
\ fWf#

The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2010-11
May 15, 2010

Pattern-Based Modeling and Solution of
Probabilistically Constrained Optimization Problems

Miguel A. Lejeune
Department of Decision Sciences

The George Washington University

Pattern-Based Modeling and Solution of
Probabilistically Constrained Optimization Problems

MIGUEL A. LEJEUNE∗

George Washington University, Washington, DC, USA; mlejeune@gwu.edu

Abstract

We propose a new modeling and solution method for probabilistically constrained optimization prob-
lems. The methodology is based on the integration of the stochastic programming and combinatorial
pattern recognition fields. It permits the very fast solution of stochastic optimization problems in
which the random variables are represented by an extremely large number of scenarios. The method
involves the binarization of the probability distribution, and the generation of a consistent partially
defined Boolean function (pdBf) representing the combination (F, p) of the binarized probability dis-
tribution F and the enforced probability level p. We show that the pdBf representing (F, p) can be
compactly extended as a disjunctive normal form (DNF). The DNF is a collection of combinatorial
p-patterns, each of which defining sufficient conditions for a probabilistic constraint to hold. We
propose two linear programming formulations for the generation of p-patterns which can be subse-
quently used to derive a linear programming inner approximation of the original stochastic problem.
A formulation allowing for the concurrent generation of a p-pattern and the solution of the determin-
istic equivalent of the stochastic problem is also proposed. Results show that large-scale stochastic
problems, in which up to 50,000 scenarios are used to describe the stochastic variables, can be con-
sistently solved to optimality within a few seconds.

Subject classifications: Stochastic Programming, Combinatorial Pattern, Probabilistic Constraint,
Boolean Function

1 Problem Formulation, Literature Review, and Contributions

In this paper, we propose a new modeling and numerical solution framework for stochastic programming

problems [4, 42, 47]. The methodology is based on pattern recognition [19, 55] and, in particular, on the

derivation of logical and combinatorial patterns [20, 36, 45, 52, 53]. The proposed framework allows

for the deterministic reformulation and solution of probabilistically constrained programming problems

of the form:
min cT x

subject to Ax ≥ b

P(T jx ≥ ξ j, j ∈ J) ≥ p

x ≥ 0

. (1)

∗The author is supported by Grant # W911NF-09-1-0497 from the Army Research Office.

1

The notation |J| refers to the cardinality of the set J, ξ is a |J|-dimensional random vector which has a mul-

tivariate probability distribution with finite support, x is the m-dimensional vector of decision variables,

c ∈ Rm, b ∈ Rd, A ∈ Rd×m and T ∈ R|J|×m are deterministic parameters, p is a prescribed probability

or reliability level, and the symbol P refers to a probability measure. We consider the most general and

challenging case in which there is no independence restriction between the components ξ j of ξ. Thus,

P(T jx ≥ ξ j, j ∈ J) ≥ p (2)

is a joint probabilistic constraint which enforces that the combined fulfillment of a system of |J| linear in-
equalities

m∑
k=1

T jkxk ≥ ξ j must hold with a |J|-variate joint probability. Stochastic programming problems

of this form are non-convex and very complex to solve. The example that follows is used throughout the

manuscript to illustrate different aspects of the proposed approach.

Example 1 Consider the probabilistically constrained problem

min x1 + 2x2

subject to P
{

8 − x1 − 2x2 ≥ ξ1
8x1 + 6x2 ≥ ξ2

}
≥ 0.7

x1, x2 ≥ 0

(3)

where the random vector ξ = [ξ1, ξ2] accepts ten equally likely (pk = 0.1, k = 1, . . . , 10) realizations k

represented by ωk = [ωk
1, ω

k
2] and has the following two-variate probability distribution:

Table 1: Probability Distribution
k ωk

1 ωk
2 F(ωk)

1 6 3 0.2
2 2 3 0.1
3 1 4 0.1
4 4 5 0.3
5 3 6 0.3
6 4 8 0.5
7 6 8 0.7
8 1 9 0.2
9 4 9 0.7
10 5 10 0.8

The feasibility set defined by the probabilistic constraint is non-convex. It is the union of the polyhedra

{(x1, x2) ∈ R2
+ : 8 − x1 − 2x2 ≥ 6, 8x1 + 6x2 ≥ 8}, and {(x1, x2) ∈ R2

+ : 8 − x1 − 2x2 ≥ 4, 8x1 + 6x2 ≥ 9}.

1.1 Literature Review

Programming under probabilistic constraints has been extensively studied (see [43] for a review) and has

been applied for many different purposes ranging from the replenishment process in military operations

[30], the enforcement of cycle service levels in a multi-stage supply chain [32, 33], the construction of

pension funds [25], the monitoring of pollution level [18], etc. Probabilistic constraints with random

2

right-hand side have a deterministic technology matrix T in (1), while the stochastic component is in

the right-hand side of the inequality T x ≥ ξ subject to the probabilistic requirement. Stochastic opti-

mization problems with individual [9] probabilistic constraints (i.e., ξ is a one-dimensional vector) have

a deterministic equivalent, whose continuous relaxation is straightforward to derive using the quantile

of the one-dimensional random variable. However, the modeling of the reliability of a system through

a set of individual probabilistic constraints does not allow the attainment of a system-wide reliability

level [42], but instead enforces a certain reliability level for each individual part of the system. To that

end, joint probabilistic constraints, first analyzed in [37] under the assumption of independence between

each component of the random vector ξ, are needed. Prékopa [39] considered the most general setting

by removing the independence assumption between the components of the system.

A key factor for the computational tractability of stochastic problems with joint probabilistic con-

straints concerns the convexity properties of the feasible set. Prékopa [40] showed that, if the functions

T jx− ξ j ≥ 0 are concave in x and ξ, and ξ is continuously distributed with logarithmically concave prob-

ability density function, then the set of vectors x satisfying the joint probabilistic constraint is convex,

allowing therefore to resort to a solution method based on convex programming techniques. However,

such convexity properties do not apply when the random variables are discretely distributed. The corre-

sponding optimization programming problems are well-known to be non-convex and NP-hard, and have

been receiving particular attention lately [10, 12, 31, 32, 33, 34, 35, 46, 48].

Three main families of solution approaches can be found in the literature for the above probabilisti-

cally constrained optimization problems. The first one relies on the concept of p-efficiency [41] which

requires the a priori uncovering of the finite set of p-efficient points. This allows the transformation of

the stochastic problem into a disjunctive one which can be solved through a convexification process and

the cone generation algorithm [12] or the use of a specialized column generation algorithm [33].

The second family of solution methods associates a binary variable with each possible realization

of the random vector and, then, substitutes a mixed-integer programming (MIP) problem of very large

dimensionality (i.e., one binary variable per possible realization) for the original stochastic one [10].

To solve the resulting MIP problem, which contains a cover and ”big-M” constraints, Ruszczyński [46]

developed specialized cutting planes that he embedded in a branch-and-cut algorithm. Cheon et al. [10]

proposed a branch-reduce-cut algorithm that iteratively partitions the feasible region and uses bounds

to fathom inferior partitions. Luedtke et al. [35] proposed stronger MIP formulations for which they

generate a family of valid inequalities, which are subsumed by the facet-defining family of cuts derived

in [31] . In a set of very recent related studies, a sample approximation problem [34] is used to generate

feasible solutions and optimality bounds for problems with joint probabilistic constraints. It was also

shown that MIP reformulations [48, 49] of the probabilistic set covering problem can be solved in a very

computationally efficient way [48].

The third type of approaches consists in deriving safe, conservative approximations [8, 38] that take

the form of convex optimization problems whose optimal solution is not always very close to the true

optimal solution. In fact, the probability level p̂ enforced by these techniques can be much larger than

3

the prescribed one p. If the decision-maker is willing to trade some safety level for lower costs, and

sets accordingly the reliability level p to moderately high values (say p = 0.95 or 0.9), then the robust

approximation might not always be suitable [34].

1.2 Motivation and Contributions

The fundamental contribution of this paper resides in the development of a novel solution methodology

for stochastic programming problems. To the best of our knowledge, this is the first time that techniques

from the pattern recognition field [15, 17, 19, 55] are employed for the optimization of probabilistically

constrained optimization problems. Pattern recognition has been primarily used for feature selection, un-

supervised classification, clustering, data mining or image processing purposes. The expected outcomes

of pattern-based methods differ depending on whether they are used for classification or for optimization.

With classification objectives in mind, logical / combinatorial pattern methods [5, 14, 20, 45, 52, 53], are

primarily used to derive ”rules” that separate data points belonging to different categories. In the stochas-

tic optimization context focused upon in this paper, the extracted patterns provide a compact represen-

tation of sets of conditions that are sufficient for the satisfaction of a probabilistic constraint, and can

be used to derive deterministic reformulations of the stochastic problem. Besides its novelty, a crucial

factor of the proposed framework is that it allows the very fast exact solution of stochastic optimization

problems in which the random variables are represented by an extremely large number of scenarios. We

describe below the main elements of the proposed methodology and discuss the organization of the paper.

In Section 2, we introduce the concepts of p-sufficient and p-insufficient realization, define a bina-

rization method for a probability distribution, propose a method for selecting relevant realizations, and

represent the combination (F, p) of the binarized probability distribution F of the random variable ξ and

the enforced probability level p as a partially defined Boolean function (pdBf). In Section 3, we extend

the pdBf representing (F, p) as a disjunctive normal form (DNF), which is a collection of combinatorial

p-patterns. Each of those defines sufficient conditions for the probabilistic constraint (2) to hold. Then,

we propose a new mathematical programming method for the derivation of combinatorial patterns. Two

integer programming and two linear programming formulations are presented. Besides its novelty, the

interest of the proposed method is that it offers a remedy to an issue associated with enumerative meth-

ods, which are highly efficient for the generation of patterns of small degrees, but turn out to be of lower

efficacy when large-degree patterns need to be extracted [6]. In Section 4, we show how we can use

the combinatorial patterns to derive a linear programming inner approximation and a mixed-integer pro-

gramming deterministic equivalent of the probabilistically constrained problem (1). Section 5 discusses

the numerical implementation of the proposed methodology. Section 6 provides concluding remarks.

2 Representation of (F, p) as a Partially Defined Boolean Function
In this section, we shall first discuss the binarization process of the probability distribution and show

how this allows the representation of the combination (F, p) of the probability distribution F and the

prescribed probability level p as a partially defined Boolean function (pdBf). We shall then discuss the

4

required properties of the set of cut points used for the binarization process and define the set of relevant

realizations considered for the pattern generation process.

2.1 Binarization of Probability Distributions
We develop an approach to binarize probability distributions with finite support. We denote by Ω the

finite set of the possible realizations k ∈ Ω of the |J|-dimensional random vector ξ with cumulative

distribution function F. Each realization k is represented by the |J|-dimensional deterministic vector:

ωk =
[
ωk

1, . . . , ω
k
|J|

]
. We first introduce the concepts of p-sufficient and p-insufficient realizations.

Definition 1 A realization k is called p-sufficient if and only if P(ξ ≤ ωk) = F(ωk) ≥ p and is

p-insufficient if F(ωk) < p.

The inequality sign in ξ ≤ ωk must be understood componentwise.

The introduction of the Boolean parameter Ik indicating whether k is p-sufficient or not

Ik =

{
1 if F(ωk) ≥ p
0 otherwise

(4)

generates a partition of the set Ω of realizations into two disjoint sets of p-sufficient Ω+ (Ik = 1) and

p-insufficient Ω− (Ik = 0) realizations such that: Ω = Ω+ ⋃
Ω− with Ω+ ⋂

Ω− = ∅.

The binarization process of a probability distribution consists in the introduction of several binary

attributes βi j for each component ξ j. The notation βi j denotes the ith binary attribute associated with

component ξ j. Each binary attribute βk
i j takes value 1 (resp., 0) if the value ωk

j taken by ξ j in realization

k is larger than or equal to (resp., strictly smaller than) a defined threshold value ci j, called cut point:

βk
i j =

{
1 if ωk

j ≥ ci j

0 otherwise
(5)

with

ci′ j < ci j ⇒ βk
i j ≤ β

k
i′ j for any i′ < i, j ∈ J, k ∈ Ω . (6)

As a result of the binarization of the probability distribution, each numerical vector ωk is mapped to an

n-dimensional binary vector

βk =
[
βk

11, . . . , β
k
n11, . . . , β

k
i j, . . . , β

k
n j j, . . .

]
(7)

which is a vertex of {0, 1}n, where n =
∑
j∈J

n j is the sum of the number n j of cut points associated with

each component j.

As an illustration, we consider the set of cut points

C = {c11 = 4; c21 = 5; c31 = 6; c12 = 8; c22 = 9; c32 = 10} (8)

to binarize the numerical components ω1 and ω2. The set (8) includes three cut points defined with

respect to each component of the vector ξ. The central part of Table 2 displays the binarization of the

probability distribution of ξ (see Example 1) with the set of cut points (8).

5

The set of cut points is used to generate a binary image βk of each realization initially represented

by the numerical vector ωk. The association of the Boolean parameter Ik with the binary image βk

of the realization defines the binary projection ΩB = Ω+
B
⋃

Ω−B of Ω, where Ω+
B and Ω−B respectively

denote the sets of binarized p-sufficient and p-insufficient realizations. It permits the representation of

the combination (F, p) of a probability distribution F and a probability level p as a pdBf g(Ω+
B,Ω

−
B) that

is defined by the pair of sets (Ω+
B,Ω

−
B) such that Ω+

B,Ω
−
B ⊆ {0, 1}

n. The right part of Table 2 displays the

truth table of the pdBf obtained with the set of cut points (8).

Table 2: Realizations, Binary Images, and Truth Table of Partially Defined Boolean Function

Numerical Truth Table of Partially Defined Boolean Function
Representations Binarized Images Indicator

k ωk
1 ωk

2 βk
11 βk

21 βk
31 βk

12 βk
22 βk

32 Ik

1 6 3 1 1 1 0 0 0 0
2 2 3 0 0 0 0 0 0 0
3 1 4 0 0 0 0 0 0 0 Set Ω−B of
4 4 5 1 0 0 0 0 0 0 p-insufficient
5 3 6 0 0 0 0 0 0 0 realizations
6 4 8 1 0 0 1 0 0 0
8 1 9 0 0 0 1 1 0 0
7 6 8 1 1 1 1 0 0 1 Set Ω+

B of
9 4 9 1 0 0 1 1 0 1 p-sufficient
10 5 10 1 1 0 1 1 1 1 realizations

2.2 Properties of Set of Cut Points

In Example 1, the binarization of the probability distribution with respect to the six cut points in (8)

gives a pdBf such that the sets Ω+
B and Ω−B do not intersect. However, not any set of cut points allows this.

Consider for example the set of cut points {c11 = 5; c12 = 4; c22 = 6} which generates the same binary

image (0, 1, 1) (Figure 1) for the p-sufficient realization 9 and the p-insufficient ones 5, 6 and 8. Such

a set of cut points (and the associated pdBf) does not preserve the disjointedness between the sets of p-

sufficient and p-insufficient realizations. Indeed, it results in p-sufficient and p-insufficient realizations

having the same binary projection and impedes the derivation of the conditions that are necessary for

P(T jx ≥ ξ j, j ∈ J) ≥ p to hold. Clearly, the ability to accurately separate p-sufficient from p-insufficient

realizations is a prerequisite for the derivation of a reformulation to the stochastic problem (1). This

requires the generation of a consistent set of cut points.

Definition 2 A set of cut points is consistent if the sets Ω+
B and Ω−B associated with the pdBf g(Ω+

B,Ω
−
B)

are disjoint. If this is the case, g(Ω+
B,Ω

−
B) is a consistent pdBf.

We introduce the concept of sufficient-equivalent set of cut points.

Definition 3 A sufficient-equivalent set of cut points Ce comprises a cut point ci j for any value ωk
j taken

by any of the p-sufficient realizations on any component j:

Ce = {ci j : ci j = ωk
j, j ∈ J, k ∈ Ω+} . (9)

6

Figure 1: Inconsistent Set of Cut Points

(0,1,1) (1,1,1)

(0,1,0) (1,1,0)

(0,0,0) (1,0,0)

ω
4

ω
1

ω
2

ω
3

ω
5

ω
6

ω
7

ω
8

ω
9

ω
10

c 22 = 6

c 12 = 4

c 11 = 5

The pdBf g(Ω+
B,Ω

−
B) associated with the sufficient-equivalent set of cut points is called sufficient-equivalent

pdBf. Proposition 1 is obvious and a direct consequence of Definition 3.

Proposition 1 A sufficient-equivalent set of cut points is consistent.

The construction of the sufficient-equivalent set of cut points is immediate. In our example, the sufficient-

equivalent set of cut points is the one defined in (8). Note that the combinatorial pattern literature

[5, 21, 28] describes several techniques (polynomial-time algorithm, set covering formulation) to build

consistent set of cut points with special features (master or minimal set of cut points).

2.3 Set of Relevant Realizations

The objective is to derive a combinatorial pattern that defines sufficient conditions, possibly the minimal

ones, for the probabilistic constraint (2) to be satisfied. In order to do so, we cannot only take into

consideration the realizations k ∈ Ω of the random vector. In addition to those, we shall consider and

generate all points or realizations that could be p-sufficient. For k to be p-sufficient (i.e., F(ωk ≥ p), the

|J| following conditions must hold:

F j(ωk
j) ≥ p, j = 1, . . . , |J| , (10)

where F j is the marginal probability distribution of ξ j. Thus, for every j, we create the set of values Z j

Z j = {ωk
j : F j(ωk

j) ≥ p, k ∈ Ω, j = 1, . . . , |J|} , (11)

define the direct product [43]
Z = Z1 × . . . × Z j × . . . × Z|J| , (12)

and obtain the extended set Ω
⋃

Z of realizations.

The application of the binarization process to the additional points included in Z provides their bina-

rized images. In Example 1, the set Z comprises five realizations (k = 11, . . . , 15 in Table 3).

Figure 2 shows that each p-sufficient realization is mapped into a binary vector which differs from

all the binary vectors associated with p-insufficient realizations. The gray (resp., black) area in Figure 2

is the integer hull of the p-sufficient (resp., p-insufficient) realizations. All the points in the area between

the two integer hulls correspond to vectors β with fractional values, which, by virtue of the binarization

7

process (5), correspond to numerical values that ξ j cannot take and that do not belong to Z j (11). The

binarization process and the construction of the extended set of realizations enable the representation of

the upper (resp., lower) envelope of the integer hull of the p-insufficient (resp., p-sufficient) points. Note

that, if we do not consider realization 11 (which belongs to set Z) with binary image β11 = (1, 1, 0, 1, 0, 0),

we are not able to obtain the upper envelope of the integer hull of the p-insufficient points. This would

be a problem for generating patterns sufficient conditions for the constraint (2) to hold.

Figure 2: Integer Hull of p-Sufficient and p-Insufficient Realizations

ω
9

ß i14=(1,0,0,.,.,.)

ß i2

5=(1,1,0,.,.,.) 6=(1,1,1,.,.,.)

8=(.,.,.,1,0,0)

9=(.,.,.,1,1,0)

10=(.,.,.,1,1,1)

ω
7

ω
10

ω
13

ω
14

ω
15

ω
11

ω
6

ω
1

ω
1 2

ω
2 =ω 3 =ω 5

ω
4

ω
8

The binarization phase allows the elimination of a number of points and the derivation of the set Ω̄ of

relevant realizations. Several realizations have the same binary image (e.g., realizations 2 and 3) and we

only include one of them in Ω̄. Recall that the objective is to derive patterns defining sufficient conditions

for the satisfaction of (2). A well known set of necessary conditions for p-sufficiency is given by (10),

which, based on the definition of the sufficient-equivalent set of cut points (9) used for the binarization

process (5), can be rewritten as: βk
1 j = 1, j ∈ J. Thus, each realization k such that βk

1 j = 0 for any j ∈ J

does not meet the basic preliminary condition, is a priori known to be p-insufficient, is not needed to

generate patterns separating p-sufficient realizations from p-insufficient ones, and is not included in the

set of relevant realizations. Table 3 gives the set of relevant realizations Ω̄ for Example 1.

Table 3: Set of Relevant Realizations Ω̄B

Numerical Representations Binarized Images
k ωk

1 ωk
2 βk

11 βk
21 βk

31 βk
12 βk

22 βk
32

6 4 8 1 0 0 1 0 0
7 6 8 1 1 1 1 0 0
9 4 9 1 0 0 1 1 0

10 5 10 1 1 0 1 1 1
11 5 8 1 1 0 1 0 0
12 4 10 1 0 0 1 1 1
13 5 9 1 1 0 1 1 0
14 6 9 1 1 1 1 1 0
15 6 10 1 1 1 1 1 1

8

3 Mathematical Programming Approach for Combinatorial Patterns

In this section, we shall develop a mathematical programming approach allowing for the construction of

combinatorial patterns that define sufficient conditions for the probabilistic constraint to hold. Prior to

generating combinatorial patterns, we introduce the terminology and explain the rationale for the use of

mathematical programming in order to derive patterns.

3.1 Extension of the Partially Defined Boolean Function of (F, p)

Section 2 details how the binarization process permits the derivation of a pdBf that represents the com-

bination (F, p) of the probability distribution F with the probability level p. The question that arises now

is whether a compact extension [54] of the pdBf representing (F, p) can be derived.

Definition 4 [7] Let B = {0, 1} and consider the pdBf g defined by the pair of sets (T , F): T ,F ⊆ Bn.

A function f : Bn → B is called an extension of the pdBf g(T ,F) if T ⊆ T (f) and F ⊆ F (f).

It was shown [5] that a pdBf g(T ,F) has a Boolean extension [7] if and only if T
⋂
F = ∅, which

is equivalent to saying that any consistent pdBf can be extended by a Boolean function. Therefore,

from Proposition 1, we know that the sufficient-equivalent pdBf representing (F, p) can be extended as

a Boolean function. With the existence of a Boolean extension for the pdBf ensured, the objective is to

find an extension f that is defined on the same support set as g(Ω̄+
B, Ω̄

−
B) and that is as simple and compact

as possible. Since every Boolean function can be represented by a DNF, we shall extend g(Ω̄+
B, Ω̄

−
B) as a

DNF which is a disjunction of a finite number of combinatorial patterns.

3.2 Terminology

Before defining the DNF that extends g(Ω̄+
B, Ω̄

−
B), we introduce the key Boolean concepts and notations

that are used in the remaining part of this paper and illustrate them with Example 1.

The Boolean variables βi j, i = 1, . . . , n j, j ∈ J and their negations or complements β̄i j are called

literals. A conjunction of literals t =
∧

i j∈P
βi j

∧
i j∈N

β̄i j, P
⋂

N = ∅ constitutes a term [5, 28] or clause

[52, 53] whose degree d is the number (|P| + |N| = d) of literals in it. The set P (resp., N) defines

the set of non-complemented (resp., complemented) literals involved in the definition of the term t. A

disjunction
S∨

s=1
ts of terms ts is called a disjunctive normal form (DNF) which has degree d if |Ps

⋃
Ns| ≤

d, s = 1, . . . , S , i.e., if the maximum number of literals included in any of the terms of the DNF is d.

Definition 5 A term t is said to cover a realization k, which is denoted by t(k) = 1, if the products of the

values βk
i j taken k on the literals βi j defining the term is equal to 1:

t(k) = 1⇔
∧
i j∈P

βk
i j

∧
i j∈N

β̄k
i j = 1 .

The coverage of a term, pattern, or DNF is the number of realizations covered by it. In the above

example, t = β11 β̄12 is a term of degree 2 covering the two negative realizations 1 and 4, and f =

9

β11 β̄12
∨
β31 β̄32 is a DNF that contains two terms of degree 2: f covers the two p-insufficient realizations

1 and 4 and the two p-sufficient ones 7 and 14.

It follows from Definition 4 that the DNF f extending the pdBf g(Ω̄+
B, Ω̄

−
B) must be such that each

realization defined as p-sufficient (resp., p-insufficient) by the pdBf g(Ω̄+
B, Ω̄

−
B) must also be considered

as p-sufficient Ω̄+
B(f) (resp., p-insufficient Ω̄−B(f)) by the DNF f . This is equivalent to requiring that the

DNF f covers all p-sufficient realizations and does not cover any p-insufficient ones:{
f (k) ≥ 1, k ∈ Ω̄+

B
f (k) = 0, k ∈ Ω̄−B

.

The DNF f =
∨
s∈S

ts includes a number |S | of p-patterns which defines sufficient conditions for the

probabilistic constraint (2) to hold.

Definition 6 A term t is a p-pattern if it covers at least one p-sufficient realization and does not cover

any p-insufficient one: ∨
k∈Ω̄+

B

t(k) ≥ 1 and
∧

k∈Ω̄−B

t(k) = 0 .

Broadly defined, a p-pattern is a logical rule that imposes upper and lower bounds on the values of

a subset of the input variables and takes the form of a conjunction of literals. It can be interpreted as a

subcube of the n-dimensional unit cube {0, 1}n that intersects Ω̄+
B (i.e., one or more p-sufficient realization

satisfies its conditions) but do not intersect Ω̄−B (i.e., no p-insufficient realization satisfies its conditions).

Corollary 1 immediate follows from the construction of the extended set of realizations (11)-(12) and the

use of the sufficient-equivalent set of cut points (Definition 3).

Corollary 1 Consider a sufficient-equivalent set of cut points. A term that does not cover any p-

insufficient realization necessarily covers at least one p-sufficient realization.

3.3 Pattern Properties: Rationale for Mathematical Programming Generation
3.3.1 Properties

In order to derive patterns that can be conveniently used for computational purposes, we shall attempt to

derive prime [24] patterns.

Definition 7 A pattern is prime if the removal of one of its literals transforms it into a term which is

not a pattern.

Basically, it means that a prime pattern does not include any redundant literals. We also observe that, for

a probabilistic constraint to hold, (at least) one condition must be imposed on each component ξ j of the

|J|-dimensional random vector. Proposition 2 follows:

Proposition 2 The degree of a pattern defining sufficient conditions for (2) to hold is of degree at least

equal to |J|.

10

We shall now investigate whether the pdBf representing (F, p) can take some particular functional

form facilitating its computational handling. We first consider the monotonicity property which, for

Boolean functions, provides crucial computational advantages [11, 50].

Definition 8 [44] A Boolean function f is positive (increasing) monotone, also called isotone, if x ≤ y

implies f (x) ≤ f (y).

The inequality sign is understood componentwise. The conditions under which a pdBf can be extended

as a positive Boolean function is given in [5] as:

Lemma 1 A pdBf g(T ,F) has a positive Boolean extension if and only if there is no x ∈ T and y ∈ F

such that x ≤ y.

Lemma 1 is used to derive Theorem 1 which applies to the type of extension (i.e., extension of a pdBf

representing the combination of a probability distribution and of a probability level) studied in this paper.

Theorem 1 Any Boolean extension of a consistent pdBf g(Ω̄+
B, Ω̄

−
B) representing (F, p) is a positive

Boolean function.

Proof. Each ωk (resp., ωk
j, j ∈ J) is a positive monotone variable in the multivariate (resp., marginal)

cumulative probability distribution F (resp., F j) of ξ (resp., ξ j, j ∈ J):

P
(
ξ ≤ ωk

)
≤ P

(
ξ ≤ ωk′

)
if ωk ≤ ωk′ and P

(
ξ j ≤ ω

k
j

)
≤ P

(
ξ j ≤ ω

k′
j

)
if ωk

j ≤ ω
k′
j , j ∈ J .

Definition 1 states that k ∈ Ω̄+ if and only if P(ξ ≤ ωk) ≥ p, and k′ ∈ Ω̄− if and only if P(ξ ≤ ωk′) < p.

Therefore, there is no k ∈ Ω̄+, k′ ∈ Ω̄− such that ωk′ ≥ ωk. Along with the consistency of the set of cut

points used for the binarization process (5), this ensures that the pdBf g representing (F, p) is monotone

increasing [6] in the value of each βi j

g
(
β11, β21, . . . , βi−1 j, 0, βi+1 j, . . . , βn|J| |J|

)
≤ g

(
β11, β21, . . . , βi−1 j, 1, βi+1 j, . . . , βn|J| |J|

)
.

The consistency of g preserves the disjointedness between the sets Ω̄+
B and Ω̄−B, which implies that k ∈ Ω̄+

B

if and only if g(βk) = 1 and k′ ∈ Ω̄−B if and only if g(βk′) = 0.

The consistency and monotonicity properties of g imply that there is no k ∈ Ω̄+
B, k
′ ∈ Ω̄−B such that

βk′ ≥ βk. This, along with Lemma 1, completes the proof. �

Theorem 1 is very important, since it was shown [51] that patterns included in a DNF that constitutes

a positive Boolean function do not need to contain complemented literals. The monotonicity property

implies that prime patterns (Definition 7) included in a DNF that is an isotone Boolean function do not

contain complemented literals [6], and, for the problem at hand, leads to the following Lemma

Lemma 2 Prime p-patterns do not contain any complemented literal β̄i j.

which, combined with Proposition 2, indicates that

11

Lemma 3 Prime p-patterns for realizations of a |J|-variate random variable are of degree |J|.

Proof. Let t =
∧

i j∈P
βi j

∧
i j∈N

β̄i j be a p-pattern of degree d = |P|+ |N |. From Lemma 2, we know that N = ∅

if t is a prime pattern.

Consider that t includes two literals βi j and βi′ j associated with the same component ξ j. Let i < i′ which

implies that ci j < ci′ j. It follows from (5) and (6) that the requirement imposed by βi j is always satisfied

by meeting the one imposed by βi′ j. If the removal of βi′ j transforms t into a term that is not a pattern,

then βi′ j must be kept among the literals included in t. This makes βi j redundant and the definition of a

prime pattern requires its removal. On the other hand, if the removal of βi′ j does not result in t covering

any p-insufficient realization, then it means that βi′ j is not required and should be removed. This shows

that prime p-patterns contain at most one literal per component ξ j, and are thus of degree |J|. �

Lemma 4 follows immediately:

Lemma 4 A pdBf g(Ω̄+
B, Ω̄

−
B) representing (F, p), where F is a |J|-variate probability distribution, can

be extended as a DNF containing prime p-patterns of degree |J| that do not include any complemented

literal β̄i j.

3.3.2 Rationale

Combinatorial patterns are usually generated using term enumeration methods in the combinatorial data

mining literature [2, 3, 6, 13, 21]. Recent research related to the combinatorial methodology called

logical analysis of data [20] has led to major development in this area and has shown that enumeration

methods are very efficient [2, 22, 23] when used for the generation of patterns of small degree (up to 4).

The LAD - Datascope 2.01 software package [1] implements a variety of enumeration algorithms.

However, enumerative techniques are extremely computationally expensive [5] when they are used to

generate terms of larger degree. Indeed, the number of terms of degree up to d is equal to
d∑

d′=1
2d′

(
n
d′

)
and increases very fast with the number n of Boolean variables (and cut points). This is a concern, since,

as indicated by Lemma 3, prime p-patterns are of degree |J|, which is equal to the dimensionality of

the multivariate probability distribution of ξ and potentially large. This motivates the development of a

mathematical programming approach for the generation of patterns.

In the combinatorial data mining, a set covering formulation was proposed in [5] for the generation

of patterns. While the data mining literature derives patterns to classify data, the objective pursued in

this paper is to use combinatorial patterns for the solution of probabilistically constrained optimization

problems. Namely, the generated patterns permit the formulation of a tight linear programming inner

approximation as well as that of the deterministic equivalent of probabilistically constrained problems.

Besides the difference in objective, the mathematical programming formulations proposed in this paper

substantially differ from those that can be found in the data mining literature. In particular, we propose

two linear programming formulations for the derivation of patterns. The reader is referred to [11, 26, 27,

29] for studies of the interplay between logic, Boolean mathematics, and optimization.

12

3.4 Mathematical Programming Derivation of p-Pattern
In this section, we propose four mathematical programming formulations for the generation of a p-

pattern. Definition 6 shows that a p-pattern defines sufficient conditions for the probabilistic constraint

(2) to hold. The optimal p-pattern is the one that enforces the minimal conditions for (2) to hold. How-

ever, it is not possible to identify some specific properties that an optimal p-pattern has and to accordingly

propose a tailored formulation for its generation. Thus, we shall focus on the derivation of a p-pattern

that defines sufficient conditions that are “close to“ the minimal ones. The proposed formulations account

for the following aspects. The optimal p-pattern as well as those defining close-to-minimal conditions

represent faces of the lower envelope of the integer hull of the set of p-sufficient realizations and are thus

likely to have “large” coverage (see Figure 2).

3.4.1 Integer Programming Formulations

The first integer programming formulation IP1 is such that its optimal solution defines the p-pattern with

maximal coverage.

The following notations are used. The decision variables ui j and yk, respectively associated to the

literals βi j and to the p-sufficient realizations k, are binary (17)-(18). The value taken by ui j defines the

literals that are included in the p-pattern t: ui j takes value 1 if βi j is included in t, and is equal to 0

otherwise. The binary variable yk is used to identify which p-sufficient realizations are covered by t as

defined by the feasible solution of IP1: yk takes value 1 if the p-sufficient realization k is not covered by

t, and can take value 0 otherwise.

The objective function (13) minimizes the number of p-sufficient realizations not covered by the

pattern t. Each constraint in (14) forces yk to take value 1 if the p-sufficient realization k is not covered

by t. Each constraint in (15) does not permit t to cover any p-insufficient realization. Constraints (16)

force the inclusion in t of one non-complemented literal (and no complemented literal) per component

j. We denote by z∗ the optimal value of the objective function. Recall that the parameter βk
i j indicates

whether ωk
j is at least equal to ci j (5) and that we use a sufficient-equivalent set of n cut points.

Theorem 2 Any feasible solution (u, y) of the integer programming problem IP1

z = min
∑

k∈Ω̄+
B

yk (13)

subject to
∑
j∈J

n j∑
i=1
βk

i jui j + |J|yk ≥ |J|, k ∈ Ω̄+
B (14)

∑
j∈J

n j∑
i=1
βk

i jui j ≤ |J| − 1, k ∈ Ω̄−B (15)

n j∑
i=1

ui j = 1, j ∈ J (16)

ui j ∈ {0, 1}, j ∈ J, i = 1, . . . , n j (17)

yk ∈ {0, 1}, k ∈ Ω̄+
B (18)

13

(i) defines a prime p-pattern

t =
∧

ui j=1
j∈J,i=1,...,n j

βi j

of degree |J|; (ii) IP1 has an upper bound equal to |Ω̄+
B| − 1; and (iii) its optimal solution (u∗, y∗) defines

the p-pattern with maximal coverage equal to
(∣∣∣Ω̄+

B

∣∣∣ − z∗
)
.

Proof. (i) p-pattern: Let P = {i j : ui j = 1, j ∈ J, i = 1, . . . , n j} the set of (non-complemented) literals in t.

From Definition 5, we have: t(k) = 1 ⇔
∏

i j∈P
βk

i j = 1. Thus, (15) ensures that there is no k ∈ Ω̄−B that can

be covered by t, which, combined with Corollary 1, is enough to show that t is a p-pattern. Constraints

(16) ensure the inclusion of exactly one uncomplemented literal in t. Thus, t is a pattern of degree |J|

and, from Lemma (3), is prime.

(ii) Upper bound: Consider k ∈ Ω̄+
B: (14) allows yk to take value 0 if t(k) = 1. Otherwise, yk is forced to

take value 1. Corollary 1 indicates that any pattern not covering any p-insufficient realization covers one

or more p-sufficient one. Thus, the number of uncovered p-sufficient realizations
∑

k∈Ω̄+
B

yk is ≤ |Ω̄+
B| − 1,

which is a valid upper bound on the objective value of IP1.

(ii) Coverage: The objective function maximizes the number
∑

k∈Ω̄+
B

(1 − yk) of p-sufficient realizations

covered by t. Thus, the pattern t∗ defined by the optimal solution (u∗, y∗) has maximal coverage equal

to the difference between the number (|Ω̄+
B|) of p-sufficient realizations and the number (z∗ =

∑
k∈Ω̄+

B

yk∗) of

those that are not covered by t.

The number of binary variables in the above MIP is equal to n + |Ω̄+
B|, and increases with the number

of cut points and with the number of p-sufficient realizations, which monotonically decreases with the

probability level p. Note that the above MIP does not need to be solved to optimality, since any feasible

solution defines a p-pattern and that a pattern with maximal coverage is called a strong pattern [24].

Next, we formulate a mixed-integer programming (MIP) problem IP2 that contains a significantly

smaller number of binary variables than IP1 and that also allows for the derivation of a p-pattern. The

generated prime p-pattern t contains |J| literals βi j, i j ∈ P, and each literal defines a specific condition

(ωk
j ≥ ci j) for a realization k to be covered by t. Instead of minimizing the number of p-sufficient

realizations not covered by the pattern (see IP1), we shall now minimize the number of conditions

imposed by the literals involved in t that are not satisfied by the p-sufficient realizations. If k is covered

by t, then
∑
j∈J

n j∑
i=1
βk

i jui j = |J|. Otherwise, (20) forces yk to be equal to the number (|J| −
∑
j∈J

n j∑
i=1
βk

i jui j) of

conditions defined by the literals included in t that k does not satisfy. The resulting MIP problem IP2

contains n binary variables instead of (n + |Ω̄+
B|) in IP1. The variables yk are now continuous (21).

Theorem 3 Any feasible solution (u, y) of the mixed-integer programming problem IP2

14

z = min
∑

k∈Ω̄+
B

yk (19)

subject to
∑
j∈J

n j∑
i=1
βk

i jui j + yk = |J|, k ∈ Ω̄+
B (20)

0 ≤ yk ≤ |J|, k ∈ Ω̄+
B (21)

(15) − (17)

(i) defines a prime p-pattern

t =
∧

ui j=1
j∈J,i=1,...,n j

βi j

of degree |J| and coverage |V | with V = {k : yk = 0, k ∈ Ω̄+
B}; and (ii) IP2 has an upper bound equal to

|J| · (|Ω̄+
B| − 1).

Proof. (i) p-pattern: We have that t(k) = 0, k ∈ Ω̄+
B (15). Thus, from Corollary 1, t is a p-pattern and is

of degree |J| (16), thus prime (Lemma 3). Since yk = 0 if and only if t(k) = 1, k ∈ Ω̄+
B, the coverage of t

is thus equal to the cardinality of the set V defined above.

(ii) Upper bound: The number of literals included in t, thus the number of conditions that must be

satisfied by k to be covered by t, is equal to |J|. Thus, over the set Ω̄+
B, this represents |J| · |Ω̄+

B| conditions.

Since the set of cut points is consistent, preserving the disjointedness between Ω̄+
B and Ω̄−B, it is always

possible to derive a prime p-pattern t with degree |J|. Such a pattern covers at least one p-sufficient

realization k, thus |J| of the above conditions always hold. The upper bound on z in IP2 is |J| · (|Ω̄+
B| − 1).

�

In Example 1, the optimal solutions of IP1 and IP2 provide both the same p-pattern t = β11β22 with

coverage equal to |V | = 6 (t does not cover realization 7), and z∗ is equal to 1 for IP1 and IP2.

3.4.2 Linear Programming Formulations

We shall now propose two linear programming formulations for the generation of p-patterns.

Theorem 4 Any feasible solution (u, y) of the linear programming problem LP1

z = min
∑

k∈Ω̄+
B

yk (22)

subject to (14) − (16)

0 ≤ ui j ≤ 1, j ∈ J, i = 1, . . . , n j (23)

0 ≤ yk ≤ 1, k ∈ Ω̄+
B (24)

defines a p-pattern
t =

∧
ui j>0

j∈J,i=1,...,n j

βi j (25)

with coverage |V | with V = {k : yk = 0, k ∈ Ω̄+
B}.

15

Proof. Constraints (15) prevent t from covering any k ∈ Ω̄−B and Corollary 1 implies that t is a p-pattern.

From (14), we have that yk = 0 if and only if t(k) = 1⇔ βk
i j = 1, i j ∈ P. Thus, the coverage of t is |V |. �

Problem LP1 is a linear program and is obviously simpler to solve than IP1 and IP2. The “cost” of

removing the integrality restrictions on the variables is twofold. First, although the objective function

is still related to the coverage of the generated pattern, it cannot be interpreted anymore as representing

the number of p-sufficient realizations covered by t (IP1) or as the number of conditions imposed by t

that are not met by the p-sufficient realizations (IP2). Second, the pattern t defined by a feasible solution

of LP1 is not necessarily prime and can contain a number of literals much larger than |J|, which could

be inconvenient from a computational point of view. This can be easily remedied. Indeed, from the

knowledge of the pattern t generated by LP1, one can immediately derive a prime p-pattern.

Corollary 2 A prime p-pattern

t =
∧

ūi j j=1
j∈J,i=1,...,n j

βi j (26)

with ī j = argmax
i

ui j > 0, j ∈ J , ūi j

{
1 if i = ī j

0 otherwise

can immediately be derived from any feasible solution (u, y) of the linear programming problem LP1.

Proof. Any component j ∈ J requires, for k to be covered by t defined by (25), that: βk
i j = 1, i j ∈ P. All

these conditions can be subsumed by: βk
ī j j

= 1. Indeed, from the binarization process (5)-(6), we know

that: βk
ī j j
≤ βk

i j, (i j) ∈ P. Thus, βk
ī j j

= 1 implies that βk
i j = 1, (i j) ∈ P. This means that t defined by (26),

which includes only literal βi j j per component j, and is thus prime, defines the same conditions as the

pattern defined by (25), and is a p-pattern. �

In Example 1, the optimal solution of LP1 allows the derivation of a prime p-pattern t = β11β22 with

coverage equal to |V | = 6 and z∗ = 0.5.

In the second linear programming formulation LP2, we have a reduced set of n+ |J|+ |Ω̄−B| constraints

and only n continuous decision variables u. We introduce a set of parameters bi j which can be viewed as

the price of including the literal βi j in the definition of the pattern t.

Theorem 5 Any feasible solution (u) of the linear programming problem LP2

z = min
∑
j∈J

n j∑
i=1

bi jui j (27)

subject to (15) − (16)

0 ≤ ui j ≤ 1, j ∈ J, i = 1, . . . , n j (28)

defines a p-pattern
t =

∧
ui j>0

j∈J,i=1,...,n j

βi j .

16

The proof is the same as for LP1. As for LP1, a feasible solution of LP2 does not necessarily define a

prime p-pattern, but we can apply Corollary 2 to construct a prime p-pattern. In Example 1, the optimal

solution of LP2 gives the p-pattern t = β11β22 with coverage equal to |V | = 6 and z∗ = 3.

The optimal solution (u)∗ of LP2 defines the “least costly” p-pattern. Several approaches can be used

to price the inclusion of a literal βi j in the pattern. This is done through the definition of the weights bi j

for which we propose the two following guidelines:

• intra-component pricing: We differentiate the weights bi j assigned to the literals associated with

the same component j. The goal is to generate a p-pattern that defines the minimal (or close to

minimal) conditions for the attainment of the probability level p. Accordingly, we want to include

in the pattern t the literals imposing the least demanding conditions. Thus, for any given j and

i > i′, it is preferable, when possible, to include βi′ j than βi j in t and we accordingly price βi′ j

cheaper than βi j by setting bi j > bi′ j, j ∈ J

• inter-component pricing: The value of bi j, i = 1, . . . n j associated with component j is an increasing

function of the cost associated with j in the objective function of the stochastic problem (1).

In Section 5, we shall evaluate the numerical efficiency of the four proposed mathematical program-

ming formulations and the time needed to solve them to optimality.

4 Linear Reformulation of Probabilistic Problem
4.1 Linear Programming Inner Approximation of Probabilistic Problems

In this section, we derive an inner approximation, taking the form of a linear program, for the proba-

bilistically constrained problem (1). The construction of the inner approximation problem is based on

the generation of a p-pattern using one of the formulations proposed in Section 3.4.

Theorem 6 Consider a p-pattern t =
∧

i j∈P
βi j, with P denoting the set of literals included in t. The

linear programming problem IALP

min cT x

subject to Ax ≥ b

T jx ≥ ci j, i j ∈ P

x ≥ 0

(29)

is an inner approximation of the probabilistic problem (1).

Proof. t(k) = 1⇔ βk
i j = 1, i j ∈ P, which is equivalent to

ωk
j ≥ ci j, i j ∈ P . (30)

Besides, t(k) = 1 requires that k is p-sufficient (Definition 6), which, in turn, implies that P(ωk ≥ ξ) ≥ p

(Definition 1). Substituting T x for ωk in (30) provides the result that was set out to prove. �

17

The above linear programming problem can be obtained by using any of the four formulations pro-

posed for the generation of p-patterns. The key question that is addressed in Section 5 pertains to the

tightness of the inner approximation obtained with the four proposed models.

4.2 Linear Deterministic Equivalent of Probabilistic Problems

We shall now derive a linear deterministic equivalent, taking the form of an MIP problem, called DEIP,

for the probabilistically constrained program (1). The derivation of problem DEIP is based on the gener-

ation of a p-pattern. The solution of DEIP allows for the concurrent (i) generation of the prime p-pattern

defining the minimal conditions for the probabilistic constraint (2) to hold and for the (ii) reformulation

and exact solution of the probabilistic programming problem (1).

Theorem 7 The mixed-integer programming problem DEIP

min cT x

subject to Ax ≥ b∑
j∈J

n j∑
i=1
βk

i j ui j ≤ |J| − 1 , k ∈ Ω̄−B (31)

T jx ≥
n j∑

i=1
ci j ui j , j ∈ J (32)

n j∑
i=1

ui j = 1, j ∈ J (33)

ui j ∈ {0, 1}, j ∈ J, i = 1, . . . , n j

x ≥ 0

is a deterministic equivalent of the probabilistically constrained problem (1). The optimal solution

(u∗, x∗) of DEIP gives the prime p-pattern

t =
∧
u∗ij=1

j∈J,i=1,...,n j

βi j, (34)

that defines the minimal conditions for the probabilistic constraint (2) to be satisfied.

Proof. t defined by (34) is a p-pattern, since (31) implies that t(k) = 0, k ∈ Ω̄−B, and is prime, with degree

|J| (33). Thus, k can only be covered by t if k is p-sufficient. Besides, t(k) = 1 ⇔ ωk
j ≥ ci j, i j ∈ P (30),

which is equivalent to

ωk
j ≥

n j∑
i=1

ci j ui j, j ∈ J ,

since (33) ensures that only one literal per component j is included in t, i.e., that only one term in the

right part of (32) is non-zero. Replacing ωk by T x in the above inequality gives (32) which ensures that

P(T x ≥ ξ) ≥ p and that T x satisfies (2). It follows that the optimal solution (u∗, x∗) defines the minimal

18

value that x can take to satisfy (2) and that u∗ allows the generation of the pattern t defining the minimal

conditions for (2) to hold. �

Other MIP reformulation approaches have been proposed to derive a deterministic equivalent for

(1). The MIP deterministic equivalent reformulations [12, 32, 33, 43] obtained by using the p-efficiency

concept [41] associates one binary variable with each p-efficient point which must be found a priori. In

[35], several MIP formulations are proposed in which a binary variable is associated to each possible

realization. In contrast to this, the number of binary variables in the proposed reformulation DEIP is not

an increasing function of the number of scenarios used to describe the uncertain variables. It contains a

significantly lower number (n) of binary variables, equal to the cardinality of the sufficient-equivalent set

of cut points (Definition 3) used for the binarization process.

5 Numerical Implementation
This section evaluates the computational efficiency of the proposed combinatorial pattern approach. The

first part compares the speed of the four mathematical programming methods for the generation of p-

patterns and analyzes the tightness of the inner approximation obtained with the four methods. The

second part pertains to the computational times needed to solve the deterministic equivalent reformula-

tion of the probabilistic problem.

The tests are conducted on a stochastic version of a supply chainoproblem problem in which a set K

of distributors must satisfy the random demand ξ of a set J of customers. The decision variables xk j are

the supply quantities delivered by a distributor k to a customer j. The model reads:

min
∑

k∈K

∑
j∈J

ck jxk j (35)

subject to
∑
j∈J

xk j ≤ Mk , k ∈ K (36)

xk j ≤ Vk j , k ∈ K, j ∈ J (37)

P(
∑

k∈K
xk j ≥ ξ j, j ∈ J) ≥ p (38)

x ≥ 0

The parameter ck j is the cost of supplying one unit from k to j. The objective function (35) minimizes

the sum of the distribution costs. Constraints (36) upper-bound (Mk) the aggregated supply quantity

delivered by k to all its customers. Constraints (37) upper-bound (Vk j) the individual supply quantity

delivered by k to each customer j. Constraints (38) require that the distributors satisfy the demand of all

of their customers with a large probability level p.

For the problem instances used in this section, the parameters ck j,Mk and Vk j of the above model

were randomly generated from uniform distributions. The probability distribution of ξ is described with

a finite set of Ω realizations defined as equally likely and sampled from a uniform distribution.

We have created 32 types of problem instances characterized by the tuple (|J|, |Ω|, p). The in-

stances differ in terms of the dimension (|J| = 10, 20) of the random vector, the number of realizations

19

(|Ω| = 5000, 10000, 20000, 50000), and the enforced probability level (p = 0.875, 0.9, 0.925, 0.95). For

each instance type, we generate five problem instances. Table 5 reports the (time and gap) averages

over the five instances of an instance type. The binarization process is carried out with Matlab. The

AMPL modeling language [16] is used to formulate the mathematical programming problems which are

solved with the CPLEX 11.1 solver. Each problem instance is solved on a 64-bit Dell Precision T5400

Workstation with Quad Core Xeon Processor X5460 3.16GHz CPU, and 4X2GB of RAM.

5.1 Pattern Generation and Solution of Inner Approximation
The fourth (resp., sixth, eighth, and tenth) column in Table 5 reports, for each type of family (see the first

three columns of Table 5), the sum of the average computational times needed (i) to generate a pattern

with the IP1 (resp., IP2, LP1, and LP2) formulation and (ii) to solve the resulting linear programming

inner approximation. It can be seen that the four approaches are very fast and this even for problems

in which the multivariate random variable is described by a very large number of scenarios. The two

linear programming formulations are obviously the fastest (at most 1.8 sec, and most often much less),

but the IP formulations are also fast to solve (at most 29 seconds for IP1 and 5 seconds for IP2). It is

not surprising to observe that the solution times for the IP2 formulation are consistently smaller than

those for IP1, since the former formulation contains a significantly lower of binary variables. For the IP

formulations, the average computational time is an increasing function of the dimension of the random

vector and a decreasing function of the probability level p.

The next, and most important question, to settle pertains to the tightness of the inner approximation

that is derived using the patterns obtained with the four proposed formulations. We measure the tightness

of the approximation by the relative optimality gap between the optimal value of the inner approximation

and the optimal value of the original stochastic problem (1). The fifth (resp., seventh, ninth, and eleventh)

column in Table 5 reports, for each type of family the average tightness of the inner approximation ob-

tained by using the IP1 (resp., IP2, LP1, and LP2) formulation. Table 4 reports the number M of instance

types on which each formulation provides the tightest approximation. It appears that, besides being the

fastest, the linear programming approach LP2 is also the one providing the tightest inner approximations.

The LP2 model provides the most conservative ones.

Table 4: Tightness of Inner Approximation Approaches

IP1 IP2 LP1 LP2

M 8 8 1 21

5.2 Concurrent Pattern Generation and Solution of Deterministic Equivalent
For the 160 problem instances, we solved problem DEIP that allows for the simultaneous generation of

the prime p-pattern defining the minimal conditions for the probabilistic constraint (2) to hold and for

the solution of the deterministic equivalent formulation of (1). Problem DEIP contains |J| set partitioning

constraints (33) that can be explicitly defined as special ordered set constraints of type one (SOS1).

20

The twelfth column in Table 5 shows that the deterministic equivalent formulation, for each family

instance, can be solved extremely fast, in at most 3 seconds. The number of integer variables in problem

DEIP is equal to the number of cut points, which, everything else being equal, increases as the probability

level decreases (see Definition 3). Thus, it is logical that the computing time increases as the value of p

decreases. We observe that the computing time increases at a very moderate rhythm which suggests that

the method could be used for values of p even lower than those considered here.

A key feature of this approach is that the number of binary variables does not increase with the

number of realizations. This is what allows the application of the proposed method for cases in which the

random variables are subject to a very fine discretization and are characterized by an extra large number

of scenarios. The computational results attest that the computing time is not monotone increasing in the

number of realizations used to represent the random variables. To our knowledge, none of the existing

methods reports numerical results for problem instances in which the number of scenarios is larger than

3000 (e.g., up to 3000 in [35] and 500 in [31]). We have implemented the method proposed in [35] and

we could not obtained the optimal solution for any of the problem instances containing 20,000 or more

scenarios in one hour of CPU time. The proposed method is thus a very good alternative to the existing

algorithmic techniques.

6 Conclusion
We propose a novel methodology to solve probabilistically constrained optimization problems by using

concepts from the combinatorial pattern recognition discipline [5, 20, 36, 45, 52, 53]. Combinatorial

patterns are able to capture the ”interactions” between the components of a multi-dimensional random

vector and their impact on making it possible to reach a predefined reliability level. They have the

capability not only to identify the variables that individually influences the probability level p, but also to

capture the collective effect of the values of those variables on the attainment of the prescribed probability

level. Besides its novelty, the proposed method scales extremely well. It permits the very fast solution

of stochastic optimization problems in which the random variables are represented by an unprecedently

large number of scenarios.

The presented framework introduces the concepts of p-sufficient and p-insufficient realization of a

random variable, and describes a binarization method for a probability distribution with finite support.

We represent the combination of the binarized version of a probability distribution and a prescribed

probability level by a consistent pdBf which can then be compactly extended as an isotone Boolean

functional form. The Boolean extension represents the sufficient requirements for the satisfiability of a

probabilistic constraint and is modelled as a DNF including p-patterns. Each of those are conjunctions

of literals and define sufficient conditions for the satisfaction of a probabilistic constraint.

Enumerative methods, that are most often used for pattern generation purposes, are not very efficient

for the construction of patterns with large degree. This motivates the design of a mathematical program-

ming method for pattern generation. Four formulations (2 LPs and 2 IPs) are proposed for the generation

of p-patterns which in turn allows for the derivation of a linear programming tight inner approximation

21

Ta
bl

e
5:

So
lu

tio
n

Ti
m

es
an

d
O

pt
im

al
ity

G
ap

In
st

an
ce

Ty
pe

I
P
1

I
P
2

L
P
1

L
P
2

D
E
I
P

|J
|

|Ω
|

p
Ti

m
e

O
pt

.G
ap

Ti
m

e
O

pt
.G

ap
Ti

m
e

O
pt

.G
ap

Ti
m

e
O

pt
.G

ap
Ti

m
e

10
50

00
0.

87
5

1.
59

4
1.

31
6%

0.
40

6
1.

44
9%

0.
03

0
1.

69
8%

0.
03

1
0.

80
2%

2.
21

2
10

50
00

0.
9

0.
10

9
0.

45
8%

0.
06

3
0.

25
3%

0.
01

6
0.

48
5%

0.
01

6
0.

00
0%

0.
06

3
10

50
00

0.
92

5
0.

03
1

0.
73

4%
0.

03
1

0.
97

1%
0.

03
4

0.
85

6%
0.

03
1

0.
56

0%
0.

01
6

10
50

00
0.

95
0.

03
1

0.
32

5%
0.

03
1

0.
34

6%
0.

01
5

0.
45

7%
0.

01
6

0.
11

6%
0.

00
5

10
10

00
0

0.
87

5
1.

62
5

0.
98

6%
0.

39
1

0.
96

0%
0.

02
0

1.
44

2%
0.

01
6

1.
29

2%
0.

14
1

10
10

00
0

0.
9

0.
29

7
0.

39
6%

0.
12

5
0.

43
2%

0.
03

1
0.

42
1%

0.
03

1
0.

86
8%

0.
07

8
10

10
00

0
0.

92
5

0.
03

1
0.

77
8%

0.
01

6
0.

93
9%

0.
03

6
0.

96
7%

0.
03

1
0.

00
0%

0.
01

6
10

10
00

0
0.

95
0.

03
1

0.
00

1%
0.

01
6

0.
00

1%
0.

04
0

0.
00

1%
0.

03
1

0.
00

1%
0.

01
6

10
20

00
0

0.
87

5
1.

59
4

0.
29

2%
0.

40
6

0.
48

7%
0.

01
5

0.
54

1%
0.

01
6

1.
63

1%
0.

10
9

10
20

00
0

0.
9

0.
28

1
1.

53
2%

0.
09

4
1.

50
9%

0.
03

0
2.

36
0%

0.
03

1
1.

34
1%

0.
07

8
10

20
00

0
0.

92
5

0.
03

1
0.

35
2%

0.
03

1
0.

36
9%

0.
01

4
0.

79
6%

0.
01

6
0.

00
4%

0.
03

1
10

20
00

0
0.

95
0.

03
1

0.
77

5%
0.

03
1

1.
03

1%
0.

03
1

1.
02

9%
0.

03
1

0.
00

2%
0.

03
1

10
50

00
0

0.
87

5
1.

57
8

0.
23

1%
0.

40
6

0.
47

2%
0.

01
6

0.
23

7%
0.

01
6

0.
00

0%
0.

14
1

10
50

00
0

0.
9

0.
39

1
1.

24
1%

0.
14

1
1.

52
5%

0.
03

2
2.

25
4%

0.
03

1
1.

03
3%

0.
09

4
10

50
00

0
0.

92
5

0.
03

1
0.

38
1%

0.
03

1
0.

81
5%

0.
01

5
1.

25
9%

0.
01

6
0.

13
7%

0.
01

6
10

50
00

0
0.

95
0.

03
1

0.
91

8%
0.

03
1

0.
84

6%
0.

03
4

2.
63

8%
0.

03
1

0.
85

3%
0.

00
8

20
50

00
0.

87
5

14
.5

63
0.

79
6%

2.
42

7
0.

80
1%

0.
22

1
1.

23
4%

0.
23

6
0.

80
0%

1.
03

6
20

50
00

0.
9

3.
93

8
0.

61
0%

1.
31

3
0.

60
8%

0.
03

5
0.

89
6%

0.
03

1
0.

45
9%

0.
50

0
20

50
00

0.
92

5
0.

04
7

0.
26

0%
0.

04
7

0.
25

7%
0.

03
6

0.
36

4%
0.

03
1

0.
00

0%
0.

03
2

20
50

00
0.

95
0.

01
6

0.
00

1%
0.

03
1

0.
00

0%
0.

01
6

0.
01

1%
0.

01
6

0.
12

6%
0.

01
5

20
10

00
0

0.
87

5
15

.6
98

0.
92

4%
4.

70
2

0.
92

2%
0.

25
6

1.
26

4%
0.

30
3

0.
92

5%
1.

87
4

20
10

00
0

0.
9

11
.6

09
0.

40
1%

3.
68

8
0.

40
6%

0.
05

0
0.

85
6%

0.
03

1
0.

00
1%

1.
39

1
20

10
00

0
0.

92
5

0.
04

7
0.

20
5%

0.
04

7
0.

20
7%

0.
02

0
0.

74
5%

0.
01

6
0.

06
9%

0.
03

1
20

10
00

0
0.

95
0.

03
1

0.
33

2%
0.

01
6

0.
34

0%
0.

06
2

0.
86

7%
0.

03
1

0.
06

8%
0.

01
6

20
20

00
0

0.
87

5
26

.5
39

0.
90

4%
4.

26
9

0.
89

6%
0.

12
6

1.
76

2%
0.

12
9

0.
89

6%
2.

89
1

20
20

00
0

0.
9

12
.7

03
0.

40
4%

2.
28

1
0.

40
8%

0.
04

5
2.

69
7%

0.
04

7
0.

87
8%

2.
29

7
20

20
00

0
0.

92
5

0.
01

6
0.

17
5%

0.
00

0
0.

17
5%

0.
01

5
1.

67
1%

0.
01

6
0.

00
0%

0.
03

1
20

20
00

0
0.

95
0.

03
1

0.
14

2%
0.

01
6

0.
13

7%
0.

03
1

2.
01

2%
0.

03
1

0.
13

7%
0.

03
1

20
50

00
0

0.
87

5
28

.9
63

0.
86

2%
4.

98
2

0.
86

2%
1.

78
4

3.
00

2%
1.

62
5

0.
86

2%
2.

65
2

20
50

00
0

0.
9

21
.1

72
0.

66
6%

3.
57

8
0.

67
8%

1.
36

5
3.

21
6%

1.
43

8
0.

95
6%

1.
89

1
20

50
00

0
0.

92
5

0.
04

7
0.

45
9%

0.
04

7
0.

47
9%

0.
01

0
2.

89
1%

0.
01

6
0.

27
5%

0.
03

1
20

50
00

0
0.

95
0.

03
1

0.
18

1%
0.

04
7

0.
18

9%
0.

01
0

2.
42

1%
0.

01
6

0.
25

2%
0.

01
6

22

of the probabilistic problem. Finally, we propose a model that allows for the simultaneous (i) derivation

of the p-pattern defining the minimal conditions for the probabilistic constraint to hold and (ii) solution

of the deterministic equivalent problem.

Results for complex stochastic problems, in which a very fine discretization involving up to 50,000

scenarios is applied to represent the random variables, highlight the computational efficiency of the ap-

proach. All problem instances can be solved to optimality in less than three seconds. Moreover, the

solution time is not an increasing function of the number of realizations used to describe the random

variables. The linear programming formulation LP2 is solved the fastest and provides the tightest inner

approximations. This study offers the possibility to solve either a tight inner approximation or the deter-

ministic equivalent of the probabilistic programming problem (1), the choice between both could depend

on the specifics of the problem and of the decision-making process and stage.

The proposed approach can be applied in the exact same fashion if the stochastic problem (1) in-

cludes integer decision variables, contains non-linear constraint(s) and/or objective function, and if the

inequality to which the probabilistic requirement is imposed is nonlinear. Extensions of the proposed

approach will concern the handling of probabilistic constraints with random technology matrix and two-

stage stochastic programming problems.

References
[1] Alexe G. 2007. LAD - Datascope V2.1 Software Package.

[2] Alexe G., Hammer P.L. 2006. Spanned Patterns for the Logical Analysis of Data. Discrete Applied
Mathematics 154 (7), 1039-1049.

[3] Alexe S., Hammer P.L. 2007. Accelerated Algorithm for Pattern Detection in Logical Analysis of
Data. Discrete Applied Mathematics 154 (7), 1050-1063.

[4] Birge J.R., Louveaux F. 1997. Introduction to Stochastic Programming. Springer Verlag, New York,
NY.

[5] Boros E., Hammer P.L., Ibaraki T., Kogan A. 1997. Logical Analysis of Numerical Data. Mathe-
matical Programming 79, 163-190.

[6] Boros E., Hammer P.L., Ibaraki T., Kogan A., Mayoraz E., Muchnik I. 2000. An Implementation of
Logical Analysis of Data. IEEE Transactions on Knowledge and Data Engineering 12(2), 292-306.

[7] Boros E., Ibaraki T., Makino K. 1997. Monotone Extensions of Boolean Data Sets. In: Algorithmic
Learning Theory, Lecture Notes in Computer Science. Springer, Berlin-Heidelberg.

[8] Calafiore G.C., Campi M.C. 2005. Uncertain Convex Programs: Randomized Solutions and Confi-
dence Levels. Mathematical Programming 102, 25-46.

[9] Charnes A., Cooper W.W., Symonds G.H. 1958. Cost Horizons and Certainty Equivalents: An
Approach to Stochastic Programming of Heating Oil. Management Science 4, 235-263.

[10] Cheon M.-S., Ahmed S., Al-Khayyal F. 2006. A Branch-Reduce-Cut Algorithm for the Global
Optimization of Probabilistically Constrained Linear Programs. Mathematical Programming 108,
617-634.

[11] Crama Y., Hammer P.L. 2009. Boolean Functions - Theory, Algorithms, and Applications.. Eds:
Cambridge Press University. In Press.

23

[12] Dentcheva D., Prékopa A., Ruszczyński A. 2001. Concavity and Efficient Points of Discrete
Distributions in Probabilistic Programming. Mathematical Programming 47 (3), 1997-2009.

[13] Djukova E.V., Inyakin A.S., Peskov N.V., Sakharov A.A. 2006. Increasing the Efficiency of Com-
binatorial Logical Data Analysis in Recognition and Classification Problems. Pattern Recognition
and Image Analysis 16 (4), 707-711.

[14] Djukova E.V., Zhuravlev Y.I. 2000. Discrete Analysis of Feature Descriptions in Recognition Prob-
lems of High Dimensionality. Computational Mathematics and Mathematical Physics 40, 1214-
1227.

[15] Duda R. O., Stork D.G., Hart P.E. 2001. Pattern Classification, Second Edition. Wiley & Sons.

[16] Fourer R., Gay D.M., Kernighan B.W. 2003. AMPL: A Modeling Language for Mathematical Pro-
gramming. Second Edition, Duxbury Press Brooks Cole Publishing Co.

[17] Fukunaga K. 1990. Introduction to Statistical Pattern Recognition. Academic Press. London, UK.

[18] Gren I.-M. 2008. Adaptation and Mitigation Strategies for Controlling Stochastic Water Pollution:
An Application to the Baltic Sea. Ecological Economics 66 (2-3), 337-347.

[19] Grenander U., Miller M.I. 2007. Pattern Theory: From Representation to Inference. Oxford Uni-
versity Press, NY, USA.

[20] Hammer P.L. 1986. Partially Defined Boolean Functions and Cause-Effect Relationships. Interna-
tional Conference on Multi-Attribute Decision Making Via OR-Based Expert Systems. University
of Passau, Passau, Germany.

[21] Hammer P.L., Bonates T.O. 2006. Logical Analysis of Data: From Combinatorial Optimization to
Medical Applications. Annals of Operations Research 148 (1), 203-225.

[22] Hammer P.L., Kogan A., Lejeune M.A. 2006. Modeling Country Risk Ratings Using Partial Orders.
European Journal of Operational Research 175 (2), 836-859.

[23] Hammer P.L., Kogan A., Lejeune M.A. 2009. Reverse Engineering Country Risk Ratings: Statisti-
cal and Combinatorial Non-Recursive Models. Forthcoming in Annals of Operations Research.

[24] Hammer P.L., Kogan A., Simeone B., Szedmak S. 2004. Pareto-Optimal Patterns in Logical Anal-
ysis of Data. Discrete Applied Mathematics 144, 79-102.

[25] Henrion R. 2004. Introduction to Chance-Constrained Programming. Tutorial Paper for the
Stochastic Programming Community Home Page.

[26] Hooker J. 2000. Logic-Based Methods for Optimization: Combining Optimization and Constraint
Satisfaction. Wiley & Sons.

[27] Hooker J.N. 2007. Integrated Methods for Optimization. Springer. New York, NY, USA.

[28] Ibaraki T. 2009. Partially Defined Boolean Functions. In: Boolean Functions - Theory, Algorithms,
and Applications.. Eds: Crama Y., Hammer P.L. Cambridge Press University. In Press.

[29] Jeroslow R.G. 1989. Logic-Based Decision Support: Mixed Integer Model Formulation. Annals of
Discrete Mathematics. North-Holland. Amsterdam, The Netherlands.

[30] Kress M., Penn M., Polukarov M. 2007. The Minmax Multidimensional Knapsack Problem with
Application to a Chance-Constrained Problem. Naval Research Logistics 54, 656-666.

[31] Küçükyavuz. 2009. On Mixing Sets Arising in Probabilistic Programming. Working Paper:
http://www.optimization-online.org/DB HTML/2009/03/2255.html.

[32] Lejeune M.A. 2008. Preprocessing Techniques and Column Generation Algorithms for p-
Efficiency. Journal of Operational Research Society 59, 1239-1252.

24

[33] Lejeune M.A., Ruszczyński A. 2007. An Efficient Trajectory Method for Probabilistic Inventory-
Production-Distribution Problems. Operations Research 55 (2), 378-394.

[34] Luedtke J., Ahmed S. 2008. A Sample Approximation Approach for Optimization with Probabilis-
tic Constraints. SIAM Journal of Optimization 19, 674-699.

[35] Luedtke J., Ahmed S., Nemhauser G. 2010. An Integer Programming Approach for Linear Pro-
grams with Probabilistic Constraints. Mathematical Programming 122 (2), 247-272.

[36] Martinez-Trinidad J. F., Guzmán-Arenas A. 2001. The Logical Combinatorial Approach to Pattern
Recognition, an Overview Through Selected Works. Pattern Recognition 34 (4), 741-751.

[37] Miller B.L., Wagner H.M. 1965. Chance Constrained Programming with Joint Constraints.
Operations Research 13, 930-945.

[38] Nemirovski A., Shapiro A. 2006. Convex Approximations of Chance Constrained Programs. SIAM
Journal on Optimization 17, 969-996.

[39] Prékopa A. 1970. On Probabilistic Constrained Programming. Proceedings of the Princeton
Symposium on Mathematical Programming. Princeton University Press, 113-138.

[40] Prékopa A. 1973. Contributions to the Theory of Stochastic Programming. Mathematical
Programming 4, 202-221.

[41] Prékopa A. 1990. Dual Method for a One-Stage Stochastic Programming with Random rhs Obeying
a Discrete Probability Distribution. Zeitschrift of Operations Research 34, 441-461.

[42] Prékopa A. 1995. Stochastic Programming. Kluwer. Boston, MA.

[43] Prékopa A. 2003. Probabilistic Programming Models. Chapter 5 in: Stochastic Programming:
Handbook in Operations Research and Management Science 10. Eds: Ruszczyński A., Shapiro
A. Elsevier Science Ltd, 267-351.

[44] Radeanu S. 1974. Boolean Functions and Equations. North-Holland, Amsterdam.

[45] Ruiz-Shulcloper J., Abidi M.A. 2002. Logical Combinatorial Pattern Recognition: A Review.
Transworld Research Networks 3, 133-176.

[46] Ruszczyński A. 2002. Probabilistic Programming with Discrete Distribution and Precedence Con-
strained Knapsack Polyhedra. Mathematical Programming 93, 195-215.

[47] Ruszczyński A., Shapiro A. 2003. Stochastic Programming: Handbook in Operations Research
and Management Science 10. Elsevier Science Ltd.

[48] Saxena A., Goyal V., Lejeune M.A. 2010. MIP Reformulations of the Probabilistic Set Covering
Problem. Mathematical Programming 121 (1), 1-31.

[49] Sen S. 1992. Relaxations for Probabilistically Constrained Programs with Discrete Random
Variables. Operations Research Letters 11, 81-86.

[50] Torvik V.I., Triantaphyllou E. 2006. Discovering Rules that Govern Monotone Phenomena. In:
Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Eds:
Triantaphyllou E., Felici G., Springer, Heidelberg, Germany, 149-192.

[51] Torvik V.I., Triantaphyllou E. 2009. Inference of Monotone Boolean Functions. Encyclopedia of
Optimization, 1591-1598.

[52] Triantaphyllou E., Felici G. 2006. Data Mining and Knowledge Discovery Approaches Based on
Rule Induction Techniques. Springer, Heidelberg, Germany.

[53] Truemper K. 2004. Design of Logic-Based Intelligent Systems. Wiley & Sons, Hoboken, NJ.

[54] Urbano R.H., Mueller R.K. 1956. A Topological Method for the Determination of the Minimal
Forms of a Boolean Function. IRE Transactions on Electronic Computers EC-5, 126-132.

[55] Vapnik V.N. 1998. Statistical Learning Theory. Wiley & Sons, USA.

25

