sequence ρj
n grows very

fast, we must take it as part of the normalization.
We take the scale ξn to be ρkn

n

√
n. By Lemma 2 we

have ∣∣∣∇M̃j

ρj
n

∣∣∣ ≤ 4.
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Proof of Theorem 3.
For the conditional Lindeberg’s condition we have

the uniform upper bound of 4 for |∇M̃jρ
−j
n |, for all n

greater than some N0 > 2 (see Lemma 2). Therefore,
for any ε > 0, the sets {|∇M̃jρ

−j
n | > ε

√
n } are all

empty, for all n greater than some n0(ε) > N0. For
large n we have

Un =
n0(ε)∑

j=1

E
[( ∇M̃j

ρj
n
√

n

)2

1{∣∣∣ ∇M̃j

ρ
j
n

√
n

∣∣∣>ε

}
∣∣∣Fj−1

]

≤ 1
n

n0(ε)∑

j=1

E
[(∇M̃j

ρj
n

)2

| Fj−1

]

≤ 16n0(ε)
n

→ 0, as n → ∞.

The conditional Lindeberg’s condition has been ver-
ified throughout the superlinear phase.

For the sum in the conditional variance condition
we apply the bound Wj−1 ≤ n until the superlinear
phase. More precisely, to asymptotically handle the
sums in the conditional Lindeberg’s condition (going
over the range of indexes 1 to kn) we break up the
sums in Vn into sums going from 1 to k′

n − 1, which
is any superlinear function of order less than kn (giv-
ing ignorable contribution) and sums starting at k′

n

and ending at kn (most of the contribution comes
near kn). We can take k′

n = bkn/ ln(kn/n)c. The
1
4
–variance condition follows.
According to the martingale central limit theorem

ρkn
n Wkn − ρkn+1

n −ρn

ρn−1 − W0

ρn
kn

√
n

D−→ N
(
0,

1
4

)
.

Using that ρkn
n = (n/(n − 2))kn grows exponentially

in the superlinear phase, an application of Slutsky’s
theorem (See Karr, 1993, P. 146–147) gives the re-
sult.
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