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Abstract
We present Bayesian analysis of the multivariate autoregressive conditional
heteroskedastic (ARCH) and generalized ARCH (GARCH) models as a class of
deterministic volatility models. In so doing, we develop a Bayesian inference procedure
by extending the Markov chain Monte Carlo method of Muller and Pole (1998)
introduced for univariate models. Our approach uses a multivariate Bayesian regression

setup in implementation of the Markov chain Monte Carlo.

1. Introduction and Preliminaries

Modeling conditional variances has been interest of many researchers during the
last several decades. Many time-series models focus on modeling conditional means, that
is, E(Y;|Y;—1,...), but they assume that the conditional variance is not a function of the
past, implying that by learning from past, we do not learn about the variances. However,

empirical evidence suggests that the conditional variances do change in economic and



financial time-series. The models that focus on modeling conditional variances are
referred to as the conditional heteroskedastic models or stochastic volatility models. The
term volatility is used to refer to the conditional variance of a commodity return. In what
follows, we first introduce the univariate models and then extend them to multivariate
stochastic volatility models. In our development we will focus on commaodity returns.

Let r, denote return on a commodity at time ¢ and we assume that returns have

constant means and write

Tt ::u+€tv (1)

where &; is a zero mean error term whose probabilistic structure will be discussed in
detail. Note that in the above if the mean of the process depends on the past history, then
we can replace p by p¢ where py = E(r¢|ri—1,...) is the conditional mean of the
commodity returns. For example, if r; follows a first-order autoregressive process then
e = C + ¢r;—1. The common approach in time-series modeling is to assume that the
error sequence {&;:}is an uncorrelated constant variance sequence. In other words, the
conditional variance or the volatility of the process is constant, that is, V (r¢r:1,
) = O'g.

The conditional heteroskedastic variance modeling involves modeling the
conditional variance h; = V (r¢|r4—1,...). In other words, it is concerned with the
evolution of h; over time. Note that unlike the time-series r; the volatility is not
observable. Some of these models use an exact function to describe the behavior of h;
and most commonly known models of this type are the autoregressive conditional
heteroskedastic (ARCH) and generalized ARCH (GARCH) models. Others use a
stochastic equation to describe the behavior of h; and thus are referred to as stochastic
volatility models; see Jacquier et. al (1994) and Harvey et. al (1994). Our focus will be
on the ARCH/GARCH models.



The ARCH model is introduced by Engle (1982) and is generalized by Bollerslev
(1986) to GARCH models. This class of models assume that the conditional variance is
not constant and work with the mean corrected time-series &;. As common to many time-

series models it is assumed that &;'s are nonautocorrelated but they are not independent.

In describing the dependence structure of &;'s, one strategy is to model the squared &;'s as

an AR(q) process using the square of its past values, that is,

G=00t+mbf 1+ +oq& q+a (2)

where ¢ is a white-noise term. Note that the above implies that ¢ terms are
autocorrelated and thus &;'s are dependent (even though &;'s are unautocorrelated). We
can see the presence of such dependence by looking at the autocorrelation function of the
€2 series. Model given by (2) implies a nonlinear dependence structure and thus is not
convenient for estimation purposes. Using the similar idea for motivation Engle (1982)

suggested the following ARCH(q) model for conditional variance
g=aVh (3)
ht = Qg + Oé]_gfll + -+ quﬁtz,q, (4)

where ¢'s independent and identically distributed random variables with mean 0 and
variance 1. There are certain conditions on «j's that need to be satisfied for ~; > 0, that
is, aj >0 for i =0,...,9. Note that in the above, since & = r — u, the conditional
variance is a function of the past values of r, series as well. Thus, given the past history
of the series, the volatility equation is an exact function for h;. In the above the mean
corrected process &, is stationary.
In the special case q = 1, we have the ARCH(1) model is given by
he = ag + aaéf 4,
where ag, a; > 0. We can easily show that

E(&) = E(&|Di-1) =0



where Dy | = (r:_1,7¢9, ... )and thus V(&) = E(&£?). Due to the stationarity of &
E(&) =V(&). ©)

Qap

1- a1
and thus ap > 0 and 0 < 1 < 1. If we need higher order moments to exist then we need

to impose other restrictions. It is important to note that in the above
E(&|Di1) # E(&).

Similarly, in the g-th order stationary ARCH process (3)-(4), we need «; > 0 for

i=0,...,qand
o7y

E(&) = (6)

l-ag—ap—-—aq

q
Thus, for the variance to exist we also need ) "o < 1.
i=1

A generalization of the ARCH model was suggested by Bollerslev (1986) by
generalizing the volatility equation to include the past history of h;'s. This resulted in the

generalized ARCH(q, p) model
§t = € \/h_t
he = oo+ 1&g + - + agfl g + Brhu—1 + -+ + Bohuyp, 7)

where ¢'s independent and identically distributed random variables with mean 0 and
variance 1. As before we have oj > 0 for i =0,...,q and in addition 5; > 0 for i = 0,
...,p. The GARCH(qg, p) model can be motivated by defining v; = & — hy, where v, is a
zero-mean white-noise term. By substituting h; = &2 — v, in (7) we can consider the
alternate representation

s p
G=a0+ Y (a+B)&i+vu—Y B (8)
=

i=1



where s = max(p,q). The above representation gives us an ARMA(s, p) process for ¢
with v; = & — E(&?| D;_1). Thus, v; has the usual interpretation of one-step ahead

forecast error for £2. For example, if g = p = 1, then we have the GARCH(Z, 1) model

hi = ag + Oélftz—l + Brhi—

implying the form
ft2 = ap + (o1 + f1) §t2—1 + v — Brvg-1. ©)

The above form gives us ARMA(1,1) for the squared series &2.
For the unconditional variance of & to exist, we need to impose additional
conditions on the parameters in (7). As in the ARCH model, for stationary GARCH

process we have E(&;) = 0. It can be shown that the unconditional variance is
Qg

E(&) = —— =V (&), (10)
1= (ai+ )
i=1
implying that _il (i + Gi) < 1. For the special case GARCH(1, 1) this means
1=

(a1 + B1) < 1in (9), that is, the restriction is on the AR coefficient in the ARMA(1,1)

representation. More complicated conditions are required for time invariance of higher-
order moments.

There are nonstationary versions of the GARCH models that are analogous to the
ARIMA models. An integrated GARCH (IGARCH) model is a GARCH model whose
characteristic polynomial having a unit root. For example, IGARCH(1,1) model is a
GARCH(1,1) model as in (9) where (a1 + 1) = 1 implying that iy = (1 — f1). Thus,
the model can be written as

he = ao+ (1 — Bu) €1 + Bihy—1. (11)

In the above the unconditional variance V' (&;) does not exist and the process &; is not
stationary. Other versions of the GARCH models include GARCH in mean (GARCH-M)
and the exponential GARCH model of Nelson (1991).



In the sequel we will first discuss their Bayesian analysis using the Gibbs sampler
proposed by Muller and Pole (1998). This is done in Section 2. This will be followed in
Section 3 by our consideration of the multivariate ARCH/GARCH models and
introduction of their Bayesian analysis by extending the method of Muller and Pole
(1998) to the multivariate case. Implementation of our approach will be illustrated with

an example in Section 4.

2. Bayesian Analysis of Univariate GARCH Models

Bayesian analysis of the GARCH(q, p) model (7) has been considered by various
authors in the literature. In what follows, we will present a slighly modified version of
the approach proposed by Muller and Pole (1998) which we will extend to multivariate
GARCH models in Section 3. In our development we will focus on the GARCH(1,1)
model, but extension to GARCHY(q, p) model is straightforward and will be discussed.

We consider the GARCH(1,1) model

re=p+&

hi = ag + Oélftz—l + Bihi1, (12)

where & given D, 4 is normally distributed with mean O and variance h;, denoted as
&|Di—1 ~ N(0,h;). Given return data ™ = (ry, ry, ..., r,) from n periods, the

likelihood function under the GARCH model (12) is given by

n

L(p, ao, a1, Brs ™) o (hy) " eap| — %Z(n — 1)*/ha]. (13)

t=1

There is no joint prior p(u, ag, aq, B1) that provides an analytically tractable posterior
analysis with (13). Thus, in what follows, a Gibbs sampler will be presented to generate
samples from the joint posterior distribution p(u, ag, a1, B1|r™). This requires
successive drawings from the full conditional distributions of (u, ag, a1, $1) given (™)

see Gelfand and Smith (1990) for details on the Gibbs sampler.



To obtain the full conditional distribution of 1, that is, p(u|ao, a1, B, ™), we
note that if the prior of x is normal, say, u ~ N(my, Cy), then posterior analysis follows
using the standard Bayesian analysis of the normal model with known variance [see for
example, Gelman et al. (2004, pp. 49)]. In our case it is important to note that the
variance h; is not constant and it involves h; | and & 1 and evaluation of these terms
requires some adjustment. Given h;'s are given for all periods, we can obtain the full

conditional distribution of ; as (g, ai, B1,7™) ~ N(my, C;) where

n

Zrt/ht + mo/C()
=1 (14)

n 1

> 1/h + 1/Cy

t=1

mi =

and

§}m¢ + 1/C] 7" (15)

If the initial values (1, of, oY, 37) and (hg and &) are specified then after the
(i — 1)thiteration of the Gibbs sampler given the values of parameters p‘~! and
vl = (af !, o471, Bi71) from the previous iteration we can obtain (&7, &5, ...,
n 1) using
A R (16)
and obtain (hi™t, RS, ..., hl7Y) via
hy ™t =og '+ o (G717 + By R (17)

fort=1,...,n—1.

The full conditional distribution of ~ = (g a1 (1), that is, p(+| p, ™), can
not be obtained analytically. Thus, at each iteration of the Gibbs sampler we can use a
Metropolis step to draw from p(~| p, r™); see for example, Chib and Greenberg (1995)

for a review of the Metropolis algorithm. The algorithm uses a sample from a probing



distribution (proposal density) and the selection of this probing distribution plays an
important role in the efficiency of the algorithm. At each iteration the candidate sample
selected from the probing distribution is accepted or rejected with a probability that
depends on the magnitude of the true density p(y| u, r™) at the sampled value. In
selecting the probing distribution we will follow Muller and Pole (1998) who proposed to
derive this distribution from an auxiliary regression model. In what follows, we will
suppress the dependence of the true and the probing distributions on ;. and denote them
as p(y|r™) and g(~y|r™).

Note that after the (¢ — 1)th iteration of the Gibbs sampler given the values of
gl = (gt gt g7 and R = (AT RS, L. RETY) obtained via (16) and
(17), we can consider the regression model

& = a0+ &l 1 + Bihiy + wr, (18)

which is motivated by the conditional expectation of £2 given D;_;, where the auxiliary

error term w;|D;_1 ~ N(0,02). Thus, the auxiliary regression model can be written as

U=2Zv+w (19)
where = (’LU1 Wo+ = e+ wn)/,
(&) GO
U= : and Z = | : : -]
(&i1)? 1 (g4)7 hih

The probing distribution at each iteration can be derived by obtaining the posterior
distribution of ~ given (U, Z) in (18). In so doing, we can use an improper joint prior for
(v, 02) as being proportional to 1/0, and obtain the probing distribution as a

multivariate normal density given by

(V|U,Z, 02) ~ N7, Vol), (20)



where

7= (Z2'2z)y'z'U, (21)

and V = (Z’ Z)~1. It can be also shown that the distribution of o2 is an inverted

gamma distribution with parameters (n — 3)/2 and 5% /2 where

~ 1 ~ —~
G, = 3 U —z7)' (U — z7). (22)

Details of the above development can be found in Gelman et. al. (2004, pp. 356). Thus, at
the ith iteration of the Gibbs sampler the probing distribution g(~|r™) is given by (20).
We note that in drawing a candidate sample from (20) we can either first draw from the
inverted gamma distribution of 2 or use (22) as an estimate of the o2.

At the ith iteration we draw a candidate, say ~*° from the probing distribution (20)

and then the new value ~ is set to the candidate value, that is, 4/ = ~¢ with probability

i1 ey [ POYY) g(* )
) = min{l oy S ) )
where
P7) = (h)P2eap] — 5> (e~ /] plo) 24

and p(y) is the joint prior density. Note that the Metropolis algorithm requires that the
full conditional p(-y|u, ™) is only specified to a normalizing constant as given by (24).
The probability a(y'~!,~+¢) implies that if the ratio of the distributions in (23) is large
then the probability of acceptance is high. At each iteration, we generate a uniform (0, 1)
random variable, say u, and if u < a(y'"!,~°), then the candidate is accepted, that is,
~' = ~¢, otherwise we set 4/ = ~*~1. Note that the candidate ~¢ is considered for
acceptance only if ap > 0and 0 < (g + 1) < L.

Once ~' is generated, we update h;'s based on the new parameters, that is, via



~

hy = b+ ol (€712 + Bih,_,. (25)

Note that the updating given by (25) is based on previous error estimates, that is, based
on &~l's. Thus, (25) is different than the updating given by (17) which is based on
current error terms. Once h;'s are obtained via (25) p’ is drawn from the normal density
whose mean and variance are given by (14) and (15). Once ' is drawn then a new set of
error terms and h;'s are obtained via (16) and (17) and the above process is repeated for
iteration (¢ + 1). Continuing with these successive draws samples are obtained from the
posterior distribution p(u, ag, o, Bi] ™).

The above algorithm can be easily generalized for the GARCH(q, p) model where
simply the dimension of the parameter vector ~y increases to (q + p + 1). Similarly, in
other cases, where the observation model r, = u+ & may include covariates, the
algorithm can be modified so that the mean and variance terms (14) and (15) represent

posterior mean and variance of regression parameters in the updating.

3. Multivariate ARCH/GARCH Models
A multivariate extension of the univariate ARCH and generalized ARCH models
of Engle (1982) and Bollerslev (1986), is introduced by Bollerslev et al. (1988). We

consider the multivariate version of the observation model (1) as

T =p+ & (26)

where r; is the K dimensional return vector, w is the K dimensional mean return,
§t\DH ~ N (0, H;) and H; is K x K variance-covariance matrix. Models for H, are
referred to as multivariate volatility models for the return series 7.

Different modeling strategies have been suggested in the literature to describe the

evolution of H;. In what follows we will consider the setup given by Bollerslev et al.

10



(1988) where the multivariate GARCH(q, p) model is defined by the volatility equation
given by

vech(Hy) = A + i A, vech ({t_l{;_i) +

" B vech (H5), @
i=1 J=1

where vech( . ) denotes the column stacking operator of the lower portion of a
symmetric matrix, Ao isa s = K (K + 1)/2 vector, A;'s and B; ares x s matrices. We
note that certain conditions need to be satisfied in (27) for H; to be a positive definite
matrix. Similar to the univariate case a multivariate GARCH(q, p) model can be motivated

as a multivariate ARMA(q, p) for vech (gtgg). As a result the stationarity conditions for

multivariate ARMA(q, p) processes need to be satisfied in (27). These conditions are
equivalent to conditions on the roots of the matrix polynomial
A(L)=I;—AL—---—A,/L"%, where L is the lag operator and is I, the s x s
identity matrix. The requirement is that the roots of the determinant |A(L)| be outside
the unit circle; see for example, Tsay (2002), pp. 322.

The multivariate ARCH models are obtained from (27) by setting p = 0. Similar
to the univariate ARCH models, multivariate ARCH(g) models imply that vech (g}g@)

follows a vector autoregressive process of order ¢. In other words, we can motivate an

ARCH(q) process via

vech(££]) = Ao+ i Aech (&£ ) + wi, (28)

i=1

where w; = vech(H,) — vech (§t§;) is a zero-mean white-noise process.

We note that the model (27) is a highly parameterized representation. For example, the
first order ARCH model is given by

vech(Hy) = Ag + Ay vech (ﬁtﬂf;ﬂ), (29)
where for the two-dimensional case, K = 2, A, is a (3 x 3) matrix and the model can be

written as

11



H 2
11t Qo1 app g Qg 1t-1
vech(H;) = | Hiy | = |2 | + | @12 o2 asp | | Erem1 - E20m1 |- (30)
Hoyy Q03 Q13 Q3 Qs3 £
, 241

The stationarity of Uech(gtgg) in (29) requires that the root of the determinant

|(Is — A;L)| be outside the unit circle or equivalently all the eigenvalues of A; to be
less than 1.
A natural simplification is obtained by assuming a diagonal structure for the A;

matrix in (30) as

11 0 0
A1 = 0 99 0
0 0 Q33

that is, ajj = 0 if i # j, As pointed out by Bollerslev et al. (1988), this simply implies that

each covariance depends only on its past values, that is,

Hllt o1 + a1 f%t—l
Hiy | = | o2+ a2&ii-1-&0-1 |- (31)
Hoy o3 + a3 5,y

Similar simplifications can be obtained for multivariate GARCH models which are

motivated by vech (gtgg) being a vector ARMA process.

3.1 Bayesian Analysis of Multivariate ARCH/GARCH Models

In what follows we will introduce a Bayesian approach for the analysis of
multivariate ARCH/GARCH models. Our approach is an extension of the Markov chain
Monte Carlo method of Muller and Pole (1998), presented in section 2, to multivariate
models. For illustrative purposes we will present our approach using the first order
ARCH model of (29). Extension to the general GARCH(q, p) models is straightforward

and the necessary details will be summarized at the end of the section.

12



We consider the multivariate GARCH(1, 1) model

T =p+ &,
Uech(Ht) = Ay + Ajvech (Et,l{;,i) + By vech (Ht,l), (32)

where gt‘Dt—l ~ N0, H;), &= (& &o--ne Exe)s = (1 pg--- px)  and
vech (Hy) is the extension of (30) with dimension s = K (K + 1)/2. Note that (32) is a

multivariate extension of (12). For example, for the bivariate case, that is, K = 2, (32)

reduces to
2
Hiy o1 o e o3 ST Bii B B Hyp
Hiy | = o |+ |z oo as || &bt | + | Bz P2 P32 Hipp
Hoy Q3 Q13 Qg3 Q33 &1 B3 B2 Bss] \ Haoe1

Given =™ = (r,7y,...,7,) the return data from n periods, the likelihood
function of u, Ay, Ajand B, is given by
1 n
L(p, Ay, A1, By; r") oc |H|Peap| — ) (r— p) H ' (r — p)], (33)

t=1

where H,; is defined via (32) and A, is an s — dimensional vector and A; and B, are
s X s matrices. The Bayesian analysis involves specification of the joint prior p(gu,
Ay, Ay, By). As in the univariate case, there is no joint prior that provides an analytically
tractable posterior analysis when combined with the likelihood (33). Thus, we will
develop a Gibbs sampler algorithm to generate samples from the posterior distribution
p(p, Ay, A1, By| ™) by generating successive drawings from the full conditional
distributions of w, Ay, A, and B, given ™.

For our development of the Gibbs sampler, in (32) we assume that the mean
return vector p has a normal prior, say, u ~ N(m, C)where m is a specified K x 1
vector and C is a specified KX x K matrix. The full conditional posterior distribution of
L is given by

p(ﬂ | AO7A1a By, ”'(n)) X L(M ; Ao,AhBl, T("))p(ﬂ)

13



The above can be written as proportional to

x ea:p[ — %(u/ (iH[l +C Yp—2u () (H'r+ C_lm)ﬂ :
=1

t=1

3

implying that
ples| Ao, Ay, By r®) o cap| = o ((w—m™Y () Hu—m?) (@)

where
n -1 n
— (Z H'+C™) ( > H'r+C'm) (36)
t=1 t=1

and
(Cc*) ! = <ZH e ) (37)

Thus, the full conditional posterior distribution of x is obtained as a multivariate normal
s (u]| Ag, A, By, ™) ~ N(m*, C*). Note that the posterior mean and precision
updates given by (36) and (37) are multivariate versions of (14) and (15).

The full conditional distributions of Ay, A, and By, that is, p(Ay|u, A, By,
™), p(Ai| p, Ag, B1, ™), p(Bi|p, Ag, A, ™) and are not available as known
distributional forms. Thus, we will present an extension of the approach presented in
Section 2 for the univariate ARCH/GARCH models. Similar to the development, we will
use a Metropolis step at each iteration of the Gibbs sampler to draw from the full
conditional distribution of (A, A;, By). In so doing, our probing distribution for (A,
A, By) is derived from an auxiliary multivariate linear regression model and as a result
we will use results from Bayesian multivariate analysis; see for example Press (1989, pp.
131-137). In the sequel, we will review the Bayesian multivariate regression analysis and

adopt some of the results to our problem.

14



If the initial values (u®, A9, A% BY)and (H,, &,) are specified then after the
(i — 1)th iteration of the Gibbs sampler, given the values of parameter vectors and
matrix (p*~t, AS"1 A1 Bi1) from the previous iteration we can obtain the error
vectors (&1, &1, ..., €71 using

ffl =r — ,u,ifl. (38)

Also, we can obtain vech (Hf*l) ,...,vech (Hflj) via the volatilility equation (32).

Once these values are available we consider the auxiliary multivariate regression model
vech ({té) = Ay + Ajvech (é,ié;,i) + B, vech (I—It,l) + wy, (39)

where the auxiliary error vector wt\Dt_l ~ N(0,%,) with s x s covariance matrix X,,.
Note that (39) is motivated by the vector ARMA(L,1) process representation of the
multivariate GARCH(1, 1) model. Given n, (s x 1) dimensional vectors (&1, &1, ...,
&1 and the (39) we can represent this as a multivariate linear model at the (i — 1)th
iteration where the dependent variable matrix is given by U = [vech (&)
vech(€,&,)" -+ vech(&,€,)]". Note that U is a (n x s) matrix where each row is the s
dimensional row vector vech(ﬁtﬁg)’ based on (i — 1)th iteration values. For the case

where K = 2, we have s = 3 and U is given by

6_%1 511.521 5_51

U= (40)

5%71 éln £2n g%n
Note that for the K > 2 dimension case, ¢t — th row of the U matrix will be given by

(€ Euror--Ere€rr €3 Eorar - Eorbir-o Ex14€xt k).

We will define the coefficient matrix of the auxiliary multivariate regression
model by I" = [A], A} Bi]’ which is a (2s + 1) x s matrix. For the bivariate case where

s = 3, I is given by

15



Qo1 Qo2 Qp3
a1 012 (g3

Qo1 Qg2 (x93

I'= a3 axp as (41)
B P2 Pi3
Bo1 Poz [o3
| 31 B2 s3]

Note that for the ARCH(q) models with ¢ > 1, we define T" = [Aj A} --- A By -
B
The design matrix of the multivariate linear regression will be given by

n X (2s + 1) matrix Z with row ¢ is given by

2 2 2
(L& S8kt §op1 7 S2p18K -1 §rcro1 Hug1 - Hirp 1 -Hgg 1)

For example, for the two-dimensional case where s = 3 we have (n x 7) matrix

1 B §10 20 &, H Hixg Hysg

Z — (42)

1 &n-1 &in1&n-1 Son-1 Hupo1 Higpno1 Haopo

We also define the (n x s) error matrix as
Wil w21 Wsi
Q=1: = | (43)
Win Wop Wsp
Thus, at the (¢ — 1)th iteration of the Gibbs sampler, the auxiliary multivariate linear
model can be written as

U=2T+Q. (44)

Given U and Z, the likelihood function of I" and X2,,, where X, is the variance-

covariance matrix of the auxiliary error vector wy, is given by

LT, .U, Z) « || "2 exp| — tr(Z,' ) (U — ZT)Y (U — ZT) /2|, (45)

16



where tr(X!) denotes the trace of the matrix. The probing distribution at iteration i can
be derived by obtaining the posterior distribution of the random matrix I" given U and

Z . In so doing, we can use an improper prior for I" and 32, as

p(T, 2,) o |B,|~6D/2, (46)

It can be shown that the least squares estimator of matrix I' is given by
T=(z'z)'zU (47)

and using the orthogonality property of the least squares estimators [see for example,

Press (1989), pp. 134], the joint posterior distribution p(T*, 3,,| U, Z) can be written as

o [ B, |12 exp[ —tr(=;")[E+ (T —T)2'Z(T —T)] /2] )

where E = (U — ZT')/(U — ZT).

From (48) we can obtain the posterior distribution of I" given X, as

PO =0 U, Z) e:z;p[ — (=, )[(T—T)Y2' 2T — )] /2] . (49)

The distribution given by (49) is known as a matrix normal distribution with mean matrix
L', (s x s)left variance matrix 3, and (2s+ 1) x (2s+ 1)right variance matrix
(Z'Z)7'. Note that is I" a (2s+ 1) x s random matrix and the variance-covariance
matrix of T is given by the [(2s + 1)s x (2s + 1)s] matrix £, ® (Z’Z) ! where ® is
the Kroenecker product. Thus, (X,); (Z’Z)! defines the covariance matrix for the ith
row of " whereas [(Z’Z)!];; £, defines the covariance matrix for the j¢th column. The
above implies that all the elements of the random matrix I" have univariate, multivariate
or matrix normal distributions [see Dawid (1981) for a review of matrix normal
distribution].

Using (48) and (49), it can be shown that the posterior distribution of X, is an
inverse-Wishart distribution with degrees of freedom (n —2s—1)and (n x s)scale

matrix

17



E = (U - 2ZT) (U — zD), (50)

see Press (1982), pp. 136, for details. Thus, at the ithe iteration of the Gibbs sampler the
probing distribution of the full conditional of I" is given by the matrix normal distribution
(49) where a value for 33, can be either drawn from the inverse-Wishart distribution or
(50) can be used to estimate 33, after divided by the degrees of freedom (n — 2s — 1).
As before, we suppress the dependence of the true and the probing distributions
on u and data and denote them as p(T'|#) and ¢(T'|r(™). Then at the ith iteration we
draw a candidate, say I"° from the probing distribution (49) and then the new value I is

set to the candidate value, that is, IV = I"® with probability

i—1 ey _ p(re) g(r* 1)
a(,I°) = mm{l, 4(T%) f)(I‘i—l)} (51)

where

BT) = S|/ eap| — tr(S,!)(U — Z0) (U — ZD)/2)p(@)  (52)

and p(I) is the prior density for the matrix of coefficients. Note that the probability
a(T1,T°) implies that if the ratio of the distributions in (51) is large then the
probability of acceptance is high. At each iteration, we generate a uniform (0, 1) random
variable, say u, and if u < a(I""1,T'¢), then the candidate is accepted, that is, IV = I"°,
otherwise we set I = I"*~1. Note that the candidate I"¢ is considered for acceptance
only if conditions for positive definiteness are satisfied in (32). More specifically these
imply the positive definiteness of the A, and B; matrices. Thus, at each iteration the
algorithm checks whether the resulting matrices have positive eigen values.

Once I is generated, we update vech (Hf—1>'s via the volatility equation (32)

based on the new parameters, that is, via

11— . =1

vech (ﬁ:il) = A5+ A Y vech ({t_i‘ﬁ;_i) 1 + Bjvech (H;_l). (53)
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Note that, as before, the updating given by (53) is based on previous error estimates, that
is, based on §§ji1's. Thus, (53) is different than the earlier updating after iteration (i — 1),

which is based on current error terms. Once vech (Ht"—l)'s are obtained via (53) u' is

drawn from the multivariate normal density given by (35). Continuing with these
successive draws samples are obtained from the posterior distribution p(u, Ao, A1, B |

,r(n) ) .

4. A Numerical Illustration

We first consider a multivariate ARCH(1) model with diagonal structure given by
(30) in our illustration. We assume that the components of A, vector are independent
gamma distributed random quantities, that is, ag; ~ Gamma(0.75, 1),i=1,...,3.
Similarly, the diagonal matrix A; has independent gamma components,

ay;; ~ Gamma(0.75, 1), i = 1,...,3. The mean vector  is assumed to have a normal

0.030

prior with mean vector my= {0‘024

} and variance covariance matrix

0.010 0.006

C) = [0.006 0.010 | Furthermore, we assume that apriori A,, A; and p independent

of each other and specify &, = {88} .

Using real securities data from companies Amoco and GM, we employ the Gibbs
sampler described in Section 3.1 to sample from Ay, A; and . The Gibbs sampler was
run for 10,000 iterations. In this case the full conditional distribution of Ay and A; can
not be obtained analytically. Thus, at each iteration of the Gibbs sampler we use a
Metropolis step to draw from A and A;.

Figure 1 is autocorrelation function graph of one of the accepted «; series,
showing the autocorrelation is rapidly decreasing. Figure 2 shows trace plot of the same

a1, showing there is no trends involved. Figure 3 shows histogram with the density line

of the same a;.
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Figure 1. Autocorrelation function of posterir samples of a;.
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Figure 2. Trace plot of a;.
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