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On a bounded bimodal two-sided distribution
fitted to the Old-Faithful Geyser DataDonatella Vicari  and Johan Rene van Dorp1 2

Abstract  In this paper we shall develop a novel family of bimodal univariatedistributions (also allowing for unimodal shapes) and demonstrate its use using the wellknown and almost classical data set involving durations and waiting times of eruptions ofthe Old-Faithful Geyser in Yellowstone park. Specifically, we shall utilize the Old-Faithfuldata set with 272 data points provided in Dekking et. al (2005). In the process, we developa bivariate distribution using a copula technique and compare its fit to a mixture ofbivariate normal distributions also fitted to the same bivariate data set. We believe the fit-analysis and comparison is primarily illustrative from an educational perspective fordistribution theory modelers, since in the process a variety of statistical techniques aredemonstrated. We do not claim one model as preferred over the other.
Mathematics Subject Classification (2000). Primary 60E05; Secondary 62H12
Keywords: Bimodal distribution, maximum likelihood estimation, order statistics
1. IntroductionThe Old-Faithful data set has been a popular data set to demonstrate a variety of statisticaltechniques in particular kernel density estimation (e.g. Silverman, 1986), time-seriesanalysis (e.g. Azzalini and Bowman, 1990), clustering (e.g. Atkinson and Riani, 2006),Hidden Markov Models,  and distribution theory (e.g. Eilers and Borgdorff, 2007)  to nameßa few. This paper falls in the latter category. Specifically, we shall illustrate a novelunivariate parametric family of distributions allowing for bimodal shapes by developing abivariate distribution for the Old-Faithful duration and waiting time data set provided inDekking et. al (2005) consisting of 272 data points . The bivariateÐ. ß A Ñß 3 œ "ß á ß #(#3 3distribution shall be constructed using a copula technique involving diagonal band copulas(see, Kotz and van Dorp, 2010).Figures 1A and 1B presents an exploratory data analysis of the Old-Faithful Geyser data.Figure 1A depicts a scatter plot of the duration and waiting time data. One observes a clearclustering and a strong statistical dependence between the two random variables duration
1 Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy
2 Corresponding Author, Department of Engineering Management and Systems Engineering, The George Washington
University, Washington D.C., USA
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( ) and waiting time ( ). Transforming the 272 durations  using their empiricalH [ .3cumulative distribution function
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and waiting times using their empirical distribution functionA3
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yields a bivariate data set on the unit-square A scatter plot of thisÐ J Ð. ÑßK ÐA Ñ Ñ Ò!ß "Ó Þ( (3 3
#bivariate data set is presented in Figure 1B.Observe from Figure 1B that while univariate data sets  and  naturallyJ Ð. Ñ K ÐA Ñ( (3 3follow a uniform behavior on , the bivariate data set  does not followÒ!ß "Ó Ð J Ð. ÑßK ÐA Ñ Ñ( (3 3this behavior on the unit square . Firstly, introducing the parameter  and estimatingÒ!ß "Ó# $

TÐ Ñ œs − Ò!ß Ó ∪ Ð ß "Ó
$

$ $# data points in Figure 1B  # #

(as a function of [0,1], we observe from Figure 1C that over % of the data points$ − *)Þ&

Ð J Ð. ÑßK ÐA Ñ Ñ − Ò!ß Ó ∪ Ð ß "Ó − Ð!Þ$&&ß !Þ$&)ÑÞ % #(#( (3 3
# #$ $ $ for In fact, only out of the  datapoints do not fall within this area. Secondly, evaluating lower correlation of lower datapoints

Ð J Ð. ÑßK ÐA Ñ Ñ − Ò!ß Ó( (3 3
#$we obtain a value of approximately 4  Evaluating correlation of upper data points!Þ#" Þ

Ð J Ð. ÑßK ÐA Ñ Ñ − Ò ß "Ó( (3 3
# $we obtain a value of approximately 8!Þ#( ÞA challenge in modeling a bivariate copula distribution (Nelsen, 1999) for the data inFigure 1B is the lack of observations in the and  areas OneÒ!ß Ó ‚ Ò ß "Ó Ò ß "Ó ‚ Ò!ß Ó Þ$ $ $ $possibility is to use a two-dimensional mixture technique reminiscent of the univariatemixture technique of Two-sided distributions (Vicari et al, 2008) that define separategenerating densities for its two branches. Specifically we suggest the copula mixture
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where  and  are its generating copulas. It is not difficult to show that fromWÐ † ß † Ñ X Ð † ß † Ñ

WÐ † ß † Ñ X Ð † ß † Ñ Ò!ß "Ó GÐ?ß @l Ñ Ò!ß "Ó and  being copulas on it follows that is a copula on .# #$
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Fig. 1.  An exploratory analysis of the bivariate Old-Faithful data set inÐ. ßA Ñ3 3

Dekking et. al (2005) . Scatter plot of ß 3 œ "ßáß8ß 8 œ #(# E À Ð. ßA Ñà3 3

F À ÐJ Ð. ÑßK ÐA ÑÑß G À TÖJ Ð. Ñß K ÐA Ñ − Ò!ß ÓsScatter plot of Graph of  ( ( ( (3 3 3 3
#$

∪ Ð ß "Ó × H À ÐJ ÐHÑßK Ð[ÑÑà$ $# as a function of ; A copula model for ( (
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waiting time .[
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Moreover,  has no probability mass in neither  nor . If weGÐ?ß @l Ñ Ò!ß Ó ‚ Ò ß "Ó Ò ß "Ó ‚ Ò!ß Ó$ $ $ $ $now select for  a copula with correlation 4 (i.e. for the lower quadrant in FigureWÐ † ß † Ñ !Þ#"1B) and for  a copula with correlation 8, we have defined a bivariate copulaXÐ † ß † Ñ !Þ#(that captures these characteristics of Figure 1B.Given the analysis in Figure 1C, we shall set
$ œ Ð!Þ$&&  !Þ$&)ÑÎ# œ !Þ$&'&.For |  and   in we select generalized diagonal band copulas withWÐ † ß † Ñ X Ð † ß † l Ñ Ð"Ñα α= XTwo-Sided slope generating densities (see, Kotz and van Dorp, 2010)  We have for theÞdensity |WÐ?ß @ Ñ Àα=
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# #

& &
Thus setting )  yields directly 1.535  Similarly, we obtain for 3(α α α= = Xœ !Þ#"% œ Þ X Ð † ß † l Ñthat 1.  Advantages of copulas  | ,  and  given by α α α )X = Xœ '*'Þ WÐ?ß @ Ñ X Ð?ß @l Ñ GÐ?ß @l Ñ Ð"Ñare: (i) they  have closed form probability density functions (pdf's) and cumulativedistribution functions (cdf's); (ii) the functional form of their pdf and cdf are defined bylinear and quadratic relationships, respectively; and (iii) the correlation (3) too follows astraightforward linear form.  Most importantly, however, |  and  wereWÐ?ß @ Ñ X Ð?ß @l Ñα α= Xshown to be approximately least informative in the entropy sense given their correlationconstraints (see, Kotz and van Dorp, 2010). Figure 1D plots the copula density  withÐ"Ñparameters

$ œ !Þ$&'&ß œ ß œ '*' Ð%Ñα α= X1.535 1.to model the data set in Figure 1B.
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Having modeled the statistical dependence between random variable  and usingH [copula all that remains is the modeling of the marginal distributions for the data inÐ"ÑFigure 1A. Naturally, one could follow the traditional approach of non-parametric densityestimation. Figures 1E and 1F demonstrate such fits utilizing kernel density estimation(Silverman, 1986) using three separate kernels: the triweight, Epanechnikov and Gaussiankernels. Observe that different kernels result in different density estimates. Moreimportantly, however, by using a non-parametric approach we lose the specific advantageof the closed form copula expression for its pdf ) utilizing expressions the like of .Ð" Ð#ÑIn the remainder of this paper we set as our goal to develop a parametric model thatcaptures the univariate bimodal behavior of Figures 1E and 1F. To reach this goal we utilizethe flexible two-sided framework of univariate distribution introduced by Vicari et al.(2008). This framework is summarized in Section 2. In Section 3 we develop an instance ofthis framework allowing for bimodal shapes using elevated power distributions as theirgenerating densities (García et al., 2011). In Section 4, an approximate maximum likelihoodprocedure is presented to estimate the parameters of the distributional model in Section 3.Finally, in Section 5 we integrate the copula density model with parameter settings Ð"Ñ Ð%Ñwith MLE fitted using the data in Figures 1E and 1F and show an improvement of overall fitas compared to a bivariate Gaussian mixture model (see, e.g., Titterington et. al, 1985) withparameters estimated using the EM algorithm (see, e.g., Meng and Rubin, 1993).
2. A two-sided framework of univariate distributionsVicari et al. (2008) introduced the following two-sided framework of distributions usingcontinuous cumulative distribution functions | and | with the support :KÐ † Ñ LÐ † Ñ Ò!ß "ÓF G
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continuous at  with value | which does not depend on the structure of) ) @ HT<Ð] Ÿ Ñ œ :Ð Ñeither  or .KÐ † l Ñ LÐ † l ÑF GBy taking the derivative with respect to  in  one obtains for the correspondingC Ð&Ñprobability density function (pdf) À
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(where and  are the pdf's of the cdf's and , respectively). It1Ð † l Ñ 2Ð † l Ñ KÐ † l Ñ LÐ † l ÑF G F Gfollows from thatÐ(Ñ
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where | and  are the quantile functions of the branch generatingK Ð † Ñ L Ð † l Ñ" "F Gdistributions and  in . Thus sampling from  is straightforward andKÐ † l Ñ LÐ † l Ñ Ð&Ñ Ð&ÑF Gdirect when the branch quantile functions | and  are available in aK Ð † Ñ L Ð † l Ñ" "F Gclosed form.Setting | and |  to be the uniform cdf's on , expressions  and KÐ † Ñ LÐ † Ñ Ò!ß "Ó Ð&Ñ Ð(ÑF Greduce to those of a GTSP random variables presented in .Herrerías-Velasco et. al (2009)Vicari et al. (2008) originally considered slope distributions on  as candidates forÒ!ß "Ó

KÐ † Ñ LÐ †| and |  leading to their two-sided generalized Topp and Leone distributions.F G
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3. PDF and CDF of TS-EP distributionsWe shall now provide an example of the density construction  above by letting Ð(Ñ LÐ † Ñ

ÒKÐ † ÑÓ Ò Ó Ò!ß "Óto be a reflected  elevated power distribution on  given by:
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We have from  and  thatÐ""Ñ Ð)Ñ

0 Ð l  0 Ð l œ  Ð"%Ñ] ]
 ) @ ) @Ñ Ñ < 9.Hence, the density  is continuous on  provided Ð"#Ñ Ò!ß "Ó 0 Ð l< 9œ . Moreover, ] ) @Ñ  !,when < 9œ  !.

4. Maximum Likelihood EstimationFor a random sample from the distribution , the log\ œ Ð\ ßá ß\ Ñ =" = of size  Ð"#Ñlikelihood function is, by definition,
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where ) ) ) ) are defined by  and 1Ð † l ß KÐ † l ß 2Ð † l ßLÐ † l Ð"!Ñ Ð""Ñßα 9 α 9 " < " <ß ß ß ß

\  \  á  \ Ð"'ÑÐ"Ñ Ð#Ñ Ð=Ñ are the order statistics of  is a positive integer such that\,  and <  .\ Ÿ  \ Ð"(ÑÐ<Ñ Ð< Ñ) +1By convention \ œ ∞ß \ œ ∞ÞÐ Ñ Ð="Ñ0We propose the following algorithm to maximize the log likelihood   P91ÖPÐ ß Ñ×\ @ Ð"&Ñto determine the ML estimates of the parameters  using a feasible starting point@

@ H F G H F G‡ ‡ ‡ ‡ ‡ ‡ ‡œ Ð Ñß œ Ð œ Ð œ Ðß ß 7 ß 8 ß Ñß ß‡ ‡ ‡ ‡ ‡) α ", 9 <‡ ‡Ñß Ñand as its -th iteration:5

Step 0:  Set 5 œ "ß 7 œ 7 ß8 œ 8 ß œ ß 7 ß 8 ß Ñ" " " " " "
‡ ‡ ‡) ) )H" œ Ð  , α α α " " "1 1 1 1œ ß ß œ ß ß ß‡ ‡9 9 9 < < <" " " "

‡ ‡œ ß Ñ œ ÑF G" "œ Ð œ ÐStep 1:  Determine by maximizing over H H F G H )5" P91ÖPÐ ß Ñ× Þ\l 5 5, œ Ð7ß 8ß ÑStep 2:  Determine by maximizing over F H F G F α5" 5"P91ÖPÐ ß Ñ× Þ\l ß 5 œ Ð ß9ÑStep 3:  Determine by maximizing  over G H F G G "5" 5" 5"P91ÖPÐ ß Ñ× Þ\l ß œ Ð ß<ÑStep 4:  If lP91ÖPÐ ß Ñ×  P91ÖPÐ ß Ñ×l \ \l ß l ßH F G H F G5" 5" 5 55" 5 %  WXST  Else  and Goto Step 1.5 œ 5  "

Since, the log likelihood does not have to be concave and may posses local minima, there isno guarantee the algorithm above converges to a global maximum. This stresses theimportance of specifying a reasonable starting @‡ which can be obtained through someexploratory analysis of log-likelihood profile functions. We shall demonstrate thisprocedure in an illustrative example.Step 1 in the algorithm above determines the optimal parameters of the generalframework  given branch parameters ,  and uses  as its objective function. StepÐ&Ñ Ð"&ÑF G5 52 (Step 3) determines the optimal left (right) branch parameters given H G5", 5
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Ð ß Ñ Ð"&ÑH F5" 5" and only requires the second (third) line of log likelihood in its objectivefunction. As usual,  in Step 4 may be chosen arbitrarily small.%To obtain an initial starting solution  in Step  one could, for example, select  to@ @‡ !visually match a plot of pdf to that of an empirical pdf.  To further aid in the selectionÐ"#Ñof  we have from ) Ð'Ñ

T <Ð] Ÿ Ñ œ Ð")Ñ
"  Ñ7 8

) @ H
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| :Ð Ñ œ
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= "  Ñ7 8 =
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Ð
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) )Hence, given sample size  and values for  and  candidate search intervals = 7 8 Ð\ ß\ ÓÐ<Ñ Ð<"Ñfor the threshold parameter  may be determined via .) Ð"*ÑFigures 2A and 2B provide starting point pdf's for the Old-Faithful data obtained in thismanner and compares them to the kernel density estimates in Figures 1E and 1F. We select
9 <œ  to ensure continuity of the pdf Figures 2C and 2D depict the log-likelihoodÐ"#ÑÞ progression through 50 iterations of the algorithm. Finally, Figures 2E and 2F plots theMLE fitted TS-EP densities fitted to the Old-Faithful data utilizing the MLE algorithm above.Starting point parameters and MLE parameter estimates are provided in Table 1 below.

Table 1: Starting point and end results parameters from MLE Algorithm for Old-
Faithful duration (seconds) and waiting time (minutes) data.

Duration (seconds) Waiting Time (minutes)
Starting Point TS framework Left branch 7 œ "#ß 8 œ "!ß œ !Þ% 7 œ #!ß 8 œ "#ß œ !Þ%&

œ %Þ&
) )

α9 9œ !Þ!"ß œ !Þ!&ß
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α
" "
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7 œ #(Þ#$ß 8 œ #!Þ&"ß œ !Þ%"%# 7 œ "%Þ)*ß 8 œ "!Þ"%ß œ !Þ%%')

Right branchTS framework Left bran
< 9 < 9

MLE estimatesch Right branch 9 9
< 9 < 9
œ !Þ!!)&ß œ !Þ!&#'ß

œ œ
α α

" "
œ &Þ)!) œ %Þ"')

œ !Þ!!)&ß œ %Þ")% œ !Þ!&#'ß œ #Þ)))

5. A comparison of the Joint TS-EP fit to a bivariate mixture model fitIn this section we shall compare the fit to the Old-Faithful data depicted in Figure 1 usingthe parameter settings in Table 1 and copula construct  totaling  parameters to a moreÐ"Ñ "&
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Fig. 2:  A-B: Starting points for MLE Algorithm A - Duration, B - Waiting Time.
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traditional technique in modeling bivariate multi modal distributions. Specifically, we shallcompare the fit to a two component mixture of bivariate normal distributions withparameters estimated via the EM algorithm , i.e. with pdf(see, e.g., Meng and Rubin, 1993)
0ÐBß CÑ œ FZ R ÐBß Cl ß Ñ  Ð"  ÑFZ R ÐBß Cl ß Ñß Ð#!Ñ- D - D" " " # # #. .where its 11 parameter  are estimated at:=

- œ !Þ$&'ß ß ß Ð#"Ñ
!Þ#()& !Þ'%#(

!Þ#!(' !Þ'&)!#
. ." #= =    

D D" #œ ß œ Þ Ð##Ñ
'Þ*!/  $ "Þ#'/  $ (Þ#(/  $ #Þ'(/  $
"Þ#'/  $ #Þ (/  $ #Þ'(/  $ Þ )/  $   7 6 7From  we have a correlation of  ( ) for the first (second) component. A twoD" !Þ#) !Þ$)component mixture with  parameters was favored over a three component one with "" "(using the least squares criterion, hence we selected the two member one withÐ#!Ñparameter settings ,  for comparison.Ð#"Ñ Ð##ÑFirstly, Figures 3A-3D presents a visual comparison of resulting joint pdfs and contourplots. Whereas in case of Figure 3D one recognizes the typical ellipsoid contours associatedwith multivariate Gaussian distributions, the copula mixture technique  with separatelyÐ"Ñestimated TS-EP marginals does not posses ellipsoid contours. Figures 3E-3F provides avisual comparison of the marginal distribution estimated utilizing both modelingtechniques.  One observe larger differences between the two in case of the waiting timeplot 3F than the duration plot 3E.In Tables 2 and 3 we provide a more formal comparison of the fitted marginaldistributions using the following criteria: ;# :-value (evaluated using the equal-probabilitymethod with 17 bins), Log-Likelihood, Akaike Information Criterion (AIC), BayesianInformation Criterion (BIC), Kolmogorov-Smirnov (KS) and Sum of Squares (SS). Of these,only the first four appropriately discount for the number of estimated parameters. Observefrom Table 2 that for the duration Old-Faithful data in all six criteria the TS-EP marginaloutperforms the Gaussian Mixture.  Observe from Table 3 that the TS-EP marginal ispreferred in only three out of the six criteria. That being said, the -value of in Table 3: !Þ"&for the TS-EP model is certainly respectable, whereas the value in Table 2 for the%Þ"$/  $Gaussian mixture model is not.Finally, in Figure 4 we provide a visual and QQ-plot comparison of the joint TS-EP cdfand joint Gaussian mixture. Not much can be concluded by visually comparing the cdfgraphs 4A-4C. From Figures 4D and 4E we visually observe that the TS-EP joint cdf
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Fig. 3: Density plot and contour plot comparison of bivariate fitted TS-EP and

bivariate Gaussian mixture models to Old-Faithful data set. A-B: joint pdf with
TS-EP marginals (A) and its contour plot (B); C-D: joint bivariate normal
mixture pdf (C) and its contour plot (D); E: Plot of TS-EP and normal mixture
marginals for duration; E: Plot of TS-EP and normal mixture marginals for
waiting time.
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Table 2: Fit analysis comparison for TS-EP and Gaussian mixture fitted marginal
distributions of the duration Old-Faithful data in Figure 1A.

A bold font indicates the preferred pdf using a particular criterion.

TS-EP pdf Normal mixture pdf
;# : %Þ"$/  $

 $""Þ))

-valueLog-LikelihoodAIC BIC KS - criterion 
!Þ#'!

 $%&Þ"*
"()Þ&*

 $#$Þ&&
!Þ!

"'!Þ*%

 #*$Þ)&
$( !Þ!%&SS - criterion !Þ!%$ !Þ""

Table 3: Fit analysis comparison for TS-EP and Gaussian mixture fitted marginal
distributions of the waiting time Old-Faithful data in Figure 1A.

TS-EP pdf Normal mixture pdf
;# :

 #$%Þ()

-valueLog-LikelihoodAIC BIC KS - criterion 
!Þ"&! !Þ$&$

 #$*Þ'$
"#&Þ)"

 #"(Þ**

"##Þ$*

 #"'Þ(&
!Þ!$( !Þ!%%SS - criterion !Þ!%$ !Þ!&)

outperforms the joint Gaussian mixture cdf in the lower quantile ranges. This translates ina better Kolmogorov-Smirnov (KS) and Sum-of-Squares (SS) criterion for the TS-EP jointcdf  in figure 4D than the joint Gaussian mixture cdf in Figure 4E. Truth be told however,the joint Gaussian mixture cdf only uses 11 parameters, whereas the TS-EP joint cdfestimates a total of 15 parameters.Summarizing, whereas from a marginal perspective one could argue the TS-EP modelsperform at least as well as the Gaussian Mixture model, such a conclusion cannot be madein a joint sense due to the difference in number of estimated parameters. Preference ofeither model may depend on the application context. For example, the closed formexpressions of the copula mixture model using TS-EP marginals allow for a straightforwardbivariate sampling algorithm. This is certainly more challenging in case of a mixture ofbivariate Gaussian distributions.
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Fig. 4: A bivariate fit comparison of TS-EP joint cdf and bivariate Gaussian mixture
model. A: TS-EP joint cdf; B: Empirical CDF; C: BVN mixture cdf; D: QQ Plot TS-
EP joint cdf; E: QQ plot Gaussian Mixture CDF.

Concluding RemarksIn this paper we have presented a novel procedure for modeling the classical Old Faithfuldata set. In particular two aspects deserve attention. The first one is the introduction of atwo-sided bivariate mixture technique given by  utilizing two copulas as its componentsÐ"Ñand the resulting mixture again being a copula. The second one is the introduction of anovel univariate distribution for modeling bimodal distributions. Both aspects areintegrated in the distribution model for the Old Faithful Geyser data set outperforming thetradition bivariate normal mixture approach.  While tempting to compare the correlations
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!Þ#)( !Þ$)! and of the components of the bivariate normal mixture with the copulacomponent correlations !Þ#" !Þ#( ß4 and 8 one needs to recognize that the former arePearson moment correlations, whereas the latter are Spearman rank correlations.
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