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ABSTRACT

We review and discuss the key issues in building statistical models for the call arrival process in telephone
call centers, and then we survey and compare various types of models proposed so far. These models are
used both for simulation and to forecast incoming call volumes to make staffing decisions and build (or
update) work schedules for agents who answer those calls. Commercial software and call center managers
usually base their decisions solely on point forecasts, given in the form of mathematical expectations
(conditional on current information), but distributional forecasts, which come in the form of (conditional)
probability distributions, are generally more useful, in particular in the context of simulation. Building
realistic models is not simple, because arrival rates are themselves stochastic, time-dependent, dependent
across time periods and across call types, and are often affected by external events. As an illustration, we
evaluate the forecasting accuracy of selected models in an empirical study with real-life call center data.

1 INTRODUCTION

Demand arrivals are a primary source of uncertainty in various types of service systems such as health care
systems, emergency services, retail stores, transportation systems, hotels, restaurants, call centers, etc. In
those systems, demand arrives according to complicated stochastic processes that are difficult to model,
because arrival intensities vary with time, are themselves stochastic, are not independent across successive
time periods, and often depend on external events that are more or less predictable.

In this paper, we review some models proposed for call arrivals to a telephone call center (Gans,
Koole, and Mandelbaum 2003, L’Ecuyer 2006, Akşin, Armony, and Mehrotra 2007). These centers have
a huge economic importance. A key aspect of their management is to try to optimize their staffing and the
work schedules of agents, to minimize the operating cost while providing a sufficiently good quality of
service. The latter is usually quantified by imposing constraints on certain performance measures such as
the fraction of calls answered within a given number of seconds (the so-called service level), the fraction
of calls where callers lose patience and hang up before being answered (the abandonment ratio), or the
average waiting time before an agent answers, often called the average speed of answer. These constraints
can be expressed as expected values of these measures, or their averages in the long run, or they could
also be probabilistic constraints on their (random) values over given time periods (for example, one may
impose that over any given day, with probability at least 0.9, 80% of the calls are to be answered within 20
seconds); see Gans, Koole, and Mandelbaum (2003), Avramidis et al. (2010), and Gurvich et al. (2010).
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In modern call centers, incoming calls are categorized in different types, each call type requiring a
specific ability or skill. The number of different call types could be anywhere from 1 to nearly 100. Some
call centers may employ no more than half a dozen agents, while large ones may have over 1000 agents
working simultaneously. Each agent is trained to have a given subset of these skills, and can handle only
call types for which she has the required skill. We then have a multiskill call center. An arriving call can
be served immediately if an agent with the appropriate skill is available, or may have to wait in a queue.
An abandonment occurs whenever the waiting time of a call exceeds its (random) patience time. Then,
either that call is lost, or this person will call again later (this is a retrial). Skill-based routing strategies
are rules that specify the agent-to-call and call-to-agent assignment mechanisms.

Demand forecasts are needed for workforce planning and management, which can be categorized in
three levels of decision making (Gans, Koole, and Mandelbaum 2003, Mehrotra, Ozlük, and Saltzman 2010):
long-term planning, short-term scheduling, and real-time schedule adjustments. Examples of long-term
decisions are determining how many agents to hire and train, with which skills, at what times. These
decisions can be made 6 to 12 months ahead of time and take into account aggregate call forecasts, agent
availability and productivity assumptions, and anticipated staff attrition. Short-term scheduling determines
which agents are assigned to work on which shift, on which days, and at what times, over the course of a
scheduling period. This is typically done one to three weeks ahead of time, with the set of available agents.
In multiskill centers, call routing rules must be selected together with the scheduling. Real-time schedule
adjustments can be made after agent schedules are created, when new information becomes available such
as updated forecasts of arrival volumes, agent absenteeism for some reason, etc. This can occur a day
or two in advance, and during the day. These decisions can be made based on simulations or based on
simplified approximations. The former requires good models for the arrival processes.

For call centers with a single call type, where all agents can handle any call, it is customary to use
Erlang-C or Erlang-A queueing formulas (the Erlang-A model accounts for abandonments, in contrast to
Erlang-C) to determine how many agents are needed in each time period of the day (typically using 15- or
30-minute periods) to satisfy constraints on the required quality of service (Gans, Koole, and Mandelbaum
2003, Avramidis and L’Ecuyer 2005). These staffing requirements are used in turn to construct work
schedules (Pot et al. 2008, Avramidis et al. 2010). Erlang formulas assume that, in each time period, we
have a first-in-first-out (FIFO) queue operating in steady-state, with independent and identically distributed
(i.i.d.) exponential service times and Poisson arrivals at a constant rate. Their implementation only requires
knowledge of the arrival rate, the mean service time, and the number of agents, for each period. Traditional
forecasting methods for call centers have been designed to provide input parameters for these formulas.
They usually provide only point forecasts, in the form of the expected number of calls in each time period
of the day, because the formulas do not require additional information. These forecasts can be updated at
any time (e.g., at the end of each time period) to account for the latest available information.

Erlang formulas only provide rough approximations, based on unrealistic simplifying assumptions.
Moreover, they do not apply to multiskill centers. Stochastic simulation provides a more realistic evaluation
tool in this context. It only requires arrival models in the form of stochastic processes that are easy to
simulate. In these models, the arrival times and counts in each time period must be well-defined random
variables, whose distributions may depend on current available information. In particular, at the beginning
of each time period, the “forecasts” for the coming periods are distributional forecasts, defined in the form
of (conditional) probability distributions (for both the arrival counts and arrival rates). These conditional
distributions are not necessarily available or computed explicitly; they are often implicit in the models.

Some stochastic models provide explicit distributions for stochastic time-dependent arrival rates, in
which case a simulation would normally generate a realization of the arrival rate process, and then generate
arrivals according to a Poisson process conditional on the realized arrival rate process. Other models
provide distributions directly for the arrival counts in different time periods, and assume a Poisson process
with a constant rate over each period. To simulate the process using such a model, one would generate
the arrival count in each period, and then generate the arrival times independently and uniformly over that
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period. Models where we generate the rates and where the rates are constant in each period are usually
more convenient to simulate, because arrival times can then be generated one by one only as needed, by
generating independent exponential inter-arrival times, and placing those in the future event list one at a
time, a mechanism that agrees with standard simulation software (Buist and L’Ecuyer 2005). Whenever
the arrival rate changes at the beginning of a period, the next arrival event is rescheduled to account for the
change in the arrival rate. In the ContactCenters software (Buist and L’Ecuyer 2005), the implementation
takes care of this rescheduling automatically. The arrival times do not need to be stored and sorted as when
counts are generated first. Note that for the sole purpose of generating point forecasts, using counts or rates
is equivalent (they have the same expectation), provided that they satisfy the same modelling assumptions.

One important fact to take into account is that arrival times of individual calls are rarely available
in call center data; only aggregated arrival counts per time period are available, and one must be able to
estimate the models from that. For an exception, see Brown et al. (2005).

The remainder of this paper is organized as follows. In Section 2, we summarize important stylized
features that have been observed empirically in call center arrival data, and we briefly discuss how these
facts can be taken into account in arrival process models. Then, we examine and compare specific models
in more detail, by focusing first on modeling arrivals within one day in Section 3, and extending to arrival
models over several days in Section 4. In Section 5, we compare selected models in terms of forecasting
performance, in an empirical study based on real-life call center data.

2 KEY FEATURES OF ARRIVAL PROCESSES

A modeling hypothesis that may appear natural is that calls arrive according to a Poisson process with time-
dependent arrival rates. For sure, the arrival rate in call centers is not constant. In typical business-related
call centers, there is a peak period just before lunch and another one just after lunch, with a lower arrival
rate during lunch, and even lower in the early morning and late afternoon; see, e.g., Figure 2 of Avramidis,
Deslauriers, and L’Ecuyer (2004) and Channouf and L’Ecuyer (2012). But different shapes of arrival
rate patterns occur as well in other types of call centers, such as those handling food orders, ambulance
and police calls, etc. Moreover, different shapes of arrival rate patterns are often observed over different
days of the week, in different periods of the year, or on certain particular days (e.g., the first Monday of
the month), in a given call center. For example, business-related centers often have higher call volumes
on Mondays than on other days, while ambulance and police calls have a higher rate late at night over the
weekend, but not during the week. This leads to our first key feature (or property) of call arrival processes:

(P1) The arrival rate varies (sometimes considerably) with the time of day and exhibits daily, weekly,
yearly, and other types of seasonalities.

A Poisson process assumption with a deterministic arrival rate function implies that the number of
arrivals over any given time period is a Poisson random variable, whose variance is equal to its expectation.
However, empirical evidence invalidates this assumption; the observed variance of arrival counts is typically
much larger than the mean, sometimes by a factor of 5 or more (Jongbloed and Koole 2001, Avramidis,
Deslauriers, and L’Ecuyer 2004, Steckley, Henderson, and Mehrotra 2005):

(P2) The total demand (number of incoming calls) over any given time period has overdispersion relative
to the Poisson distribution (the variance is significantly greater than the mean).

To reconcile the Poisson process model with the reality in (P2), one must take the arrival rate itself as
stochastic; we will return to this in the next section. Other important features observed empirically concern
the dependence between successive rates or counts:

(P3) There is significant (strong) positive dependence between arrivals rates (or counts) in different time
periods of the same day, and this positive dependence usually decreases when the considered time
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periods are taken farther apart (Tanir and Booth 1999, Whitt 1999, Avramidis, Deslauriers, and
L’Ecuyer 2004, Shen and Huang 2008b, Channouf and L’Ecuyer 2012).

Models that fail to account for the positive dependence in (P3) or the overdispersion in (P2) give an
overoptimistic view of call center performance measures. Such errors can be very significant; see Avramidis,
Deslauriers, and L’Ecuyer (2004), Avramidis and L’Ecuyer (2005), Steckley, Henderson, and Mehrotra
(2005), and Steckley, Henderson, and Mehrotra (2009). When observing arrival data over several months
or years, we have (Aldor-Noiman et al. 2009, Brown et al. 2005, Channouf et al. 2007):

(P4) After correcting for detectable seasonalities, noticeable correlations remain between arrival counts
over successive days.

(P5) After accounting for the dependence between total daily volumes in two successive days, the
dependence that remains between the last period(s) of the first day and the first period(s) of the
second day could be significant in call centers that operate 24 hours a day (such as for emergency
services, police, etc.), and negligible in centers that close during the night.

For 24-hour-a-day centers, it may then seem natural to state the model of arrival rates (counts) per period
as a single univariate time series after removing seasonalities and perhaps daily random effects (Channouf,
L’Ecuyer, Ingolfsson, and Avramidis 2007, Section 4.2, consider this type of model). For other centers, it
would be more fitting to use a multivariate time series for the sequence of vectors of arrival rates (counts).

When incoming calls are classified into multiple types, arrival rates (and counts) of certain pairs of
call types are sometimes correlated (usually positively), while other pairs are approximately independent.
Positive correlations may arise, for example, in multilingual call centers where certain service requests
are handled in different languages. Neglecting this positive dependence can lead to serious overloads,
particularly when some agents handle calls in multiple languages.

(P6) In call centers with multiple call types, there is sometimes strong dependence between arrival rates
(and counts) of certain call types during the same time period.

Auxiliary information is often available in call centers to improve point or distributional forecasts
considerably. For example, when a company sends notification letters to customers, or makes advertisements,
this may trigger a larger volume of calls (Landon, Ruggeri, Soyer, and Tarimcilar 2010). Also, the number
of abandonments in recent periods could be used as a covariate in a forecasting model for forthcoming
hours, to account for retrials.

(P7) External knowledge can often be used to improve forecasting accuracy (and reduce the variance of
distributional forecasts) by introducing covariates in models.

In certain types of call centers, for example in emergency services, unpredictable bursts of high arrival
rates over short periods of time do occur. In this context, an important accident or similar event may trigger
several dozen different calls (or more) within a few minutes, all related to the same event, whereas the
usual expected number of calls within those few minutes is, say, no more than 2 or 3.

(P8) In certain types of call centers, the arrival rate has sometimes unexpected high peaks over short
periods of time.

Ideally, we want arrival models to be as realistic as possible and to account for the above-named
Properties (P1) to (P8). Their number of parameters should remain reasonably small to avoid overfitting,
and these parameters should be easy to estimate from available data. Moreover, these estimates should not
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be too hard to update (e.g., via Bayesian methods) to obtain distributional forecasts when new information
becomes available at the end of any given time period.

3 MODELING ARRIVALS OVER A SINGLE DAY

In this section, we focus on modeling arrivals over a single day. The day is divided into p time periods,
usually of equal length (although this is not essential). For example, if the center receives calls from 8:00
to 21:00, we may have p = 52 quarter hours. We denote by X = (X1, . . . ,Xp) the vector of arrival counts in
those periods. When arrivals are from a Poisson process with a random rate function, we denote by Λ j the
cumulative arrival rate (its integral) over period j. Then, conditional on Λ j, X j has a Poisson distribution
with mean Λ j. To simplify the notation, we assume in this paper that the periods have the same length
and also that the time unit is one period. Then, when the arrival rate is constant over each period, this rate
is the same as the cumulative rate Λ j, and we denote both by Λ j.

One of the most convenient types of arrival models for simulation is a Poisson process. But in view
of Property (P2), the arrival rate of the Poisson process must be taken as stochastic (Jongbloed and Koole
2001, Avramidis, Deslauriers, and L’Ecuyer 2004, Steckley, Henderson, and Mehrotra 2009, Shen 2010b).
Whitt (1999) proposed to do that by starting with a deterministic arrival rate function {λ (t), t0 ≤ t ≤ te},
where t0 and te are the opening and closing times of the call center for the considered day, and to multiply
this function by a random variable W with mean E[W ] = 1, called the busyness factor for that day. The
(random) arrival rate process for that day is then Λ = {Λ(t) =Wλ (t), t0 ≤ t ≤ te}. To simulate this process,
it suffices to generate W first and then generate arrivals from the Poisson process with rate function Λ.
Under this model, the arrival rates at any two given times are perfectly correlated, and Corr[Λ j,Λk] = 1 for
all j,k. We also expect the X j’s to be strongly correlated. More specifically, let I j denote the time interval
of period j, let λ̄ j =

∫
I j

λ (t)dt, and let X j be the number of arrivals in I j. Using variance and expectation
decompositions, one can find that Var[X j] = λ̄ j(1+ λ̄ jVar[W ]) and, for j 6= k,

Corr[X j,Xk] = Var[W ]
[
(Var[W ]+1/λ̄ j)(Var[W ]+1/λ̄k)

]−1/2
.

This correlation is zero when Var[W ] = 0 (a deterministic rate) and approaches 1 when Var[W ]→ ∞.
Avramidis, Deslauriers, and L’Ecuyer (2004) have studied this model in the special situation where W

has a gamma distribution with E[W ] = 1 and Var[W ] = 1/γ . Then, each Λ j has a gamma distribution, X
has a negative multinomial distribution, the parameters of this distribution are easy to estimate, and the
variance of the arrival counts can be made arbitrarily large by decreasing γ toward zero. Jongbloed and
Koole (2001) examined a similar model, but with independent busyness factors, one for each period of the
day. Under their model, the Λ j’s are independent, as are the X j’s, which is inconsistent with (P3).

Avramidis, Deslauriers, and L’Ecuyer (2004) assume a piecewise constant arrival rate, λ (t) = λ j when
t belongs to the jth period of the day, and show how to compute the joint maximum likelihood estimator
of γ and the λ j’s. Channouf (2008) considers a variant of the model where λ (t) is defined by a cubic
spline over the day, with a fixed set of knots, and also shows how to estimate model parameters. This
can provide a smoother (perhaps more realistic) model of the arrival rate. On the other hand, simulating
arrivals from this process is more complicated and time consuming. Moreover, in empirical experiments,
call center performance measures observed with this model were not much different from those observed
with the piecewise constant rate model.

The model with a single busyness factor W accounts for (P3), but its flexibility is rather limited,
because given the λ̄ j’s, Var[X j] and Corr[X j,Xk] for j 6= k are all determined by a single parameter value,
namely Var[W ]. A larger variance necessarily implies larger correlations, and vice-versa. In an attempt
to increase the flexibility of the covariance matrix Cov[X], and in particular to enable a reduction of the
correlations, Avramidis, Deslauriers, and L’Ecuyer (2004) introduced two different models for X, based on
the multivariate Dirichlet distribution, which yield relatively smaller correlations than the model based on
W . Nevertheless, they remain larger than real-life estimates. In all these models, Corr[X j,Xk] depends
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on E[X j], E[Xk], and Var[W ], but not on the spacing between periods j and k. This disagrees with the
second part of (P3).

Channouf (2008) and Channouf and L’Ecuyer (2012) proposed models that account for (P1) to (P3),
with much more flexibility to match the correlations between the X j’s, by using a normal copula to specify
the dependence structure between these counts. The vector X is assumed to have a discrete multivariate
distribution with arbitrary one-dimensional marginals, which are estimated separately and independently.
In their implementation, the authors take these marginals as negative binomial and find that this agrees with
the data they have. Conditional on X j, the arrival times in period j are again assumed to be independent
and uniformly distributed in that period. This corresponds to Poisson arrivals at a rate Λ j which is constant
and gamma distributed in each time period. The correlation matrix for the normal copula is selected so that
rank correlations between the counts match those in the data as closely as possible, under the constraint
that this still gives a valid correlation matrix. To reduce the number of parameters in the copula model
(especially when the number of time periods in the day is large, because there are then too many correlations
to estimate), the authors also restrict the correlation matrices to certain parametric subclasses. For example,
one may force the entries ri, j of the correlation matrix to be functions of | j− i| only, and even to have
the special form ri, j = ρ | j−i| where 0 < ρ < 1. The latter corresponds to an autoregressive structure of
order 1 (AR(1)) for the series X1,X2, . . . ,Xp. Channouf and L’Ecuyer (2012) test their model on three data
sets taken from real-life call centers and find that, in all three cases, it matches the correlations and the
coefficients of variation of the counts better than all the models examined by Avramidis, Deslauriers, and
L’Ecuyer (2004). In principle, similar copula models could be developed for the vector of arrival rates,
(Λ1, . . . ,Λp), instead of for the vector of counts.

In call centers with multiple call types, to account for (P6), one must model the multivariate distribution
of the vector giving the number of arrivals of each type in any given time period. Again, the dependence
here can be modeled via a copula, after fitting the marginals individually. The simplest and more practical
type of copula for this is probably the normal copula, used for example by Kim, Kenkel, and Brorsen
(2012) and Ibrahim and L’Ecuyer (2012). However, empirical data suggests that for certain pairs of call
types, the coefficient of upper or lower tail dependence, which measures the strength of the dependence in
the right or left tail of the distribution, is quite different from that implied by a normal copula. Moreover,
the choice of copula can have a significant impact on performance measures in call centers, because of the
strong effect of tail dependence on the quality of service (Jaoua and L’Ecuyer 2011).

4 ARRIVAL PROCESS MODELS OVER SEVERAL DAYS

We now consider arrival process models over several days or months. We introduce some additional
notation. Again, we suppose that the operating time of the call center over one day is partitioned into p
time periods of equal length. We take the same p for all days. If some days have shorter opening hours
than others (e.g., over the weekend), then we can just assume that the arrival rate is zero in the periods
where the center is not open. We consider observations over q successive days. Each day i has a type of
day di ∈ {1, . . . ,7}, where di = 1 means that day i is a Monday, di = 2 means that day i is a Tuesday, and
so on. When there are special days (c.f. (P7)), we index their type by k and let Sk = {i : day i is a special
day of type k}. In the models considered here, we consider a single call type and we assume that arrivals
are from a Poisson process with a (random) constant arrival rate Λi, j over period j of day i, for i = 1, . . . ,q
and j = 1, . . . , p. This rate is expressed in “arrivals per period.” Conditional on Λi, j, the number Xi, j of
arrivals in that period has a Poisson distribution with mean Λi, j.

Early studies, for example Mabert (1985), Andrews and Cunningham (1995) and Bianchi, Jarrett, and
Hanumara (1998), used standard time series methods such as ARIMA models, with covariates to account for
advertising, special-day effects, etc., to forecast arrival volumes in call centers. Exponential smoothing is a
popular forecasting technique, where the forecast is constructed from an exponentially weighted average of
past observations. The Holt-Winters method is an extension of exponential smoothing which accommodates
both a trend and a seasonal pattern. Taylor (2008) compared various time series models, including a
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Holt-Winters exponential smoothing model with multiple seasonal patterns. For forecasts more than a few
days in advance, he concluded that very simple methods such as the additive fixed-effect model described
below are hard to beat. However, in the short term, one can take advantage of the dependence structure
between rates (or counts) in successive days and within the same day. Shen (2010a) comments about
Taylor’s work, highlighting the difference between modeling arrivals as a single time series, and as a vector
time series where each day is modeled as a component of that vector; c.f. (P5). Channouf et al. (2007)
developed simple additive models for the (small) number of ambulance calls in each hour, in the city of
Calgary. Their models capture daily, weekly, and yearly seasonalities, selected second-order interaction
effects (e.g., between the time-of-day and day-of-the week effects), special-day effects (such as the Calgary
Stampede), and autocorrelation of the residuals between successive hours. Their best model outperforms
a doubly-seasonal ARIMA model for the residuals of a model that captures only special-day effects.

Some linear models proposed recently use the “root-unroot” data transformation Yi, j = (Xi, j +1/4)1/2

to stabilize the variance (Brown et al. 2005, Brown et al. 2010). The unconditional distribution, with
random Λi, j, is then a mixture of such normal distributions, and therefore has larger variance, but one
can nevertheless “assume” (as an approximation) that the square-root transformed counts Yi, j are normally
distributed and fit Gaussian linear models to the transformed data, if Var[Λi, j] is not too large; see Brown
et al. (2005), Weinberg, Brown, and Stroud (2007), Aldor-Noiman, Feigin, and Mandelbaum (2009), and
Ibrahim and L’Ecuyer (2012).

One example of a general additive fixed-effects (FE) model for the square-root-transformed counts Yi, j
is

Yi, j = αdi +β j +θdi, j +∑
k
(γk +δk, j)I[i ∈ Sk]+ εi, j,

where the fixed coefficients αdi , β j, θdi, j, γk, and δk, j (to be estimated from the data) represent the day-
of-the-week effect, the period-of-day effect, day-period interaction effect, special-day effect of type k, and
special-day-period interaction effect, respectively, and I[·] is the indicator function. The residuals εi, j’s are
assumed to be i.i.d. normal with mean 0 and variance σ2

ε .
As an improvement, and based on real call center data analysis, Aldor-Noiman, Feigin, and Mandelbaum

(2009) propose the following linear mixed-effects (ME) model:

Yi, j = αdi +β j +θdi, j +∑
k
(γk +δk, j)I[i ∈ Sk]+Di + εi, j,

where Di is a random effect for day i, the εi, j’s are no longer independent, and the other terms are the
same as in the FE model defined above. They assume that the Di’s have mean 0 and obey an AR(1)
process: Di = ρDDi−1 + εi where 0 < ρD < 1 and the εi’s are i.i.d. normal with mean 0 and variance
σ2

D(1−ρ2
D). This implies that (D1, . . . ,Dq) is multinormal with mean zero and covariance matrix with

elements σi,i′ = σ2
Dρ
|i′−i|
D . The residuals εi, j are also assumed to have an AR(1) structure within each day.

That is, the vector (εi,1, . . . ,εi,p) has a multinormal distribution with mean zero and covariance matrix
with elements σ j, j′ = σ2

ε ρ
| j′− j|
ε . The additive random effect Di plays a similar role as the multiplicative

random busyness factor W in the single-day model discussed earlier. Here, by playing with the variance
and correlation parameters σ2

D, ρD, σ2
ε and ρε , we have four degrees of freedom to adjust the overdispersion

and the dependence across days and across periods. Brown et al. (2005) proposed an earlier version of
this model, also based on call-center data, without intraday correlations and without special-day effects.

Ibrahim and L’Ecuyer (2012) extend this ME model to two bivariate ME models, where Yi, j is replaced
by the pair of transformed arrival counts for two different call types. These models account for the
dependence between the two call types by assuming that the vectors of random effects or the vectors of
residuals across call types are correlated multinormal. This corresponds to using a normal copula.

To reduce the dimensionality of the vectors (Yi,1, . . . ,Yi,p), Shen and Huang (2005) proposed the use
of singular-value decomposition to define a small number of vectors whose linear transformations capture
most of the information relevant for prediction. Based on this, Shen and Huang (2008b) then developed a
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dynamic updating method for the distributional forecasts of arrival rates. Shen and Huang (2008a) proposed
a method to forecast the latent rate profiles of a time series of inhomogeneous Poisson processes to enable
forecasting future arrival rates based on a series of observed arrival counts. Aktekin and Soyer (2011)
recently proposed a model based on a Poisson-gamma process, where Λi, j =Wi, jλi, j for fixed λi, j’s, and
where the multiplicative factors Wi, j have a gamma distribution and obey a gamma process. Soyer and
Tarimcilar (2008) analyzed the effect of advertisement campaigns on call arrivals. Theirs is a Bayesian
analysis where they model the Poisson rate function using a mixed model approach. This mixed model is
shown to be superior to using a fixed-effects model instead. Weinberg, Brown, and Stroud (2007) also use
Bayesian techniques in their forecasts. They exploit the (normal) square-root transformed counts to include
conjugate multivariate normal priors, with specific covariance structures. They use Gibbs sampling and the
Metropolis Hastings algorithm to sample from the forecast distributions, which unfortunately requires long
computational times. Moreover, it is unclear how to incorporate exogenous covariates in such a model.

5 A CASE STUDY

We now report partial results of an empirical study using real-life data gathered at the call center of a major
Canadian company. The data were collected over q = 275 days (excluding holidays when the center is
closed, and weekends), from October 19, 2009, to November 11, 2010. The center operates from 8:00 to
19:00 on weekdays (Monday to Friday), i.e. each weekday contains p = 22 half-hour periods. The data
consisted of arrival counts Xi, j in the ith day and jth half-hour period (here, we consider a single call type).

Figure 1 shows the time series of the counts Xi, j over two weeks, from August 19, 2010, to September 1,
2010. In Figure 2, we plot the average counts over those days, as functions of the period, for each weekday.
We observe two major daily peaks, one shortly before 11:00 and the other around 13:30. Exploratory
analysis of our data shows reveals: (i) positive correlations between the daily counts over successive days,
which decrease with the distance between those days (see Table 1); and (ii) positive correlations between
the counts over successive periods of the same day. This agrees with (P3) and (P4).

Table 1: Correlations between arrival counts on successive weekdays.

Weekday Mon. Tues. Wed. Thurs. Fri.
Mon. 1.0 0.48 0.35 0.35 0.34
Tues. 1.0 0.68 0.62 0.62
Wed. 1.0 0.72 0.67

Thurs. 1.0 0.80
Fri. 1.0

We applied the square-root transformation Yi, j =
√

Xi, j +1/4 to our data, and then adjusted the FE
and ME models described in Section 4, without special days; see Ibrahim and L’Ecuyer (2012) for more
details. We also considered the Holt-Winters (HW) smoothing method, with a daily seasonality. Finally,
we considered a way of splitting the existing daily forecasts used at the company by applying a top-down
(TD) approach, as explained in Gans et al. (2003) and Taylor (2008), which in our context splits forecasts
of total daily arrival counts into forecasts of half-hour counts based on estimates of historical proportions of
calls in successive half-hour intervals of the day. The reason for considering the company’s daily forecasts
is that they incorporate important external information (not in the data set) that impacts the arrival process,
such as major marketing campaigns and recent price increases.

To compare the performances of these models, we generate out-of-sample forecasts for the horizon
ranging from August 19, 2010, to November 11, 2010. That is, we make forecasts for a total of 85 days
and generate 85×22 = 1320 predicted values. We consider two forecasting lead times to mimic real-life
challenges faced by call center managers: two weeks and one day. We let the learning period include all
days in the data set, up to the beginning of the forecasting lag. When we generate a forecast for all periods
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Figure 1: Arrivals for two weeks starting 8/19/10.
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Figure 2: Average arrival counts per half-hour.

of a given day, we roll the learning period forward so as to preserve the length of the forecasting lead time.
We re-estimate model parameters after each daily forecast. The results are summarized in Table 2.

We quantify the accuracy of a point prediction using the mean squared error (MSE), defined by:

MSE≡ 1
K ∑

i, j
(Xi, j− X̂i, j)

2 ,

where X̂i, j is the value of Xi, j predicted by the model, and K is the total number of predictions X̂i, j made. To
evaluate the distributional forecasts, we compute the empirical coverage probability of the 95% prediction
intervals provided by the model, which is defined as:

Cover =
1
K ∑

i, j
I(Xi, j ∈ (L̂i, j,Ûi, j)),

where L̂i, j and Ûi, j are the lower and upper bounds of the 95% prediction interval on Xi, j. If the model is
correct, we expect this coverage to be near 0.95. Note that the TD and HW methods only provide point
forecasts, so we do not compute the coverage for those methods.

Table 2 shows that the FE model generates the most accurate forecasts with a lead time of two weeks,
consistent with what we said earlier. The ME model performs worse than the FE model in this case: the
ME model apparently overfits the data by estimating more parameters. We also find that the TD approach,
based on 2-weeks-ahead forecasts made by the company, is outperformed by both the FE and ME models.
Finally, the HW approach yields disappointing results. The empirical coverage probabilities for FE and
ME are ≈ 0.52 (very bad) and ≈ 0.95 (as desired), respectively. The FE model largely underestimates the
uncertainty in the data by not capturing the correlation structure between the arrival counts.

As expected, the superiority of the ME model becomes evident for one-day-ahead forecasts, where
the short-term correlation structure can be exploited. The TD approach is also competitive here for point
forecasts; it generates the second most accurate forecasts after ME (presumably because the company’s
forecasts contain valuable additional information). HW smoothing leads to the least accurate forecasts.

Figures 3 and 4 show normal Q-Q plots for the out-of-sample residuals of FE and ME (for the
transformed counts), respectively, using a forecasting lead time of half a day. (We also include in the plots
corresponding envelopes at the 95% confidence level.) For more detailed results, see Ibrahim and L’Ecuyer
(2012). We see that the normal distribution is a better fit for the ME residuals than for the FE residuals.
This indicates that ME provides more reliable distributional forecasts.
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Figure 3: FE Model
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Figure 4: ME Model

Table 2: Accuracy of point and interval predictions for two forecasting lead times.

Forecast lead time of 14 days Forecast lead time of 1 day
ME TD FE HW ME TD FE HW

MSE 41.7 45.8 40.3 67.0 30.4 33.9 35.7 60.7
Cover 0.96 - 0.52 - 0.95 - 0.50 -
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