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Abstract

We consider a Markovian queueing model with abandonment where cus-
tomer arrival, service and abandonment processes are all modulated by an
external environmental process. The environmental process depicts all factors
that affect the exponential arrival, service, and abandonment rates. Moreover,
the environmental process is a hidden Markov process whose true state is not
observable. Instead, our observations consist of only of customer arrival, ser-
vice and departure times during some period of time. The main objective is
to conduct Bayesian analysis in order to infer the parameters of the stochas-
tic system. This also includes the unknown dimension of the environmental
process. We illustrate the implementation of our model and the Bayesian
approach by using actual data on call centers.

Keywords. Queueing, Erlang-A model, Hidden Markov model, Call centers,
Bayesian inference, Gibbs sampler

1 Introduction

Research on queueing models provide perhaps the oldest and largest pool of lit-
erature within operations research, management science, and related fields. The
number of articles published on theory and applications as well as the variety of the
models considered in these articles are truly amazing. This is undoubtedly due to
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the fact that many real life situations can be represented by queueing models. In
recent years, there seems to be an additional interest that activates this field that
has been somewhat stagnant for some time. The emergence of new service systems,
like call centers and health care, is the main motivation behind this surge. In this
paper, we revisit a typical Markovian queue in order to perform a tractable statis-
tical analysis with emphasis on Bayesian learning based on observed data on the
system.

Bayesian methods in queues have been considered in literature starting in late
80s where initial work focused on Markovian queues; see for example, [15], [16], and
[3]. Extensions to Er/M/1 and Er/M/s queues have been introduced by Wiper [29]
who used Monte Carlo methods to obtain operating characteristics of the systems.
Rios-Insua et al. [26] developed Bayesian analysis for M/Er/1 and M/Hy /1 queues.
Queues with bulk arrivals were analyzed in [4] and [5] using a Bayesian approach.
More recently, Ramirez-Cobo et al. [25] introduced Bayesian methods to analyze
queues where arrival and/or service distributions with heavy tails and Bayesian
analysis of queuing networks was considered by [28]. However, to the best of our
knowledge Bayesian analysis of Markov modulated queues with abandonment has
not been previously considered.

An important feature of our models is that it involves modulation by a hidden
Markov process that represents the possibly unobserved environmental conditions
that affect the arrival, abandonment, and service processes. The concept of mod-
ulation is now widely accepted and used in a variety of areas in order to make the
models more realistic. This introduces additional uncertainty, yet the models re-
main computationally tractable in many cases. The main idea behind modulation
is that the model parameters change randomly with respect to some environmental
process that affects these parameters. In the context of queueing models with im-
patient customers who abandon the queue after the waiting time exceeds a random
patience treshold, there is randomness in the customer arrival, service and aban-
donment processes. For a Markovian queue, interarrival times, service durations,
and patience tresholds all have exponential distributions. But, their rates are not
necessarily constant over time and, in many cases, they change randomly depending
on various environmental factors. We will focus on such a model where the environ-
mental factors form a hidden Markov process the states of which are not necessarily
observed. An important outcome of modulation in queueing applications is that
the arrival, service and abandonment processes are dependent due to the common
environmental factors that they are both subjected to. This is indeed an important
contribution by itself to a literature which almost unanimously supposes indepen-
dence of these processes. In queueing networks, modulation makes it possible to
model dependent arrival processes to the different nodes. It is only natural to ex-
pect such dependence, since an environmental variation that increases arrivals to a
node will very likely have the same (or reverse) effect on another entry node of the



network.

Markovian queues with abandonment have gained considerable attention in call
centers where abandonment rate is considered a proxy for quality of service; see for
example, Aktekin and Soyer [1]. Implications of abandonments in call center design
is discussed by Garnett, Mandelbaum, and Reiman [20]. A queue with Markovian
arrivals, service and abandonments, is known as a M/M/c+M queue. It is also
referred to as an Erlang-A model in the literature. Mandelbaum and Zeltyn [14]
present results on the Erlang-A models. A Bayesian analysis of the Erlang-A models
is considered in Aktekin and Soyer [1].

There exist considerable literature on Markov modulated queues (MMQ). Prabhu
and Zhu [23] discusses such systems and provides a survey of earlier papers including
Eisen and Tainiter [10], Neuts [18], and Purdue [24]. Zhu [30] discusses MMQ
networks and shows that the steady-state distribution of the queue length has a
product form solution. Although we will not be considering queues in discrete
time, we should mention in passing that there has been more interest in modulation
of discrete-time queues in recent years. The concept of modulation by a random
environment does not only apply to queueing models. There are other stochastic
models where modulation is used. Arifoglu and Ozekici [2] analyze an inventory
model operating in a partially observable random environment where the demand
process is modulated by a process that represents the stochastic variations in an
economy. First consideration of modulation in software reliability applications is
due to Ozekici and Soyer [21] who assume that the failures of the software depend
on its operational profile, which is now the environmental process that represents
the sequence of operations that the software performs. In a recent article, Landon
et al. [13] present a tractable Bayesian approach Markov modulated Poisson model
for software reliability. Applications also include hardware reliability where a device
performs a stochastic mission and its failure rate depends on the stage of the mission.
Cekyay and Ozekici [8] discuss issues related to mean time to failure and availability
when the mission or environmental process is semi-Markovian. Finally, modulation
also occurs in portfolio optimization problems when the random asset returns are
modulated in a so-called “regime-switching” market, as in Canakoglu and Ozekici
[7].

Our primary objective is to conduct Bayesian analysis of Markovian queues mod-
ulated by a hidden Markov process based on observed data of customer arrivals,
services, and abandonments. The inference will include not only the arrival, service,
and abandonment rates of the customers, but the holding rates and the transition
probabilities of the hidden Markov process. Our analysis will also focus on the un-
known number of states of the environmental process. The details of our model will
be presented in Section 2 where the stochastic structures of the modulating and
queueing processes are described. In Section 3 we will assume that the number of



states of the hidden process is known, and show how we can estimate the arrival,
service and abandonment rates as well as the transition rates of the Markov process.
Then, in Section 4 we will consider the case where we do not know the number of
states of the hidden Markov process, and will present an approach to obtain the
marginal likelihood based on Chib [9] that will enable us to infer the unknown num-
ber of states. Finally, our results will be demonstrated using actual arrival, service
and abandonment data from a call center in Section 5.

2 Markov Modulated Queueing Model

Let Z = {Z;;t > 0} be a modulated queueing process such that Z; depicts the total
number of customers in the system at time ¢t. Moreover, N = {Nyt > 0} is the
customer arrival process where N; denotes the total number of arrivals until time
t,and I' = {I';;n = 1,2, .-} is the service process where I',, is the duration of the
service for the nth customer. Moreover, X = {X,;n = 1,2,---} is the patience
process where X, is the patience for the nth customer such that the customer aban-
dons the queue if the waiting time in the queue exceeds this random treshold. The
model is Markovian in the sense that interarrivals, service durations, and patience
tresholds have exponential distributions with randomly changing rates that depend
on the state of an environmental process that modulates the queueing system. The
environmental process represents the prevailing conditions or factors that affect the
arrival, service, and abandonment rates. We suppose that there are ¢ servers that
work in parallel with the “first-come first-served” service discipline. Therefore, our
model can be classified as a Markov modulated M/M /¢ queue with abandonment.

The environmental process is Y = {Y};¢ > 0} where Y; represents the state
of the environmental at time ¢, and Y is a latent or hidden process. We assume
that Y = {Y;;t > 0} is a continuous-time Markov process with a finite state space
E =1{1,2,---, K} where K is the number of states. The modulation is such that
when the state of the environment is i« € E, customers arrive according to an ordinary
Poisson process with rate \;, the service rate of each working server is p;, and the
abandonment rate of each customer waiting in the queue is 6;. Therefore, the random
rate of arrivals at time ¢ is Ay, while the random service rate is py, and the random
abandonment rate is fy,. Since Y is a Markov process, it is well-known that the
sequence of states visited by Y form Markov chain with state space E and some
transition matrix P such that P;; = 0 for all <. Moreover, the amount of time spent
in any state ¢ is exponentially distributed with some holding rate p;. Therefore, the
transition rate matrix or generator of the Markov process Y is

e =
6={ 5, 1) W



or G;; = pi(Py; — 1;;) where I;; is (7, 7) element of the identity matrix I.

It is clear that the arrival process is a Markov modulated Poisson process (or a
doubly stochastic Poisson process) and we refer the reader to Ozekici and Soyer [22]
for a detailed discussion on these processes. In particular, we can write

e At AF
X (2)

PN, = k|Y] =

where .
&:/Amms (3)
0

forallk =0,1,--- and ¢ > 0. It follows that, given Y, the customer arrival process N
is a nonstationary Poisson process with mean value function E[N,|Y] = A;. Letting
T ={T,;n=0,1,2,---} denote the arrival time process so that 7T, is the time of
the nth arrival, we have the conditional distribution

P[TnJrl - Tn > t‘}/a Tn] = ei(ATnHiATn)' (4)

The modulated process reduces to the ordinary Poisson process with rate A if the
arrival rate vector is \; = A independent of the state of Y. In this case, A; = At
deterministically.

It is clear that the bivariate process (Y, Z) = {(Y;, Z;);t > 0} is a Markov process
with state space £’ x N where N = {0, 1,2, - - - } is the set of all nonnegative integers.
Moreover, the generator @ of (Y, Z) is

pibij J#Fi,m=n
Ai j=im=n+1
Qi) (jym) = (n A c)pi+ (n—c)*o; J=t,m=n-—1 (5)
—(pi+tXNi+mAu+n—0c)t6) j=im=n
0 otherwise

for all 4,7 € E and n,m € N with n > 1. Here and later, we use the notation
a A b = min{a, b} and (a — b)" = max{a — b,0} for any real numbers a and b. If
n = 0 and the system is empty, @ still satisfies (5), but state m = n —1 < 0 is
not possible. One can also easily obtain the generator for some special cases and
variations. For example, when ¢ = 400, we get n A ¢ = n,(n —¢)™ = 0 and we
have the modulated M/M/ + oo queue where there is no abandonment. Taking
¢ = 1 yields the modulated M/M/1 queue with abandonment. Note that the size
of the matrix () may be infinite since the cardinality of N is infinite. It will become
computationally tractable if it has a finite dimension. This will indeed be the case
if there is some finite capacity C' such that customers can not enter the system if
there are C' customers already present. In this case, we have the Markov modulated
M/M/+00/C queue and it suffices to define the generator by (5) for all 4, j € E and
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n,m € {0,1,2,---,C} with 1 <n < C. One must however note that m =n—1<0
is not possible when n = 0, and m = n+1 = C +1 is not possible when n = 0. The
remedy for the latter case is to set Ac = 0 in (5).

Since (Y, Z) is a Markov process with generator matrix @), its transition function
Py m)(t) = PY: = j, Zy = m|Yy = i, Zo = n] (6)

is given by the exponential matrix defined via the Taylor expansion

P(t) = exp (Qt) = Z n.Q” (7)

The exponential matrix form of the transition function is very useful in computations
on the queueing system since there are many tractable procedures that can be used.
Moler and van Loan [17] presents many methods along this direction. Moreover,
these matrices are very useful in the analysis of stochastic models with Markovian
modulation. We refer the reader to Neuts [19] for details and various results on the
exponential matrix that we will be using in our analysis. Asmussen [6] provides a
survey on Markovian point processes and discusses how they are used in applied
probability calculations.

It is now a direct consequence of (6) that the transient distribution of the number
of customers in the system at any time ¢ is

P[Z = m|Yy=i,Zo=n] =Y Pun)m(t) (8)
jEE
so that the expected number of customers becomes
ElZ|Yo=1,Zg=n] =YY mPinGm(t)- (9)
meN jeR

One can also obtain similar formulas for unconditional probabilities and expecta-
tions. For example if o; = P[Y; = ] is the initial distribution of Y and the system
is empty at time 0, then

= Z Oﬁp(i,o),(j,m) (t) (10)
i,jeE
If the Markov process (Y, Z) is ergodic, then the steady-state distribution

T(j,m) — tEer P[Y;f =7, Zy = m‘Yb =1,20 = 77,] (11)

can be computed by solving the system of linear equations 7Q) = 0 with >
1. Then, it follows that the steady-state distribution of the number of customers is

lim P[Z Z T (jm) (12)

t——+o00
JjEE

jeE,meN T(j,m

) =



with expectation

L= lim B[Z)=) ) magum. (13)
meN jelE

Moreover, using Little’s formula, the average waiting time in the system becomes
W = L/X where the effective arrival rate is

/_\ = Z Z )\jﬂ'(j,m). (14)

meN jeE

In summary, using the matrix exponential form (7) one can obtain many impor-
tant performance measures associated with the transient and ergodic behaviour of
the MMQ system. Our primary objective is to develop statistical inference for the
MMQ system using a Bayesian framework and obtain the performance measures for
the system. It is important to note that in our model the Y process is latent and,
therefore, in addition to the unknown parameters we also need to make inference
about the latent states.

3 Bayesian Analysis of the MMQ

In this section we will illustrate how we can estimate all the parameters as well as
the latent states in the MMQ model. The approach is based on an extension of the
Markov Chain Monte Carlo (MCMC) method given in Fearnhead and Sherlock [11]
for pure birth processes. This method is based on a Gibbs sampler and requires a
three-stage process. We first introduce some notation that will be used in describing
the three stages. We denote the customer arrival rates as A = {\;;i € E}, service
rates as u = {p;;1 € E}, abandonment rates as 6 = {6;;i € E'}, holding rates of the
Y process as p = {p;;i € E}, and transition probabilities as P = {P;;;4,j € E}.
Since there are K states in E and P; = 0 the total number of parameters to be
estimated is K(K —2) +4K = K(K +2).

We suppose without loss of generality that Z; = 0 and the system is empty at
time O for simplicity. We assume that the system is observed until some time ¢,
to obtain the dataset D ={z;;0 < t < tps} where z; is the number of customers
observed to be in the system at time ¢. During the observation period, we suppose
that n customers arrived while m < n customers have departed either due to service
completion or abandonment. Note that our observations contain all the information
on arrival times, service durations, patience tresholds as well as customer departure
times and the number of customers in the system and service during [0, t,ps]. We let
tM ¢ ... t+m) denote the times at which there has been a change in z during
[0, tops]. Clearly, these are exactly those times at which there has been an arrival or
a departure. To simplify the notation, we will set z(*) = z,,) denote the number of
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customers in the system after the kth change of state. For any time 0 < t*) < ¢,
we further define binary indicators ayg, by, and ¢, as 1 or 0 depending on whether
the kth change is due to an arrival, departure after service completion or departure
due to abandonment respectively. It is clear that {t®}, {z®)}, {a.}, {bx} and {c;}
are all contained in the history or data set D.

In Stage 1, we will simulate the state of the hidden Markov process at each of
the event times (), t®) ... ¢+ given in our data set D. Thus, all the results
are conditional on the parameters A, i, p, 6, and P. In Stage 2, we will simulate the
entire hidden Markov process, and in Stage 3 we will simulate a new set of parameter
values using the Gibbs sampler. In the rest of this section, we will outline what each
of the three stage involves.

Stage 1: Simulation of the hidden Markov process at event times.

At any event time t*), we also observe whether that event is an arrival (aj = 1)
or departure after service completion (by = 1) or departure due to abandonment
(¢, = 1). It is clear that ay + by + ¢, = 1 for all k. Moreover, as long as the state of
the Markov process is ¢, arrivals occurs exponentially with rate \;, departures occur
exponentially with rate (z A ¢) u;, and abandonments occur exponentially with rate
(z — )" 0; when z customers are present. We now define diagonal matrices

N iti=i o [ ifi=d o 6, ifj=i
A“_{o, ifj%i’H“_{O, ifj#i’@”_{o, if § £ 4. (15)

We also let the matrix exponential

T® = exp [(G — <A+ (z(k_l) A c) I+ (z(k_l) — c)Jr G))) (t(k) — t(k_l))] (16)

represent the transition probabilities of the states of the hidden Markov process Y
over the interval (+=1 ¢(*)),

Since Y is a Markov process, the states {Sy = Yym} at times 0 = ¢ < ) <
t? << pldm) < plndmdl) — ¢ satisfy the transition probabilities

T® | =PlSy=s, Zi = Z, for all u,t € (1 W)[S_; = 4] (17)

The definition (17) implies that Tg? is the probability that the state is j at time t*)
and no events (arrivals, departures, or abandonments) occurred during the interval
(=1 +()) given that the state is i at time t*~1. Then, (16) follows by noting that
arrivals occur exponentially with rate \;, departures due to service completions occur
exponentially with rate (z(kfl) A c) 1i, and abandonments occur exponentially with
rate (271 — c)Jr 0; during (¢*= ¢®). Since "™+ = ¢, is not an event time
T(+m+1) gives the transition probabilities with no events during (¢t™+m) ¢(n+m+1) —
tobs)-



We recursively define the matrices

A(n+m+1) _ T(n+m+1) (18)

AR = T®) <akA+bk (z(k’l) A c) II+cy (z(k’l) — c)+ @) AR+

fork=n+m,n+m—1,--- 1. Note that these matrices denote the likelihoods
Agi)_l,snmﬂ =P [{((a,b.c) D) sl =k, k+ 1, ,n+m}, Spsmit = Sntme1|Sko1 = Sp_1] -

So we first of all calculate {T™} using (16), and then we calculate {A®)} using
(18), starting with A"+ and going backwards until we have

Sﬁsnmﬂ = P[D, Sptm+1 = Sntm1]S0 = sol-

We will assume that we know Sy = sg and S, 111 = Spame1, the states of the
Markov process at times 0 and ¢, respectively. If they are unknown then we can
adjust this algorithm slightly by putting a prior distribution on the state of the
process at these times, but in our example we will assume that these states are
known. Then, the state Sy of the Markov chain at time t*) can be simulated using
the conditional distribution P[Sy = s|D,Sx_1 = Sk_1, Sntms1 = Snims1] Which is
given by

Ts(le,s <@k>\s+bk (2% K e) potep (2071 — C)+ 9s> AEHD
Agz)_l’ ‘

(19)

Sn+m-+41
This is done recursively by proceeding forwards through the event times (), ...  t(+m),
Stage 2: Complete simulation of the hidden Markov process.

After completing Stage 1 we will have our simulated states of the hidden Markov
process {Si} at each of our observation times {t*)}. We will now use these to sim-
ulate the entire hidden Markov process Y. To do this we first of all simulate it over
the interval (¢, ¢M) then (tM, ) and so on until (™) ¢+m+1) " The simu-
lation over each interval is done using the uniformization of the Markov process Y
supposing that p = max;cg p; is finite. It is well-known (see, for example, Ross [27])
that the Markov process Y can be represented as a Markov chain X subordinated
to a Poisson process N with arrival rate p so that Y; = X 5, and

PlY, = s|Yy = s0] = P[)A(Ni = St‘XNO = 0]
+oo
= ZP[Nt =n]P[X, = 5| Xo = 5]
n=0
+oo

e (pt)" |
- Z n! MSO’St

n=0



where .
M=-G+1 (20)
P

is the transition matrix corresponding to the Markov chain X. Over any interval
(t*+=1 () we already obtained the simulated states Yju-1) = sx_1 and Yyu) = s in
Stage 1. Therefore, the conditional distribution of the number arrivals of N during
(k=1 ¢ #)) is

A ~

PNy — Nye-y =1 |[Yie-y = Sp—1, Y = S (21)
P =) () — ¢(k=1)))"
- n!
Mn

Sk—1,5k

“oxp [GEW — 1&-1)]

Sk—1,5k

since
P[Yt(k) = Sk’}/t(k—l) = Sk,l] = exp [G(t(k) — t(kfl))]

Sp—1,5k

Therefore, the number of arrivals Nt(k) — Nt(k—l) can be simulated using the dis-
tribution (21). If simulation yields Nt(k) — Nt(k—l) = r, then the r arrival times
t1, 1o, 1, of N over the interval (t® =1 ¢(®)) are simulated by generating r uni-
form variates over (t(k_l), t(k‘)) and ordering them. Now, we know that Y,x-1) = sx_1
and Y, = s; and the states of hidden Markov process at t <ty <--- <t are
simulated recursively by using the conditional distributions

~ M§-_ sMrij
PlY;, = s|Y;, , =81,V = sp) = — = (22)
8j-1,5k
for j =1,2,---,r. For j = 1, one should set #; , =y =t~V and §;_; = 3y = sp_1.

It also follows from the conditional distribution (22) that ¥; = Y, = s, at the last
time point when j = r since MY is the identity matrix.

Stage 3: Generation of new parameters using Gibbs sampling.

Having completed Stages 1 and 2, we should now have the entire simulated hidden
Markov process, as well as our data D on the observed MMQ. Let F = {Y};;0 <t <
tn11} denote the environmental process generated using the procedure in Stage 2.
Thus, we can write out our conditional likelihood function of the parameters and
then obtain the full conditionals to generate a new set of values for our parameters
at each step of the Gibbs sampler.

Let 7; be the total time that the hidden Markov process spends in state i, n; be

the total number of customer arrivals during 7;, 7/ be the total amount of time that
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the ¢ servers actually spent serving customers during state i, and nf be the total
number of services completed during state i. We let 7¥ denote the total amount of
time that the customers, who abandoned as well as those who received service, had
spent waiting during state ¢. It is important to note that the abandonment time for
those who received service is censored. In other words, we only know that they have
not abandoned during their waiting time for service. We denote the total number
of abandonments during state i by n? and the number of times the environmental
process makes a transition from state ¢ to state j by r;.

It is clear that 7, n;, 7/, nt, T, f,n and r;; are in F U D for all 4,5 € E. Given

data D and the entire hlstory F of the Markov process simulated in Stage 2, the
conditional likelihood function, L(\, i, p, P;F, D), of the parameters \;’s, p;’s, 6;’s,
pi’s, and P;;’s is given by

I1

<D

<01§EW exp(—m)) (N exp(=Aim)) (" exp(—pirt)) (6" exp(=0ir)) TT Py

jeE

Assuming conjugate independent priors for the unknown parameters the full con-
ditional distributions can be easily obtained. More specifically, for a given state
1=1,..., K, we assume independent gamma priors for \;’s, u;’s, 6;’s and p;’s, de-
noted as A\; ~ G(a}, b), p; ~ G(al', b)), 0; ~ G(al,b?),and p; ~ G(a?, V!) respectively.
For the ith row of the transitlon matrix P, we assume a Dirichlet prior, indepen-
dent of the other rows, as P; ~ Dir(a;1,. .., aix) where P; = (P, ..., Pig). Note
that in P; we have P;; = 0 and the corresponding parameter «; = 0. Using stan-
dard Bayesian results we can show that given the full history of the hidden Markov
process, the full conditional distributions of the parameters can be obtained as

NI~ 6@} + i, U 4 1), il ~ Glaf g b ),

177

0,10, ~ G(ai +nf, 0] +17), pilp;" ~ g(af+z7“ij,bf+7i)
jeE
and 4
PZ‘P;Z ~ D?;’I"(Oéil + Ti1y -, Q4K + riK)
where Qg = Ti = 0.

We then generate new values for these parameters from their posterior distribu-
tion and then repeat the whole process again, starting with Stage 1.

11



4 Assessment of the Number of Environmental
States

Our analysis in Section 3 assumed that the number of states K in the hidden Markov
process was known. However, in general, the actual number of states may be un-
known to us, so it is important to be able to determine how many states there are.
The problem of determining K can be considered as a model selection problem in
the Bayesian approach where the model choice is made using Bayes factors; see Kass
and Raftery [12] for a review. The computation of the Bayes factors requires the
evaluation of marginal likelihood for a given model, that is, for given value of K in
our case. More specifically, if we let D denote our observed data, we want to ob-
tain the marginal likelihood p(D|K). The model with the highest value of p(D|K)
is the one most supported by the data and this can be used as the criterion for
determining the value of K. Alternatively, assuming a support for K and specifying
prior probabilities P [K = k] for different models such that ), P[K = k] = 1 we
can obtain posterior model probabilities P [K = k|D] using the marginal likelihood.

Evaluation of the marginal likelihood p(D|K) analytically is not possible in many
problems since it requires integrating out the unknown parameters. Since draws
from prior distributions of the parameters result in unstable estimation, the use of
Monte Carlo methods emphasize use of posterior Monte Carlo samples to evaluate
p(D|K). Although this is not straightforward in many cases, when the full posterior
conditional distributions are known forms, the marginal likelihood terms can be
approximated using the approach proposed by Chib [9]. Since the Bayesian analysis
of the MMQ in Section 3 is based on known full conditionals, we can adopt Chib’s
procedure to our problem as will be discussed in the sequel.

In our case, the marginal likelihood for a specific model with dimension K is
given by
_ p(D|>\7M7Q7p7P7F) p(A7u707p7P7‘F)

P(P) = p(\, 1,0, p, P F|D) (23)

where A, i1, 0 and p are K-dimensional vectors of \;’s, u;’s, 6;’s and p;’s and P is the
transition probability matrix of dimension K with zeros on the diagonal. We can
rewrite (23) as

(D) = p(DIA, 1,8, p, P.F) p(Flp, P)p(A, 11, 6, p)p(P)
p(A, 1,0, p, P|F, D)p(F|D)

(24)

Equation (24) holds for any values of (A, u, 0, p, P,JF) such as (\*, u*, 6%, p*, P*, F*)
which is typically chosen as the mean or mode values of the posterior distributions.
We note that all the terms in the numerator are available to us analytically and
therefore can be evaluated at (A*, u*, 0%, p*, P*, F*).The tricky part to evaluate is

12



the second term in the denominator
p(F*|D) = /p(f*ﬂ?, A1, 0,0, P)p(X, 1,6, p, PID)d(A, 11, 0, p, P)

which can be evaluated using G samples from the posterior distribution via
1 &
p(F D) == > p(F AN, 2,69, 0, P, D). (25)
g=1

The first term p(\*, u*, 0%, p*, P*|F*, D) in the denominator of (24) can easily be
written down as product of gamma and Dirichlet densities. Thus, for each value
of K, we can approximate (24) and determine the model with the highest support
of the data. As previously mentioned, using the marginal likelihood we can also
compute posterior model probabilities P [K = k|D] to infer the value of K.

5 Numerical Illustration

In this section, the implementation of the Bayesian approach for the Markov mod-
ulated Erlang-A model will be illustrated using actual call center data from an
anonymous bank considered in Aktekin and Soyer [1]. The data includes all arrival,
service and abandonment information for stock exchange customers whose aban-
donment times seem to exhibit an exponential type of behavior. For illustrative
purposes, we have used data from a single day in our analysis and used an environ-
mental process with K = 2 states. Thus, the transition matrix for the embedded
Markov chain in our case is given by

0 1
P= .
For the two-states case the inference involves parameters (j1, pi2, A1, A2, 01, 02, p1, p2)
as well as the the latent states of the environmental process. In our Bayesian analysis
we use proper but highly diffused priors for the unknown parameters. Specifically,

we choose af' = b = 0.01, a} = b} = 0.01, af =0 = 0.01,and af = b = 0.01 in the
respective gamma distributions for ¢ = 1, 2.

In the Gibbs sampler, after an initial burn-in run, 10,000 simulations were per-
formed. No convergence problems were experienced in running the Gibbs sampler.

The trace plots for (i1, A1, 61, p1) are shown in Figure 1. Similar behavior was also
observed for the environment 2 parameters.

The resulting density plots for the posterior distributions of parameters under
both environments are shown in Figure 2. We note that the density plots for 1/p,
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Figure 1: Trace plots of Gibbs sampling for p; A1, 61 and p;.

and 1/py are shown in the figure as they represent the expected holding times for the
states of the environmental process. We note that expected holding time in state 2
is lot larger than that in state 1. In fact posterior probability that p; > p, =~ 1. We
can see from the figure that service rate under environment 1 is higher than that
under environment 2. The posterior probability that p; > s =~ 0.913. Similarly, the
posterior probability that Ay > A\; & 0.884. Finally, we can see from the figure that
the abandonment rate under environment 1 is lot higher than under environment 2
with the posterior probability that #; > 6y &~ 0.983. We can also see from Figure 2
that uncertainty for p and @ is higher under environment 1 than under environment
2. This can be explained by the fact that the environmental process spends most of
the time in state 2.

It is also possible to obtain the posterior correlations of u, A and 6 under en-
vironments 1 and 2 using the joint posterior samples. We have observed that for
both environments the posterior correlations for the three rates were less than 0.02
in absolute value suggesting their posterior independence. The same conclusion was
reached by Aktekin and Soyer Aktekin and Soyer [1].
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Figure 2: Posterior distributions of u, A, # and 1/p for environments 1 (E1) and 2
(E2).

Using the posterior samples of the parameters we can evaluate the distribution
of the number customers in the system given by (10) or the posterior steady-state
distribution given by (12) as a Monte Carlo average. Evaluation of (10) requires
the matrix exponential form in (7) for the generator matrix @ for each realization
of the parameters. But this can be easily computed using the methods described
in Moler and van Loan [17]. Figure 3 gives the posterior steady-state distribution
of the number of people in the system. We can estimate the expected value of the
steady-state distribution of the number of customers given by (13) as L = 4.09.

We can compare the case of two environmental states with the single environment
case using marginal likelihoods as discussed in Section 4. In order to do this we can
update the posterior distributions of single arrival service and abandonment rates
independently using the data. The posterior distributions in each case can be ob-
tained analytically as gamma densities. The comparison of the marginal likelihoods
for K =1 and K = 2 favors the two-state case.
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Figure 3: Posterior distribution of number of people in the system in the long-run.

6 Conclusion

In this paper we considered a Bayesian analysis of Markov modulated queueing
systems with abandonment. We presented a Bayesian analysis of the queueing
system using a Gibbs sampler and illustrated how Bayesian inferences can be made
about the system measures such as the number of customer in the system at any
time. We discussed how to assess the dimension of the hidden environmental process
by computing the marginal likelihood of the data. We illustrated the implementation
of our approach using real data from a call center with impatient customers.
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