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Abstract In this work, we develop a Bayesian framework for the analysis of
discrete time queueing systems to predict emergency room gridlocks caused
by blocked patients due to insufficient critical care beds in the hospital. Grid-
locks are considered to be the major reason for ambulance diversions, affecting
the timeliness and effectiveness of the healthcare service. In doing so, we in-
vestigate the Bayesian analysis of discrete time queueing networks with an
emphasis on the queueing network formed by the emergency room and the
hospital. We allow the parameters of the system to have a dependent struc-
ture based on a common environment via a Markov-modulated model and
illustrate our methods via a numerical example.

Keywords Emergency room gridlocks · Discrete time queueing networks ·
Bayesian analysis · Markov modulated models

1 Introduction

The mission of emergency rooms is to provide timely emergency care to pa-
tients in need of medical attention. After attracting the public’s attention more
than a decade ago, overcrowding in emergency rooms (ER) has resurfaced as a
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healthcare crisis in the past few years. Unfortunately, this time overcrowding is
even more widespread, and in some places accepted as the standard of care [9].
According to surveys by the American Hospital Association (AHA), over 50%
of the 28 hospitals studied describe their ER to be running at or over capacity
[18][19]. With patient waiting times averaging as high as 96 minutes, the ERs
are rarely able to comply with the first clause of their mission, timeliness.

Patients with disparate needs and varying urgencies, randomly and without
prior notice, arrive to the ER either on foot, or by an emergency medical system
(EMS) transport unit. Due to the nature of the demand, peaks in the system
occupancy are common, and it is a challenge for the ER to respond to patient
needs in a timely manner. During such chaotic periods, ERs can decrease their
loads significantly through diversion.

An ER on diversion suspends arrivals that can be controlled (i.e., non-
walk-in patients) by forcing some or all of the EMS transport units to search
for alternate treatment facilities for their patients [3]. During this search, the
valuable time that the patient is losing, and the unavailability of the EMS
crew to answer other calls, are just two of the problems that the ERs inability
to maintain availability is responsible for. An investigation in Houston, Texas,
has revealed results about the relationship between diversions and trauma
mortality rates, which revealed the acuity of this problem. During a two-year
period, the mortality rate of severely injured trauma patients was almost twice
as high (25% vs. 14.4%) on days when both of Houstons Level I trauma centers
were on diversion [4]. Unfortunately, such studies linking ambulance diversion
to unsatisfactory healthcare performance are not numerous. Policymakers do
not address diversion as a healthcare priority for a variety of reasons. The most
obvious reason, according to [2], a physician at the Department of Emergency
Medicine at Regions Hospital in St. Paul, Minnesota, is that the public did not
ask them to do so. Even though diversion is a known problem, most people do
not believe they will ever be diverted. The 2004 AHA survey results present an
example contradicting this belief; during the three days the survey was con-
ducted, one third of the 28 studied hospitals were on diversion more than 20%
of the time. Lack of studies on linking poor ER performance and ambulance
diversions is also a factor for the insufficient attention on ambulance diver-
sion. When initially implemented, diversion was supposed to be a temporary
mechanism that was rarely used. However, nowadays diversions have almost
become standard operating procedures and need to be investigated.

AHA ambulance diversion surveys show lack of critical care (CC) beds in
the hospital as the major cause of the diversions [18][19]. After being treated
in the ER, the patient is either discharged (no further immediate treatment
is necessary), or admitted to the hospital. However, admission may not be
possible due to the lack of available CC beds in the hospital. In this case, the
patient occupies a bed in the ER, waiting for a CC bed to become available.
This condition may lead to gridlock, which may be defined as the state of an
ER when (i) all beds in the ER are occupied, and (ii) there is at least one
patient in one of the beds in the ER waiting to be transferred to the hospital,
but the transfer is not possible due to the lack of available beds. When these
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Fig. 1 Network structure between the emergency room and the hospital

conditions are reached, the idle patient that needs to be transferred is said
to be on hold and is occupying a bed in the ER, preventing its use by other
patients.

The objective of this research is to construct a predictive model that can
provide a probability of entering gridlock within a time horizon, conditioned
on the systems current state. We propose to reach our objective by developing
a methodology for the Bayesian analysis of the ER-hospital queueing network.

2 Queueing network representation of the ER-Hospital relationship

The system in consideration is composed of an ER and the critical care beds
in a hospital. In the most basic representation, the system is a network of two
queues. Figure 1 illustrates the three main parts of the system. The patients
randomly arrive to the ER. Depending on the availability of the beds and staff
in the ER, the patient is either admitted for diagnosis and treatment, or sent
to a waiting room. The waiting room serves as a queue for the ER beds. The
patients in the waiting room are prioritized according to the severity of their
condition, and they are admitted into the ER on a first come first served basis
with respect to their priorities. After being treated in the ER, the patient is
either discharged (no further immediate treatment is necessary), or admitted
to the hospital. The second queue in the system is for hospital admissions.
There are only a fixed number of critical care (CC) beds in the hospital. If
a patient needs to be admitted and requires a CC bed, at least one CC bed
in the hospital needs to be available, or the patient will be on hold until an
occupied bed is freed. In this part of the system, the ER beds serve as a queue
to the CC beds, and the CC beds are blocking the arrival stream from the ER.

The ER serves a time-dependent and multi-class arrival process. Upon
entering, patients are classified according to the severity of their conditions.
These classifications, called Emergency Severity Indexes (ESI), can have a
number of levels depending on the healthcare provider. The most common are
3-level and 5-level ESI systems, where lower indexes denote higher severities.
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Different classes of patients tend to have different arrival rates that also vary
according to the time of the day and day of the week.

An ER can enter gridlock by either an ER arrival, or an ER end-of-service.
According to our definition, for the system to be in gridlock, the hospital and
ER beds must be occupied with at least one boarding patient (waiting for a
hospital bed while occupying an ER bed). An ER arrival occupying the last
bed can put the system into a gridlock if the system had full hospital beds
and boarding patients in the ER. An ER end-of-service can put the system
in gridlock if the hospital beds are full, the ER beds are full, and the end-of-
service just resulted in a boarding patient in the ER.

3 Discrete time queues, their networks and Bayesian analysis

Applications of discrete time queues to continuous time problems are rare. [8]
discuss the advantages of employing discrete time queues and point out that
even though most systems behave continuously, our measurement and interpre-
tation discretize these systems. We measure time as multiples of a convenient
unit (e.g. seconds, minutes) and operational decisions are frequently made
based on longer, discrete time blocks. In this application, we use ER arrival
and service data to provide numerical examples for our methods. Healthcare
operations in particular is a good candidate for discrete time analysis for sev-
eral reasons. First, as pointed out earlier, system performance and characteris-
tics are measured as multiples of a discrete time unit. Also, ER staff schedule
is based on discrete time slots, which can be matched by the discrete time
queueing model. Finally, arrival rates to the ER can change randomly, affected
by traffic accidents, natural disasters or other outside factors. These random
changes can be modeled through a Markov modulated version of these queues,
which lend themselves more naturally to this analysis than their continuous
counterparts. The complex probabilistic structure defining the ER-hospital
queue can easily be modeled using our approach. The corresponding Bayesian
analysis is also performed more easily under the discrete case. It is true that
continuous models could be used to obtain predictions within discrete time
blocks. However, their analysis is not any more convenient in such complex
systems. Furthermore, gridlock prediction is the result of transient analysis,
which is a lot more convenient to perform using the discrete time methods we
present.

The foundations and the motivation behind Bayesian analysis of queues
are covered very thoroughly in [13] and [14]. The main aspect that sets the
Bayesian approach apart from the classical analysis of queues is the handling
of the unknown parameters describing the system. As opposed to considering
the parameters of the system describing the arrival and the service processes
as fixed but unknown, the Bayesian approach describes them via probability
distributions. This allows the usage of personal probabilities to describe the
uncertainties about the parameters and coherently updating these uncertain-
ties as more information is received. The probabilistic inference provided by
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the Bayesian framework also allows one to attack decision making problems
through applications of Bayesian utility theory. For example, system design
problems deciding on number of servers and investments on increasing ser-
vice rates, one can construct the appropriate utility measures and provide
solutions maximizing expected utility. The Bayesian approach also allows the
predictions of unobserved quantities to be made easily. These quantities are
not limited to the future inter-arrival or service times, but also include per-
formance measures of the queueing system such as the number of customers
and waiting times. [1] derive closed form expressions for most performance
measures of the M/M/1 queue. The authors then provide an analysis of the
M/M/c queue in [1]. Although the preceding works focus on continuous time
queues, the main ideas regarding the inferential statistics and the Bayesian
methodologies transfer perfectly to the discrete case.

The Bayesian analysis of discrete time queues is very scarce in the litera-
ture. In [5,6], the author concentrates on non-parametric Bayesian analysis of
Geo/G/1 queues, motivated by ATM (Asynchronous Transfer Mode) systems.
Probability generating functions for the delay distributions are calculated and
approximations used are shown to converge to true results under the large sam-
ple assumption. Such approximations are necessitated by the large buffer sizes
the communication systems posses, which make exact computations difficult.

We continue this work by describing the queueing network representation of
the ER-hospital relationship. We focus primarily on modeling the ER-hospital
network which has a very specific structure that can not be modeled with
the existing models in the literature without making significant assumptions.
Instead, we turn to numerical results calculated by Markov chain based anal-
ysis and present the gridlock prediction technique to be used. We then move
on to the Bayesian analytic methods to infer the homogeneous and Markov
modulated network parameters. Finally, we cover gridlock prediction under
the Bayesian framework as well as steady state network results, and provide
a numerical example to illustrate this approach.

The discrete time queueing analysis of networks with inherent slotted time
scales date back to mid 1960s due to [11,12], where the author utilized Markov
chain based methodologies to analyze the systems. However, as a result of
the complexities involved in analysis of these systems, and the convenience
of continuous time approximations, the work on the discrete time queueing
networks subsided until the introduction of ATM as the multiplexing technique
for Broadband Integrated Services Digital Networks [7].

Applications of discrete time queues to inherently continuous systems are
rare. First discussion of such applications appeared in [8] where the authors
comment on the merits of discrete time models. As far as we know, in the
discrete time queueing network literature, the applications have strictly been
on computer and communications systems which behave in a discrete man-
ner. In our application to the ER-hospital network, even though the timeline
is continuous, in practice, problems of decision making require discretization
of the timeline. For example shift scheduling problems will adhere to discrete
time blocks. Also, as pointed out by [8], introducing probabilistic structures
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Fig. 2 General queueing network structure

to models are much less complicated in a discrete time setting. Blocking, balk-
ing, ER to hospital transfer probabilities and customer types are just some
examples of structures that can easily be incorporated into a discrete time
queueing network. Finally, gridlock prediction also makes most sense when
modeled with a discrete time model since the communication of discrete time
blocks is easier than dealing with continuous time measurements.

Discrete time queueing networks are constructed by connecting multiple
queueing nodes in a network structure. Figure 2 illustrates a general queueing
network structure formed by connecting J nodes, where each node is a service
station and allowed its independent arrival stream. Customers entering a node
are queued and served. Upon service completion, the customer can either move
to one of the subsequent nodes, or depart the system. The customers routing
behavior can be modeled probabilistically. The time-line is divided into discrete
slots and the customers behave according to the late arrival scheme.

4 Modeling the ER-hospital network

For the ER-hospital interaction, we only need a two node network. However,
we need to incorporate blocking into the system, which is not covered in the
systems considered by [7] and summarized above. Let us start this discussion
by considering the simplest, two node queueing network in discrete time, with
state independent arrival and service, depicted in Figure 3. Outside arrival and
departure streams to and from the nodes are allowed, however, for the initial
model, blocking is ignored. Also, let the system have only one server per node
as a starting point. Let λi and µi denote the arrival and service probabilities
at node i = 1, 2, respectively. With probability p, customers whose service is
completed in the first node are routed to the second node. With probability

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7

Fig. 3 A general two node network

1−p, they leave the system after their service completion. The transfer to the
second node is instantaneous. Once a customer’s service at the second node
is completed, it leaves the system. We can describe the state of our network
by keeping track of the number of customers in both of the nodes, (N1, N2),
which creates a two dimensional state space with a discrete time Markov chain
Q representing the state transition probabilities. Let u(i) denote an increase
of i customers in a node. Similarly, let d(i) represent a decrease of i, and r
represent neither an increase, nor a decrease in the number of customers in a
node. For simplicity, also let d(1) = d and u(1) = u. We will then represent
most of the state transition probabilities by proper pairings of these changes in
the number of customers in the two nodes of the network, conditioned on the
initial state of the network. For example, the argument (d, u(2))(j,k) represents
the probability of a decrease of 1 customers in the first node and an increase of
2 customers in the second node, given that the first node had j customers and
the second node had k customers. These probabilities are given in (1),(2),(3)
and (4).

For j = k = 0: (1)

(r, r)(0,0) = λ̄1λ̄2

(u, r)(0,0) = λ1λ̄2

(r, u)(0,0) = λ̄1λ2

(u, u)(0,0) = λ1λ2

When both nodes are initially empty (j = k = 0), the probabilities in (1)
are obtained easily. There can’t be a decrease in either of the nodes. So, each
node either increases by one with the probability of its corresponding arrival
process, or, they stay the same with the complement of its arrival probability.
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For j > 0 and k = 0: (2)

(d, r)(j,0) = λ̄1µ1p̄λ̄2

(r, r)(j,0) = λ1µ1p̄λ̄2 + λ̄1µ̄1λ̄2

(u, r)(j,0) = λ1µ̄1λ̄2

(d, u)(j,0) = λ̄1(µ1pλ̄2 + µ1p̄λ2)

(r, u)(j,0) = λ1(µ1pλ̄2 + µ1p̄λ2) + λ̄1µ̄1λ2

(u, u)(j,0) = λ1µ̄1λ2

(d, u(2))(j,0) = λ̄1µ1pλ2

(r, u(2))(j,0) = λ1µ1pλ2

When j > 0 and k = 0, the first node can increase its number of customers
only by an arrival with probability λ1. However, there are two ways for the
first node to go down by one customer. We either see a service completion
that departs the system with probability µ1p̄, or, a service completion that
transfers to the second node with probability µ1p. The second occurrence also
is one of the two ways that could increase the number of customers in the
second node. The other way is an external arrival with probability λ2. The
second node can also increase by two if there is both an external arrival and
a transfer from the first node. The system will stay unchanged if the number
of arrivals and departures are equal to each other in both of the nodes.

For j = 0 and k > 0: (3)

(r, d)(0,k) = λ̄1λ̄2µ2

(u, d)(0,k) = λ1λ̄2µ2

(r, r)(0,k) = λ̄1(λ̄2µ̄2 + λ2µ2)

(u, r)(0,k) = λ1(λ̄2µ̄2 + λ2µ2)

(r, u)(0,k) = λ̄1λ2µ̄2

(u, u)(0,k) = λ̄1λ2µ̄2

When j = 0 and k > 0, we can only have arrivals to the first node with
probability λ1. Since there are no customers in service in node one, the only
way for node two to increase by a customer is with an external arrival with
probability λ2. The number of customers in node two can also decrease by one
if there is a service completion, which occurs in a time slot with probability
µ2. Once again the system remains unchanged if the number of arrivals and
departures are identical in both of the nodes. The probabilities in (4) for the
j > 0, k > 0 case can be similarly calculated with the information already
given.
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For j > 0 and k > 0: (4)

(d, d)(j,k) = λ̄1µ1p̄λ̄2µ2

(r, d)(j,k) = λ̄1µ̄1λ̄2µ2 + λ1µ1p̄λ̄2µ2

(u, d)(j,k) = λ1µ̄1λ̄2µ2

(d, r)(j,k) = λ̄1µ1(pλ̄2µ2 + p̄λ̄2µ̄2 + p̄λ2µ2)

(r, r)(j,k) = λ̄1µ̄1(λ2µ2 + λ̄2µ̄2) + λ1µ1(pλ̄2µ2 + p̄λ̄2µ̄2 + p̄λ2µ2)

(u, r)(j,k) = λ1µ̄1(λ2µ2 + λ̄2µ̄2)

(d, u)(j,k) = λ̄1µ1(pλ2µ2 + pλ̄2µ̄2 + p̄λ2µ̄2)

(r, u)(j,k) = λ1µ1(pλ2µ2 + pλ̄2µ̄2 + p̄λ2µ̄2) + λ̄1µ̄1λ2µ̄2

(u, u)(j,k) = λ1µ̄1λ2µ̄2

(d, u(2))(j,k) = λ̄1µ1pλ2µ̄2

(r, u(2))(j,k) = λ1µ1pλ2µ̄2

where x̄ = 1 − x for any x. To obtain the stationary probabilities, we need
the Π that satisfies the system of equations given by Π = ΠQ. A closed
form solution for Π does not exist, but a numerical approximation can be
obtained by taking a large power of a truncated matrix. Once again, in systems
with finite capacity such as the ER-hospital network we are considering, exact
solutions can be numerically calculated via the matrix multiplications.

The context of gridlock prediction introduces additional structures to the
simple network illustrated in Figure 3. Since we are dealing with an actual
system with inherent capacity limits that are often met, we need to consider
truncated systems with limited waiting rooms. The waiting room capacity for
the ER is a fixed and positive number. However, due to the nature of this
problem, a waiting room associated with the critical care beds in the hospital
does not exist. Patients needing transfer to the hospital from the ER will use
the ER beds as a waiting room, occupying them and causing gridlock. This
occurrence introduces the idea of blocking into our model.

4.1 State space of the ER-hospital network

With the restrictions on queue capacity, the state space for the ER-hospital
network becomes a finite one. During a visit, a patient can be in one of the
following four sections in the system.

1. In the waiting room before the ER
2. Being treated in a bed in the ER
3. Waiting idle for a hospital bed while occupying a bed in the ER
4. Being treated in a bed in the hospital

A state space representing all these sections individually would need to
be four dimensional, resulting in complex and time consuming calculations.
The approach presented in [10] combines the first two positions, simplifying
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Table 1 Description of the state naming approach

(n, d, h) Description Range

n
Patients in the waiting room and 0, . . . , nmax

non-idle patients in the ER (nmax = # of ER beds
+ Waiting room capacity)

d
Patients on hold 0, . . . , dmax

(dmax = # of ER beds)

h
Patients in the hospital 0, . . . , hmax

(Critical care beds) (hmax = # of hospital beds

the state space. In this research, the labeling shown in Table 1, is used to
make the manipulations comparatively more manageable. The first element
describing a state, n, represents the number of patients in the waiting room
and the non-idle patients in the ER. The value of n ranges from 0 to nmax
(waiting room capacity + total number of ER beds). The second element, d,
denotes the number of idle patients in the ER, and the third element, h, gives
the number of patients in the hospital.

Not all of the states created using [10]’s naming approach are feasible. For
a patient to be idle (d > 0), all the hospitals beds need to be full (h = hmax).
Also, patients in the waiting room and the ER (n+d) can not be greater than
the maximum capacity of the ER and the waiting room (nmax). The total
number of feasible states is given in (5). For example a system with a 20 seat
waiting room capacity, 10 ER beds and 4 critical care beds would have 410
feasible states.

Number of feasible states = (nmax + 1)(hmax + 1) +

nmax−1∑
k=nmax−dmax

(k + 1)

(5)

= (nmax + 1)(hmax + 1) +
dmax(2nmax − dmax + 1)

2

We can further simplify our model for illustrative purposes by introducing
additional restrictions to the system. In order to do so, let us suppress the
external arrivals to the critical care beds in the hospital. This may be a valid
restriction in cases where there is a group of beds reserved strictly for ER
transfers. Let us also force all patients whose services have been completed
in the ER to need a hospital transfer. Note that we can easily relax these
restrictions if the system in question requires it (an advantage of using discrete
time queues as pointed out in [15]).

We also need to decide on a queue discipline since we are considering a
system with batch arrivals and service completions. Let us assume the model
depicted in Figure 4 which is similar to the late-arrival scheme. The arrivals to
the system happen right before the end of a time slot. The departures occur in
the beginning of a time slot, but they are ordered; hospital patients complete
their service and depart the system first, followed by the completion of ER

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11

Fig. 4 Network arrival-departure scheme

services. System state variables (nt, dt, ht) is read after the arrivals to system
is completed.

In order to describe the transition probability matrix of our network, let
us denote the following functions:

– A(k): Probability that k customers arrive to the ER in a time slot
– Ser(j): Probability of completing the service of j patients at the ER in a

time slot
– Shosp(i): Probability of completing the service of i patients at the hospital

in a time slot

Then, we can define the probabilities in the transition matrix τ as

P ((nt, dt, ht)→ (nt+1, dt+1, ht+1)) =
∑

(i,j,k)∈H

A(k)Ser(j)Shosp(i)

where H is the set of triplets (i, j, k) adhering to the following conditions:

nt+1 = nt + k − j
dt+1 = dt + j −min(j + dt, hmax − ht + i)

ht+1 = ht +min(j + dt, hmax − ht + i)− i

The transition from nt to nt+1 is determined by k arrivals to the ER and
j service completions. All k arrivals will increase nt and all j service com-
pletions will decrease nt even if they can not leave the ER. This is because
nt only considers non-idle patients in the ER. The j service completions will
increase the number of delayed customers dt momentarily. If some of the de-
layed patients can be transferred to the hospital, then the number of delayed
patients will decrease by the number of transferred patients which is given
by min(j + dt, hmax − ht + i). These transferred patients will increase the
hospital occupancy immediately since there is no queue. However, the service
completions at the hospital given by i will decrease ht in the same time slot.

We will now consider the same ER-hospital network, with arrival and ser-
vice processes that depend on a common and randomly changing environment.
The system parameters change based on the state of the environment that has
Markovian jumps, modulated by a transition matrix G. Consequently, the
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homogeneous arrival and service rates become dependent on the state the
environment is in and we have

λ(i) : Arrival rate to the ER when the environment is in state i

µer(i) : Service rate at the ER when the environment is in state i

µhosp(i) : Service rate at the hospital when the environment is in state i

where i ∈ E.
The state space for the Markov-modulated network can be obtained from

the homogeneous network model discussed in Section 4.1. Recall that τ is the
matrix containing the transition probabilities of the network states described
by the {nt, dt, ht} triplets. Bringing in Markov modulation increases the state
space by one more dimension, incorporating the environmental state, resulting
in the 4-tuple {nt, dt, ht, yt}. The transition probability matrix for this new
state space Q can be obtained by combining τ and the environment’s transition
matrix G. If we define τk,l ≡ G(k, l)× τ , then

Q =


τ1,1 τ1,2 . . . τ1,K
τ2,1 τ2,2 . . . τ2,K
. . . . . . . . . . . .
τK,1 τK,2 . . . τK,K


where K is the number of states in the environment E. This approach creates
a dependent structure among the arrival and service rates. However, when
conditioned on the environmental state, the rates are independent. We will
exploit this conditional independence property when providing the Bayesian
analysis.

In this research, we aim to develop a methodology for predicting gridlocks
in an ER-hospital system, to be used as a warning system in healthcare oper-
ations. As a predictive measure, we will utilize transient probabilities of first
state passage times in a discrete time Markov chain representing the states of
the network. Since we have an inherently finite system, transient results can
be obtained from k-step state transition matrices, which can be calculated by
taking the kth power of a state transition matrix.

We are interested in the probability that the network enters gridlock within
a fixed time frame given the current state of the system. For any k,

P ({nt+k, dt+k, ht+k, yt+k} ∈ ν|{nt, dt, ht, yt}) (6)

where ν is the set of gridlock states, provides the probability of the network
entering gridlock in exactly k time slots and can be obtained by looking at
the row corresponding to the initial state of the k-step transition probability
matrix, and adding the probabilities matching gridlock states. In order to
obtain the probability of gridlocking anytime during the k time slots, and
decrease the size of our matrix, we can modify the matrix Q to collect the
states that satisfy gridlock requirements in an absorbing super state and create
a new matrix Q∗. As discussed in [17], by creating the absorbing gridlock state,
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a system entering a gridlock will not leave that state and probabilities of ever
gridlocking can be obtained.

According to our definition of gridlock, only the states with full ER beds
(n + d > c) and at least one idle patient (d > 0) are gridlock indicators. To
create the new matrix, we go through the following steps:

1. Let the set ν ≡ {n, d, h, y} s.t. d > 0 and n+ d > c.
2. Add an additional state g∗ to the ER-hospital network’s state space.
3. For each row in Q∗, sum the probabilities corresponding to transitions to

states in ν. Copy this sum to the column corresponding to g∗.
4. Make the state g∗ absorbing, i.e. set Q∗(g∗, g∗) = 1.
5. Remove all the row and columns in Q∗ that are in ν.

This operation leaves us with a proper transition probability matrix Q∗ for the
Markov chain representing the states of the ER-hospital network in a randomly
modulated environment.

To illustrate how to perform gridlock predictions, let us first assume the set
of system parameters are known and set them to arbitrary values {λ̄(i), µ̄er(i),
µ̄hosp(i)}. Let us also assume that the current environmental state is known.
The prediction is performed conditioned on an initial characteristics of the
ER-hospital network. As discussed in [17], by creating the absorbing gridlock
state, a system entering a gridlock will not leave that state. Consequently, the
probability of ever entering gridlock in k time slots can be given as

P (Tg ≤ k|{n0, d0, h0, y0}) = (Q∗)k({n0, d0, h0, y0}, g∗) (7)

where Tg is the first passage time to the gridlock state.

However, we will most likely not be able to observe the environment. In
that case, we would need to average the gridlock probabilities conditioned on
the environmental state over the possible environmental states, which can be
obtained as

P (Tg ≤ k|{n0, d0, h0}) =
∑
y∈E

(Q∗)k({n0, d0, h0, y}, g∗)G∗(y) (8)

where G∗(y) is the steady state probability that the environment is in state y,
which can be obtained from the yth column of a large power of the G matrix.

We can also obtain the distribution of the first passage time (Tg) to the
gridlock state g∗ using the recursive formula

P (Tg < k|{n0, d0, h0}) = Q∗({n0, d0, h0}, g∗) (9)

+
∑

∀{n,d,h}

Q∗({n0, d0, h0}, {n, d, h})P (Tg < k − 1|{n, d, h})

for k > 3, where P (Tg < 2|{n0, d0, h0}) = Q∗({n0, d0, h0}, g∗).
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5 Bayesian analysis of the ER-Hospital network

5.1 Inference of the arrival and service rates

The Bayesian analysis of the simplified ER-Hospital network described above
requires the inference of arrival and service process parameters jointly for the
ER and the hospital. We are considering a system with blocking which require
slight modifications to the Bayesian inference of the single discrete time queue.

Let us define the following parameters:

– λer - arrival rate to the ER
– µer - service rate at the ER
– µhosp - service rate at the hospital

For the reasons discussed previously, batch arrival models are more appro-
priate when modeling an inherently continuous system via a discrete queueing
model. Let us observe the system through its three components. The arrivals
to the ER are counted at each time slot providing us a(T ) = {a1, . . . , aT }.
Similarly, the service completions at the ER and the hospital are counted and

recorded at each time slot resulting in the sequences s
(T )
er = {ser1 , . . . , serT } and

s
(T )
hosp = {shosp1 , . . . , shospT }, respectively.

We can obtain the state labels given in Table 1 by keeping track of the
arrivals and service completions observed at the network.

nt = nt−1 + at − sert
dt = dt−1 + sert −min(sert + dt−1, hmax − ht−1 + shospt )

ht = ht−1 +min(sert + dt−1, hmax − ht−1 + shospt )− shospt

Since the state of the system does not affect the arrival of the customers, the
inference for λer is identical to the single queue case. Therefore, we will adopt
the inference for the c-server batch arrival geometric queue, Geox/Geo/c. The
batch sizes in this model were defined by a Poisson distribution of rate λ, which
will be referred to as λer in this section. Given a sequence of arrivals a(T ) and
a conjugate Gamma(α, β) prior, we can obtain the posterior distribution for
the arrival rate λer as Gamma(α+

∑n
t=1 at, β + n).

The ER service process on the other hand is slightly different. The de-
pendence on the busy servers still exist. However, due to boarding (blocked)
patients occupying ER beds, not all occupied servers can complete a service.
Specifically, the number of service completions need to be selected from the
number of working servers. The number of actively working servers at time
slot t depends on the system occupancy and is given by min(nt−1, c−dt−1). If
there are no customers in the waiting room, then nt will provide the number
of working servers. If there are patients in the waiting room on the other hand,
c − dt−1 is the number of servers that are not occupied by blocked patients,
which is an upper limit on the number of possible service completions at time
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slot t. We can employ a binomial process dependent on the number of working
servers given as

P (St = st|a(T ), s(T )
er , s

(T )
hosp) (10)

=

(
min(nt−1, c− dt−1)

st

)
(µer)st(1− µer)min(nt−1,c−dt−1)−st

which in turn results in the joint likelihood for the ER service rate µer

L(µer; a(T ), s(T )
er , s

(T )
hosp) ∝ (µer)

∑n
t=1 s

er
t (1− µer)

∑n
t=1(min(nt−1,c−dt−1)−sert ).

(11)
When the likelihood in (11) is combined with a conjugate Beta(γer, δer) prior,
the posterior distribution of the ER service rate parameter can be obtained as

P (µer|a(T ), s(T )
er , s

(T )
hosp) (12)

∼ Beta(γer +

n∑
t=1

sert , δer +

n∑
t=1

(min(nt−1, c− dt−1)− sert )).

The service process in the hospital does not have any blocking. However, it
lacks a waiting room, so, the number of customers in this part of the network
given by ht is always equal to the number of busy (and working) servers.
Once again, assuming a conjugate Beta(γhosp, δhosp) prior, we can obtain the

posterior distribution of µhosp as Beta(γhosp+
∑n
t=1 s

hosp
t , δhosp+

∑n
t=1(ht−1−

shospt )).

5.2 Analysis with a Markov modulated environment

For the Bayesian analysis, following an approach inspired by [16], let us denote
the observations of the arrival process by a(T ) = {a1, . . . , aT }, the ER service

process by s
(T )
er = {ser1 , . . . , serT }, and the hospital service process by s

(T )
hosp =

{shosp1 , . . . , shospT }. Since the arrival and the service processes are independent
given the observable environmental state y(T ) = {y1, . . . , yT }, we can obtain
the likelihood functions for the realizations as

L(Λ; a(T ), y(T )) ∝
n∏
t=1

G(yt−1, yt)λ(yt)
ate−λ(yt)

L(Mer; a(T ), s(T )
er , y

(T ))

∝
n∏
t=1

G(yt−1, yt)(µ
er(yt))

sert (1− µer(yt))min(nt−1,c−dt−1)−sert

L(Mhosp; a(T ), s
(T )
hosp, y

(T ))

∝
n∏
t=1

G(yt−1, yt)(µ
hosp(yt))

shosp
t (1− µhosp(yt))ht−1−shosp

t
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where G(y0, y1) = 1, Nt =
∑t
i=1 ai −

∑t
i=2 si, Λ = {λ(1), . . . , λ(K)}, Mer =

{µer(1), . . . , µer(K)}, Mhosp = {µhosp(1), . . . , µhosp(K)}, and K is the num-
ber of distinct environments.

We can put independent Dirichlet priors on the rows of the transition matrix
G

P (G(i)) ∝
∏
j∈E

G(i, j)ζ
i
j−1. (13)

for i ∈ E.

We can also assume conjugate Gamma(α(i), β(i)) priors on the state de-
pendent arrival process and conjugateBeta(γer(i), δer(i)) andBeta(γhosp(i), δhosp(i))
priors on the state dependent service processes in the ER and the hospital,
respectively.

For the case where the environmental processes are observable (i.e., the

data D = {a(T ), s
(T )
er , s

(T )
hosp, y

(T )}), we can analytically obtain the posterior
distributions of the unknown arrival and service parameters. These distribu-
tions are given as

G(i)|D ∼ Dirichlet

{
ζij +

n−1∑
t=1

I(yt = i, yt+1 = j); j ∈ E

}
(14)

λ(i)|D ∼ Gamma

(
α(i) +

n∑
t=1

I(yt = i)at, β(i) +

n∑
t=1

I(yt = i)

)
(15)

µer(i)|D ∼ Beta

(
γer(i) +

n∑
t=1

I(yt = i)sert , δ
er(i)

+

n∑
t=1

I(yt = i)(min(nt−1, c− dt−1)− sert )

)
(16)

µhosp(i)|D ∼ Beta

(
γhosp(i) +

n∑
t=1

I(yt = i)shospt , δhosp(i)

+

n∑
t=1

I(yt = i)(ht−1 − shospt )

)
(17)

where I(.) is the indicator function that returns 1 if its argument is true, and
0 otherwise.

For the case where the environmental process is unobservable, we cannot
obtain recognizable distributions for the parameters. Instead, we can employ
an Markov chain Monte Carlo (MCMC) method such as the Gibbs sampler. For
the sampler, need the full conditional distributions of the unknown parameters
G,Λ,Mer,Mhosp,Y. The first four full conditional distributions are already
given above. The distribution for Y can be given as
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P (Yt|D,Y(−t), λ(Yt), µ
er(Yt), µ

hosp(Yt),G) ∝ (18)

G(Yt−1, Yt)λ(Yt)
ate−λ(Yt)

× (µer(Yt))
sert (1− µer(Yt))min(nt−1,c−dt−1)−sert G(Yt, Yt+1)

× (µhosp(Yt))
shosp
t (1− µhosp(Yt))ht−1−shosp

t G(Yt, Yt+1)

for t < n, and

P (Yt|D,Y(−t), λ(Yt), µ
er(Yt), µ

hosp(Yt),G) ∝ (19)

G(Yt−1, Yt)λ(Yt)
ate−λ(Yt)

× (µer(Yt))
sert (1− µer(Yt))min(nt−1,c−dt−1)−sert G(Yt, Yt+1)

× (µhosp(Yt))
shosp
t (1− µhosp(Yt))ht−1−shosp

t

for t = n.
To simulate from the joint posterior distribution of {G,Λ,Mer,Mhosp,Y},

we first determine ζ, α, and β to form our priors. Then we observe our data
{a(T ), s(T )}, and set Y1 = 1. We then need to initialize the Gibbs sampler for
the first iteration and give values to: Y 0

2 , . . . , Y
0
T ,G0

1,1, . . . , G
0
K,K ,λ(1)0, . . . , λ(K)0,

and µ(1)0, . . . , µ(K)0. Then we can set the counter [ctr] = 0 and start the sam-
pler:

1. Generate G
[ctr+1]
i , i = 1, . . . ,K from (14)

2. Generate λ(i)[ctr+1], i = 1, . . . ,K from (15)
3. Generate µer(i)[ctr+1], i = 1, . . . ,K from (16)
4. Generate µhosp(i)[ctr+1], i = 1, . . . ,K from (17)

5. Generate Y
[ctr+1]
t , t = 2, . . . , T from (18) and (19)

6. Increment ctr by 1 and go to Step 1.

We can use these joint posterior distributions to obtain the desired infer-
ences about the parameters of interest as well as use the generated samples in
calculating gridlock probabilities in the next section. Since the ordering of the
system states is arbitrary, we will concentrate on the marginal distributions of
the three components of the system, n, d, and h.

5.3 Gridlock prediction

In the Bayesian framework, our inference provided us simulated samples of
the network parameters. In order to obtain a gridlock probability we need to
calculate the posterior predictive distribution of the gridlock probability in k
time slots, given our samples. If we let Θ∗ be the collection of the posterior
samples of the system parameters λ(i), µer(i), µhosp(i),G for i ∈ E, then

P (Tg ≤ k|{nt, dt, ht}) =
1

J

J∑
j=1

∑
y∈E

(Q∗j )k({nt, dt, ht, y}, g∗)G∗j (y) (20)
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where (Q∗)kj is the kth power of the matrix Q∗ obtained by using the jth

member of J posterior Θ∗ samples, and G∗j (y) is the G∗(y) obtained from the

jth sample.

6 Numerical demonstration

Since we do not have full ER-hospital network data to use in our model, for
demonstrative purposes, we will employ a sequence of 1000 simulated arrival
and service times. The test data is modulated by a 2-state environment gov-
erned by the transition matrix

G =

( 1 2

1 0.9 0.1
2 0.4 0.6

)
(21)

and the arrival and service rates given by

– λ(1) = λ(2) = 4
– µer(1) = 0.8, µer(2) = 0.9
– µhosp(1) = 0.7, µhosp(1) = 0.95

for an ER-hospital network with 5 ER beds, 5 hospital beds and a waiting
room capacity of 5 patients. As with all our other analysis, due to the lack of
apriori information, we will employ non-informative priors.

6.1 Inference Results

The arrival rates λ(1) and λ(2) are known to be equal. The box plots shown in
Figure 5 do not contradict this information, and depicts overlapping distribu-
tions with very similar means. The differences in the ER service rates µer(1)
and µer(2), and hospital service rates µhosp(1) and µhosp(2) on the other hand
can be clearly observed in Figure 6 and Figure 7, respectively.

We can also obtain the posterior distribution of G which is illustrated in
Figure 8. As expected, the plotted histograms show that the distributions the
members of G are centered around the true values used to create the simulated
dataset.

6.2 Steady state results and gridlock prediction

For each of the joint posterior sample obtained from the Bayesian inference,
we can form a transition matrix Q for the ER-hospital network, and a reduced
matrix Q∗ that has an absorbing gridlock state. From our analysis, we have
obtained the steady state distribution of the network which is obtained by
taking a large power of the probability transition matrix Q for each of the
posterior samples, and averaging them out over the number of samples. The

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19

2
.8

3
.0

3
.2

3
.4

3
.6

3
.8

i

λ
(i

)

Fig. 5 Box Plots of the arrival rates λ(1) and λ(2)

0
.8

0
0
.8

5
0
.9

0
0
.9

5

i

µ
e
r(

i)

Fig. 6 Box Plots of the ER service rates µer(1) and µer(2)

resulting distribution provides us the steady state probability of the system
being in any one of its feasible states in the long run. However, since the
ordering of the system states is arbitrary, distribution of the system states
looks multi-modal and difficult to interpret. Instead, we have obtained the
marginal distributions of n, d and h. These distributions are illustrated via
the posterior sample histograms plotted in Figures 9, 10, and 11, respectively.

For the gridlock prediction, we need to concentrate on the reduced matrix
Q∗. In Figure 12, we are providing the probabilities of the network going into
gridlock in two hours conditioned on any one of the feasible, non-gridlocked
states of the system. Since we are interested in a two-hour window and time
slots have been selected to be 30 minutes long, for each posterior sample,
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Fig. 8 Posterior distribution of G

the fourth power of the matrix Q∗ is calculated. Then the column associated
with the absorbing gridlock state g∗ has been collected from each sample and
averaged over the samples to provide the gridlocking probabilities.

We may also be interested in the relationship between the gridlock prob-
abilities and the individual components of the system state (n, d, h). We can
investigate this effect by plotting the gridlock probabilities against increasing
values of n, d and h separately, keeping the remaining components constant.
For the effect of n, we fixed d = 0 and h = 5. Similarly, for d, we fixed n = 0
and h = 5, and for h, we fixed n = 10 and d = 0. In Figures 13, 14 and 15, we
can see the resulting distributions collected from Figure 12.
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Fig. 9 Steady state distribution of n
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Fig. 10 Steady state distribution of d
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Fig. 11 Steady state distribution of h

7 Concluding remarks

In this work, we illustrate a method to conduct Bayesian analysis on discrete
time networks and perform gridlock predictions on the ER-hospital network.
In doing so, a Bayesian method for performing probabilistic inference on the
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Fig. 12 Probability of gridlocking in 2 hours given current network state
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Fig. 13 Effect of n on gridlock probability

parameters of homogeneous and and Markov modulated discrete time queues is
presented. Inferential methods on the networks of discrete time queues as well
as any Bayesian work is not existent in the current literature as far as we know,
and out methods can be used for the analysis of both continuous and discrete
time systems. We also show that numerical results are fairly straightforward
to obtain and allow for modeling complex systems which can not be analyzed
via closed form solutions.

In the ER-hospital network considered, there are several layers of the sys-
tem where decisions needs to be made. Fundamentally, system capacity deci-
sions can be made based on server costs and customer service levels as dis-
cussed earlier. However, one can incorporate gridlock probabilities into the
analysis. When considering system design problems, steady state probabilities
of reaching gridlock can be a part of the penalty function by considering the
associated costs (e.g. idle resources, ambulance diversions). Transient analysis
discussed in this work also brings in additional questions. Since we bring an
ability to provide gridlock probabilities, temporary mechanisms designed to
relieve the system congestion can be built into the system. For instance, an
additional room of critical care beds that are only used during high gridlock
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Fig. 14 Effect of d on gridlock probability
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Fig. 15 Effect of h on gridlock probability

probability states can be utilized. The system may also attempt to increase its
service rate by taking some costly shortcuts or temporary increases in person-
nel. As we have seen in our second essay, it is not unusual for the service rate
to increase as a reaction to an increasing arrival rate. Allowing for the service
rate to increase as a precautionary measure may avoid severe congestions and
gridlocks, providing better customer service and decreasing operating costs.
Since a discrete time structure assumed, results obtained can be used directly
since most operations decisions are made based on a discrete time schedule.
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