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Abstract: Maximum entropy copulae introduced by Bedford and Meeuwissen (1997) provide

normative experts the option of making minimally informative assumptions given a degree of

dependence constraint between two random variables. Unfortunately, their distributions functions

are not available in a closed form and application requires the use of numerical methods. In this

paper we shall study a sub-family of generalized diagonal band (GDB) copulae, separately

introduced by Ferguson (1995) and Bojarski (2001). Specifically, bivariate copulae density support

shall cover the complete unit square when a full support generating density is selected from the two-

sided (TS) framework of distributions introduced by Van Dorp and Kotz (2003). Even with unit

square support, GDB copulae with TS generating densities allow for a complete rank correlation

coverage by taking advantage of the TS framework's flexibility. GDB copulae distribution functions

and properties shall be expressed in terms of the TS generating density. Instances shall be presented

with closed form expressions utilizing only elementary functions. A straightforward expert judgment

elicitation procedure for the GDB copula dependence parameter is suggested.  Operationally, for

rank correlations ranging from  to , GDB copulae with TS Slope generating densities !Þ% !Þ%

closely approximate the minimal information measure of the maximum entropy copulae. For

absolute rank correlation values larger than , a TS power generating density for GDB copulae!Þ%

performs very well in this regard.  For demonstration purposes the sub-family of GDB copulae

discussed herein is illustrated in a decision analysis example.

* Corresponding author. E-mail: dorpjr@gwu.edu, Tel.: +1 202 994 6638; fax:+1 202 994 0245.
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1. INTRODUCTION

Copulae are joint distributions with uniform marginals and were initially discovered by Sklar

(1959) who was interested in pure mathematical aspects. Any bivariate distribution of  withÐ\ ß ] Ñw w

known continuous marginal cumulative distribution functions  and  can be transformedKÐ † Ñ LÐ † Ñ

to a bivariate copula . The mapping , where isÐ\ß ] Ñ œ ÐKÐ\ ÑßLÐ] ÑÑ \ Ä \ œ KÐ\ Ñ \w w w w

uniformly distributed on the unit interval is commonly called the probability integral transformation

(e.g. Nelsen (1999)). As such, many authors, mostly , studied copulae by consideringindirectly

bivariate distribution with known continuous marginals. Gaussian copulae and Student t-copulae, on

the other hand, have been studied explicitly and are prime examples of this construction procedure.

Both belong to the larger elliptical family of copulae which are characterized by elliptically contoured

distributions (see, e.g. Clemen and Reilly (1999) and Lewandowski (2008)). Genest and Mackay

(1986) and Nelsen (1999) studied an elegant framework for modeling a class of copulae in a direct

manner, known as Archimedean copulae. Archimedean copulae are popular for their ease of

construction via an  involving a convex decreasing function ,algebraic method : À Ð!ß "Ó Ä Ò!ß∞Ñ

called a generator, such that  Another procedure for constructing copulae uses the:Ð"Ñ œ !Þ

geometric method. Nelsen (1999) discusses a variety of methods utilizing some information of a

geometric nature.

Recent years have experienced a burst of applications utilizing the copulae approach in the fields

of finance (see, e.g. insurance (see, e.g., Härdle et. al (2002),Frees et. al (1996, 1998, 2005) and 

Cherubini et al. (2004), McNeil et al. (2005), He and Gong (2009)) with Embrechts (2008) even

referring to this attention as "the copula craze". For a sampling of other areas he copulaewhere t

approach was suggested for statistical dependence modeling see, e.g., Clemen and Reilly (1999), Van

Dorp and Duffey (1999), Yi and Bier (1998), Kallen and Cooke (2002), De Michele et. al (2007), 

Genest and Favre (2007), Norris et al. (2008). A particular advantage of this approach is that it

utilizes a decomposition principle by separately describing uncertainty phenomena via marginal

distributions and the dependence between these phenomena via a copula. Evidently, this in part has

resulted in the widespread applications of copulae constructs by "financial quants" whom may be
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characterized by a certain degree of mathematical sophistication. However as noted by Drouet and

Kotz (2001); "The concepts of dependence permeates the Earth and its inhabitants in a most profound manner.

Examples of interdependent meteorological phenomena in nature and interdependence in the medical social, and

political aspects of our existence, not to mention the economic structures are too numerous to be cited individually" .

The quote above expresses the need for continuous and increasing modeling and application of

dependence between uncertain phenomena in a great variety of fields. Unfortunately, we have not

seen a similar level of activity in fields other than finance or insurance.

In this paper, we shall further investigate the recently introduced bivariate family of Generalized

Diagonal Band (GDB) copulae whose geometric copula construction method enjoys the ease of the

algebraic generator method for copula construction of the Archimedean copulae. The diagonal band

(DB) distribution introduced  by Cooke displayed in Figure 1 is the foundingand Waij (1986) and 

member of this copulae family and was geometrically constructed by limiting its support to a band

of varying width around the unit diagonal. To facilitate the application of the family of GDB

copulae, expressions for distribution functions and properties of several instances shall be derived in

a closed form. We hope that their ease of use and geometric motivation facilitates the penetration of

copulae techniques in other application domains, such as e.g. decision analysis and uncertainty

analysis, to a level that triangular distributions (which too were geometrically motivated) have

facilitated and contributed to a growth of uncertainty analysis applications.

Bojarski (2001) generalized the DB copula to a wider and more flexible family of copulae with

the same diagonal band support as indicated in Figure 1A and by utilizing a symmetric generating

density with support0Ð † Ñ

Ò Ó Ð"Ñ Ð"  Ñß Ð"  Ñ) ) . 

Setting Bojarski's (2001) GDB copula reduce to the DB in Figure 1.  To0Ð?Ñ œ Ö#Ð"  Ñ×) "

retain the sampling efficiency of the original DB copula, a closed form and preferably simple

expression for the inverse cdf (or quantile function) of  would be desirable. Bojarski (2001)0Ð † Ñ

considered symmetric beta distributions which do not meet that requirement. Lewandowski (2005)
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showed that Bojarski's generalization of DB copulae are equivalent to the family of copulae

introduced by Ferguson (1995) with density

-ÐBß CÑ œ Ö1ÐlB  Cl  1Ð"  l"  B  ClÑ×ß Ð#Ñ
"

#

where is a generating probability density function with support . Ferguson (1995)1ÐDÑ Ò!ß "Ó

demonstrated that copulas of the form  arise as a continuous mixture of bivariate uniformÐ#Ñ

densities on rectangles with boundaries and  with mixture densityÐ!ß DÑß ÐDß !Ñß Ð"ß "  DÑ Ð"  Dß "Ñ

1ÐDÑ.
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Figure 1: A: Diagonal Band Distribution ( ) distribution seenHFÐ Ñ)

from above B: Example of a  distribution.HFÐ!Þ&Ñ

Shortly after Bojarksi's (2001) generalization of DB copulae, Van Dorp and Kotz (2003)

introduced a flexible Two-Sided (TS) framework of bounded distributions that too uses the

generating density  concept (but with support ) to define a sub-family of distributions:ÐDÑ Ò!ß "Ó

within it. Members within the TS framework of distributions seem to provide a natural candidate for

Bojarski's (2001) and Ferguson's (1995) generalizations of DB copulae. In Section 2, we shall follow
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Bojarski's (2001) method to construct a sub-class of GDB copulae with a TS generating density and

complete unit square copula density support. Its joint cumulative distribution function is derived in

terms of the TS framework's generating cdf  and an efficient sampling algorithm for GDBTÐDÑ

copulae is presented, provided the TS framework's generating density  possesses a closed form:ÐDÑ

quantile function .  Classical measures of positive dependence are given a decision analyticT ÐDÑ"

interpretation in Section 3 and are too expressed in terms of . In Section 4, we use the generalTÐDÑ

property formulations from Section 3 to derive their closed form expressions for GDB copulae with

specific TS generating densities. Entropy measures have been used to design a variety of minimally

informative constructs given partial information. Bedford and Meeuwissen (1997) specifically used it

to construct maximum entropy copulae given a correlation constraint, which unfortunately are not

available in a closed form. Abbas (2006) applied it to the construction of utility functions when only

partial preference information is available.  In Section 5, different TS generating densities are

compared using a GDB's copula entropy in the context of matching an expert's elicited joint GDB

probability.  For demonstration purposes the use of the sub-family of GDB copulae discussed

herein is exemplified in a decision analysis example in Section 6.

2. CONSTRUCTION

Consider the TS framework of symmetric distributions with support  and probability densityÒ  "ß "Ó

function

0 Dl:Ð † l Ñ× œ ‚
"

#

:ÐD  "l Ñ  "  D Ÿ !ß
:Ð"  Dl Ñ !  D  "ß

{
, for 
, for 

G
G
G Ð$Ñ

where :Ð † l Ñ Ò!ß "ÓG G can be any  with support  and the parameters generating probability density function

may in principle be vector-valued.  The inverse cumulative distribution function (or quantile

function) associated with  has the following formÐ#Ñ

J ?l:Ð † l Ñ× œ
!  ? Ÿ ß

 ?  "ß
"

"
#

"
#

{
, for 

, for 
G

G

GT Ð#?l Ñ  "

"  T Ð#  #?l Ñ
Ð%Ñ

"
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where is the quantile function of Hence, sampling from  is computationallyT Ð † l Ñ Ð$Ñ" < :Ð † l ÑÞG

efficient provided  is available in a closed form. For example, the TT Ð † l Ñ" < wo-Sided Power

(TSP  family of distributions follows from  by setting Ñ Ð$Ñ :ÐDl8Ñ œ 8D 8  !8",  and allows for

efficient sampling utilizing  and the quantile function  TSPÐ%Ñ ÞT Ð;l8Ñ œ ; ß ; − Ò!ß "Ó" "Î8

distributions have been suggested as a flexible alternative to the classical beta distributions. They are

discussed in more detail in Kotz and Van Dorp (2004).

Next, we construct a bivariate distribution  utilizing for random variables 1ÐBß CÑ Ð$Ñ \ß ] ß

where  is uniformly distribution on  and the conditional density function  has the\ Ò!ß "Ó 1ÐClBÑ

following form À

1ÖClBß × œ Ð&Ñ:Ð † l Ñ l:Ð † l Ñ×G G0ÖB  C B  " Ÿ C Ÿ B  ", .

From the uniformity of ,  and  it follows that\ Ð&Ñ Ð$Ñ

1ÖBß Cl œ Ð'Ñ:Ð † l Ñ× ‚
"

#

:Ð"  l Ñ
:Ð"  l Ñ

G
G
G B  C  "  B  C Ÿ !ß

B  C !  B  C  "ß
ß
ß

The construction of the bivariate density  (not to be confused with the univariate density1ÐBß Cl8Ñ

1Ð † Ñ Ð#Ñin ) is demonstrated in Figure 2A for the case that . For :ÐDÑ œ #D :ÐDÑ œ #Dß D − Ò!ß "Ó

the pdf Ð$Ñ reduces to a symmetric triangular distribution with support Ò  "ß "ÓÞ

From we next construct a bivariate density distribution | on the unit squareÐ'Ñ -ÐBß C Ñ:Ð † l ÑG

Ò!ß "Ó Ò!ß "Ó# # by folding back the probability masses of  outside the unit square  onto1ÖBß Cl:Ð † l Ñ×G

it, using "folding" lines  and . See Figure 2A for a graphical depiction of this operation.C œ " C œ !

Hence, we obtain for the relationship between and -ÖBß Cl × 1ÖBß Cl:Ð † l Ñ :Ð † l Ñ×G G

-ÖBß Cl × œ
1ÖBß Cl 1ÖBß  Cl
1ÖBß Cl 1ÖBß #  Cl

:Ð † l Ñ
:Ð † l Ñ× :Ð † l Ñ×
:Ð † l Ñ× :Ð † l Ñ×

G
G G
G G  ß

 ß
!  B  C Ÿ "
"  B  C Ÿ #

Ð(Ñ
,
.

Combining  with  yieldsÐ(Ñ Ð'Ñ

-ÖBß Cl × œ:Ð † l Ñ

:Ð l Ñ  :Ð"  l Ñ
:Ð l Ñ  :Ð"  l Ñ
:Ð l Ñ  :Ð"  l Ñ
:Ð l Ñ 
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where

E œ Ö

E œ Ö
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#

,

,

,

ß !  B  C  "×.

Ð*Ñ

The areas  are depicted in Figure 2B. An example graph of the resulting bivariateE ß 3 œ "ßá ß %3

distribution -ÖBß Cl × Ð)Ñ:Ð † l Ñ :ÐDÑ œ #D Ð$ÑG  using the generating density  for the TS framework 

is provided in Figure 2C.
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Figure 2. Construction of the TS copula  A: given by  B: Areas given byà 1ÐBß CÑ Ð'Ñà E Ð*Ñà3

C:   given by  with on .-ÖBß Cl × Ð)Ñ :ÐDÑ œ #D Ò!ß "Ó:Ð † l ÑG

By design the random variable  in  is a uniform distribution on . T\ Ð'Ñ Ò!ß "Ó he operation

exemplified in Figure 2A does not affect the marginal distribution of  and thus\  the random
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variable  associated with the bivariate distribution \ :Ð † l Ñ Ð)Ñ-ÖBß Cl ×G  in  is uniformly distributed

on  as well. From the density it follows thatÒ!ß "Ó Ð)Ñ

-ÖBß Cl × œ -ÖCß Bl × ÐBß CÑ − Ò!ß "Ó Þ Ð"!Ñ:Ð † l Ñ :Ð † l ÑG G  for all  #

Hence, following this symmetry argument , the random variable  associated with  has to beÐ"!Ñ ] Ð)Ñ

uniform distributed as well and one concludes that the bivariate distribution  is in fact aÒ!ß "Ó Ð)Ñ

copula. This holds regardless of the form of the generating density :Ð † l ÑG  of the TS framework of

symmetric distributions . Moreover, the total probability mass in each of the four areas ,Ð$Ñ E ß 3 œ "3

á % Ð)ÑÞ Ð$Ñ,  equals for all copulae with density   Since  reduces to a symmetric triangular density"
%

when , one could refer to the copula in Figure 2C as the  copula.:ÐDÑ œ #D triangular

2.1. Cumulative distribution function

The joint cumulative distribution function follows directly from asÐ)Ñ

GÖBß Cl × œ:Ð † l Ñ

B T ÐDl Ñ.D

C  TÐDl Ñ×.D

B T ÐDl Ñ.D

C

G

G

G

G



 ß

ß

 ß

"
# "

"
# "

"
#
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"
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$

" C

"

B
"

ÐBß CÑ − E
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,

,

,

 TÐDl Ñ.D"
#

BC"

BC
%

"
G ß ÐBß CÑ − E Þ

Ð""Ñ

whereTÐDl Ñ :ÐDl Ñ Ð$ÑG Gis the cumulative distribution function of the generating density  in  and

the areas E ß 3 œ "ßá ß %3 are provided by . Please note that the integration boundaries inÐ*Ñ

GÖBß Cl × -ÖBß Cl ×:Ð † l Ñ :Ð † l ÑG G coincide with the arguments in the definition of the joint density 

given by . This apparent simple connection between  and , however,  belies the effort inÐ)Ñ Ð""Ñ Ð)Ñ

verifying . using theÐ""Ñ GÖBß Cl ×An example graph of the resulting bivariate cdf :Ð † l ÑG

generating density :ÐDÑ œ #D Ð T ÐDÑ œ D Ñ and thus generating cdf is provided in Figure 3.#
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Figure 3. Graph of  bivariate triangular copula cdf GÖBß Cl ×:Ð † l ÑG  that follows

using generating density :ÐDÑ œ #D Ð$Ñ T ÐDÑ œ #D Ð""ÑÞ in and generating cdf  in 

2.2. Dependence parameter elicitation

Consider a pair or random variable ' ') with marginal cdf's  and  respectively. AssumeÐ\ ß ] K L

further that the dependence between ' ') is described such thatÐ\ ß ]

ÖKÐ\ ÑßLÐ] Ñ× œ Ð\ß ] Ñ µ GÖBß Cl × Ð"#Ñ' ' :Ð † l ÑG

where GÖBß Cl × Ð""Ñ T ÐDl Ñ Ð""Ñ:Ð † l ÑG Gis the bivariate cdf  and the generating cdf  in  is a member

of a single parameter family of distributions with support . Let ' be the median of ' andÒ!ß "Ó B \!Þ&

C ] Þ' of '  To elicit the dependence parameter  we suggest the elicitation of the conditional!Þ& G

probability ' ' ' '  (or vice versa). This elicitation procedure falls within theT<Ð Ÿ l Ÿ Ñ] C \ B!Þ& !Þ&

conditional fractile estimates method for eliciting correlations described in Clemen and Reilly (1999).

Should ' ') be a pair of independent variables, one has ' ' ' '  If theÐ\ ß ] ] C \ B ÞT<Ð Ÿ l Ÿ Ñ œ !Þ&!Þ& !Þ&

expert judges that high values of  tend to be associated with high (low) values of he/she would\ ]w w

provide a value larger (less) than . Suppose the expert answers!Þ&
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T<Ð] Ÿ !Þ&l\ Ÿ !Þ&Ñ œ − Ò!ß "Ó Ð"$Ñ1 .

From and we haveÐ"$Ñ Ð""Ñ

"

#
œ T<Ð] Ÿ !Þ&ß\ Ÿ !Þ&Ñ œ Ð"%Ñ1 GÖ ß l × œ

" "

# #
:Ð † l Ñ Ö"  TÐDl Ñ×.D

"

#
G G

!

"

Utilizing the following relationship between |  and the generating cdf |IÒ^ Ó T ÐD ÑG G

IÒ^ Ó œ ß Ð"&Ñl Ö"  TÐDl Ñ×.DG G
!

"

one arrives with  and  at the following simple expressionÐ"%Ñ Ð"&Ñ

1 Gœ IÒ^l Ó  Ð"'Ñ

from which to solve for the dependence parameter Summarizing, solving for the dependenceGÞ 

parameter  is equivalent to solving for the parameter  of the generating density ( | ) using the< < <: D

method of moments. Of course, one can only guarantee a solution to  if the range of Ð"'Ñ IÒ^l ÓG  as

a function of eq< uals . ( Recall that the random variable  has support  ).Ò!ß "Ó ^ Ò!ß "Ó

2.3. Sampling procedure

Sampling from the copula -ÖBß Cl × Ð)Ñ:Ð † l ÑG   follows its construction method and is efficient

provided the quantile function  of the TS framework's  generating density isT ÐDÑ Ð$Ñ :ÐDl" GÑ

available in a closed form. The following algorithm generates a bivariate sample  fromÐBß CÑ

-ÖBß Cl ×:Ð † l ÑG

 Step 1: Sample  from a uniform random variable  on .B \ Ò!ß "Ó

 Step 2: Sample  from a uniform random variable  on .? Y Ò!ß "Ó

 Step 3: If then? Ÿ D œ"
# T Ð#?Ñ  " D œ "  T Ð#  #" " else ?Ñ

 Step : % C œ D  B

 Step 5: If then C  ! C œ  C

 Step 6: If then C  " C œ "  ÐC  "Ñ
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3. ORDINAL MEASURES OF ASSOCIATION

Positive (negative) dependence is present amongst two continuous random variables \ µ KÐ † Ñw

and  when large values of one are associated with large (small) values of the other. In] µ LÐ † Ñw

case of positive (negative) dependence, and  are said to be concordant (disconcordant).\ ]w w

Classical quantities that measure the degree of positive or negative dependence between  and \ ]w w

are Blomquist's (1950)  (sometime also referred to as Blomquist's ), Kendall's (1938)  and" 7;

Spearman's (1904) rank correlation . All three dependence measures attain values ranging from3=

 " " to . They are ordinally invariant, which implies that the degree of dependence between the pair

Ð\ ß ] Ñ Ð\ß ] Ñ œ ÖKÐ\ ÑßLÐ] Ñ×Þw w w w is the same as that between the pair  Recall, that by the

probability integral transformation (e.g. Nelsen (1999)) and  are uniformly distributed random\ ]

variables on  and thus the bivariate distribution of Ò!ß "Ó Ð\ß ] Ñ is a copula.

An excellent exposition and comparison of these ordinal measures of association is provided by

Kruskal (1958). Kruskal (1958) provides in his paper operational interpretations for all three

measures which are equivalent to the expected pay-offs of the probability trees in Figures 4A, B and

C below, where in Figures 4A, B and C

Ð\ ß ] Ñ œ ÖKÐ\ ÑßLÐ] Ñ×ß 3 œ "ßá ß $ Ð"(Ñ3 3
w w
3 3

are three independent random bivariate samples from the distribution under consideration. Observe

from  that  if and only if  . We conclude from Figure 4 that theÐ"(Ñ \  ] \  ] ß 3 œ "ßá ß $w w
3 3 3 3

operational interpretations of Blomquist's  (Figure 4A) Kendall's  (Figure 4B) and Spearman's" 7ß

rank correlation  (Figure 4C) involve 1, 2 and 3 independent random bivariate samples,3=

respectively  In case of independence between  and  (and thus and ) we have immediately. \ ] \ ]w w

from Figure 4 that  Moreover, in case of complete positive (negative) dependence," 7 3œ œ œ !Þ=

i.e.  ( ), one observes from Figures 4A and B that  ( )] œ \ ] œ \ œ œ " œ œ  " Þ3 3 3 3 " 7 " 7

Kruskal (1958) (page 824) showed that the same applies to  in case of complete positive (negative)3=

dependence. The equivalent population quantities for the expected pay-offs ,  and  in Figures" 7 3=

4A, B and C are:
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Figure 4. Operational interpretations of ordinal measures of association Blomquist's (1950)

" 7 3 (A) Kendall's (1938)  (B) and Spearman's (1904) rank correlation  (C)ß = Þ Samples

Ð\ ß] Ñ œ ÖKÐ\ ÑßLÐ] Ñ× 3 œ "ßáß$3 3
w w
3 3 ,  are independent bivariate samples from a joint

distribution under consideration with marginals and \ µ KÐ † Ñ ] µ LÐ † Ñw w .
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"

7

3

Ð\ß ] Ñ œ %GÐ ß Ñ  "

Ð\ß ] Ñ œ % GÐBß CÑ-ÐBß CÑ.B.C  " Ð")Ñ

Ð\ß ] Ñ œ "# BC-ÐBß CÑ.B.C  $

" "
# #

! !
" "

= ! !
" "

,

,

,

where GÐBß CÑ -ÐBß CÑ and  are the joint copula cumulative distribution function and density function

of , respectively. Hence, one concludes from  and , whereÐ\ß ] Ñ Ð")Ñ Ð\ß ] Ñ œ ÖKÐ\ ÑßLÐ] Ñ×w w

\ µ KÐ † Ñ ] µ LÐ † Ñ Ð\ ß ] Ñw w w w
=and , that the value for Spearman's of equals that of the3

Pearson's (1920) product moment correlation for .Ð\ß ] Ñ

Substitution of | and |  given by  and  in 8  we haveGÖBß C :Ð † l Ñ× -ÖBß C :Ð † l Ñ× Ð""Ñ Ð)Ñ Ð" ÑG G

after straightforward, but lengthy and tedious, algebraic manipulations that


" G G

7 G

3 G G G

Ö\ß ] l:Ð † l Ñ× œ #IÒ^l Ó  "

Ö\ß ] l:Ð † l Ñ× œ

Ö\ß ] l:Ð † l Ñ× œ 

Ð"*Ñ

,

,
,

#IÒ^ Ó . = .=  "#
! !
" "

 # T Ð l Ñ T Ð l Ñ # #= =  % =G G

= % l Ó  'IÒ^ l Ó  "IÒ^$ #

where ^ µ TÐ l Ñ T Ð l Ñ= =G Gand  is the cumulative distribution functions of the generating

probability density for ,:Ð † l Ñ Ð$ÑG  of the TS framework of distributions . We have  :ÐDÑ œ #D

IÒ^Ó œ ßIÒ^ Ó œ ß T Ð Ñ T Ð Ñ IÒ^ Ó œ#
$

# # # $1/2 and 2/5. Thus utilizing 
! !
" " "

'= = œ ß =. = .= œ"
&

Ð"*Ñ we obtain 7 "Ð\ß ] Ñ œ  Ð\ß ] Ñ œ % "
"& $ 3( , )  for the copula in Figure 2C.\ ] œ #

&

We have from and  in our case that Ð"*Ñ Ð"'Ñ " G 1 GÖ\ß ] l:Ð † l Ñ× œ # Ö\ß ] l:Ð † l Ñ×  ",

where  . Hence, the elicitation of 1 G 1 GÖ\ß ] l:Ð † l Ñ× œ T<Ð]  !Þ&l\  !Þ&Ñ Ö\ß ] l:Ð † l Ñ×

suggested in Section 2.2 is equivalent to an indirect elicitation procedure for Blomquist's ."

Moreover, Blomquist's  interpretation requires the least cognitiveobserve from Figure 4, that "

processing compared to  and , since it only involves one bivariate random sample as opposed to7 3=

two and three, respectively. This further supports the indirect elicitation of  Blomquist's  over"

Kendall's or Spearman's .7 3=

Bojarski (2001) derived the following relationship between the correlation coefficient 3Ð\ß ] Ñl)

of a GDB copula and the random variable Z µ 0Ð@Ñ À

3 ) ) )=
$ #Ö\ ] l ß × œ % lZ l l Ó  'IÒZ l Ó  ", 0Ð † Ñ IÒ Ð#!Ñ,
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where is symmetric and has support  (see )  The  copula density0Ð@Ñ Ò  Ð"  Ñß Ð"  ÑÓ Ð"Ñ Þ) )

-ÖBß Cl × Ð)Ñ:Ð † l ÑG  is a member within  Bojarski's GDB class of copulae by setting  equal to0Ð@Ñ

Ð$Ñ œ ! and thus . Hence, the difference between Bojarski's (2001) larger class of GDB copulae)

and the sub-class  is that a full support  generating density GDB copulaeÐ)Ñ Ò!ß "Ó :Ð † l ÑG  yields a 

with full unit-square support, whereas the former continues to have the more restrictedÒ!ß "Ó#

diagonal band support shared also by the DB copula in Figure 1. Utilizing  we have in the caseÐ$Ñ

that ) œ !

IÒZ l Ó œ IÒÐ"  ^Ñ

IÒlZ l l Ó œ IÒÐ"  ^Ñ Óß

#

$ $

)

)

œ !ß 0Ð † Ñ Ó

œ !ß 0Ð † Ñ
Ð#"Ñ

#l

l

:Ð † l Ñ

:Ð † l Ñ

G

G

and by substituting  into the correlation coefficient Ð#"Ñ Ð#!Ñ 3 )=Ö\ ] l ß ×, 0Ð † Ñ  reduces to

expression for 3 3= =in  Observe the similarity between the expressions for in  and Ð"*ÑÞ Ð"*Ñ Ð#!Ñ

(with containing the absolute third moment).Ð#!Ñ

3.1. Reflection Property

Let  be the density function of  , such that  and  is the;ÐDl Ñ ^ œ "  ^ ^ µ :ÐDl Ñ :ÐDl ÑG G Gw

generating density of the GDB copula density -ÖBß Cl × Ð)Ñ:Ð † l ÑG  given by . Hence,

;ÐDl Ñ œ :Ð"  Dl Ñß D − Ò!ß "Ó Ð##ÑG G .

The density  is referred to as the reflection density of the generating density . The;ÐDl Ñ :ÐDl ÑG G

copula density -ÖBß Cl; × œ -ÖBß Cl × -ÖBß Cl: ×ÐDl Ñ :Ð"  Dl Ñ Ð † l ÑG G G  may be obtained from  via a

right angle rotating. Figure 5 plots the density  where  and observe it-ÖBß Cl × :ÐDÑ œ #D:Ð"  Dl ÑG

is a rotated version of the density depicted in Figure 2CÞ

From  and  it immediately follows thatÐ##Ñ Ð"*Ñ À



" " "
7 7 7
3 3 3

Ö\ß ] l × œ Ö\ß ] l × œ  Ö\ß ] l ×
Ö\ß ] l × œ Ö\ß ] l × œ  Ö\ß ] l ×
Ö\ß ] l × œ Ö\ß ] l × œ 

;ÐDl Ñ :Ð"  Dl Ñ :ÐDl Ñ
;ÐDl Ñ :Ð"  Dl Ñ :ÐDl Ñ
;ÐDl Ñ :Ð"  Dl Ñ

G G G
G G G
G G

,
,

= = =Ö\ß ] l ×
Ð#$Ñ

:ÐDl ÑG ,

The expression for , where  is given by , is identical to Ö\ß ] l × Ö\ß ] l ×3 3= =:ÐDl Ñ :ÐDl Ñ Ð"*ÑG G

the expression for 3=Ö\ ] × Ð#Ñ Ð#$Ñ,  derived by Ferguson's (1995) for copula's . Hence, from l1ÐCÑ
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it follows that Ferguson's generating density  in enjoys the alternative interpretation of being1ÐDÑ Ð#Ñ

a generating density of the TS framework of distributions .Ð$Ñ

0

1
0

1

0.00

0.50

1.00

1.50

2.00

x

y

Figure 5. Graph of rotated triangular copula - :Ð"  Dl ÑÖBß Cl ×G

using the reflection generating density :Ð"  Dl Ñ œ #Ð"  DÑG .

3.2. Lower and upper tail dependence

Recently, lower and upper tail dependence measures are in vogue, particularly in problem contexts

dealing with modeling the joint occurrence of extreme events, such as insurance and modeling of

default risk in finance. These measures too are ordinal measures of association, although they focus

primarily on modeling positive dependence and not negative dependence. Recalling the two

continuous random variables and ,\ µ KÐ † Ñ ] µ LÐ † Ñw w  the population expressions for lower tail

dependence  and upper tail dependence  are, respectively:- -P Y

-P
w " w "œ T<Ö] Ÿ L ÐBÑl\ Ÿ K ÐBÑ× Ð#%Ñ

B Æ !

œ T<Ð] Ÿ Bl\ Ÿ BÑ œ ß
B Æ ! B Æ !

GÐBß BÑ

B

lim

lim lim 
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-Y
w " w "œ T<Ö]  L ÐBÑl\  K ÐBÑ× Ð#&Ñ

B Å "

œ T<Ð]  Bl\  BÑ œ Þ
B Å " B Å "

"  #B  GÐBß BÑ

"  B

lim

lim lim 

Copulae that do exhibit strictly lower or upper tail dependence (i.e. or ) are the- -P Y !  !

Clayton, Frank and Gumbel copulae that all belong to the Archimedean class of copulae (see, e.g.,

Joe, 1997).  given by From ( ), ( ), (11) and by applying l'Hopitals rule, we have#% #& GÖBß Cl ×:Ð † l ÑG

for GDB copula with TS generating densities, , similar to the Gaussian copulae- -P Yœ œ !

(Embrechts et. al,  2002).

In our opinion, traditional measures of dependence such as Blomquist's Kendall's  and" 7ß

Spearman's  are more applicable in problem contexts not dealing with the modeling of joint3W

extreme events per se, but dealing with the modeling of joint events in general. Indeed, these

traditional ordinal measures pertain to the full support of a copula and not just to its asymptotic

extreme values. The burst of applications and attention to the copula approach may be credited to

the Gaussian copula which has been widely adopted by the "financial quants" in recent years.

Unfortunately, it has also recently received extremely negative press (and by association the copula

approach) and some has gone as far (see, e.g., as to blame the 2008 financial crash onSalmon, 2009) 

the use of the Gaussian copulae, perhaps in part due to its lack of lower and upper tail dependence.

We are puzzled by this assessment and we would like to caution those who believe that the Clayton,

Frank and Gumbel copulae could serve as the panacea. Indeed, it has long been recognized that the

variances in the time series of financial processes are typically not constant, which eventually lead to

the introduction of, amongst others, the Auto-Regressive Conditional Heteroscedastic (ARCH)

models by Nobel-Laureate Engle in 1982. Hence, it would seem extremely unlikely that a joint

covariance process exists that cancels the volatility of two separate financial marginal processes

leading to a single constant correlation value over time. Summarizing, it appears that dependence

modeling between these types of financial processes require more complex constructs than the use

of a single bivariate copula.
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4. GDB EXAMPLES WITH TS GENERATING DENSITIES

In this section we shall use the properties in Sections 2 and 3 to study GDB copulas with the

following generating densities

:ÐDl Ñ œ  #Ð Dß ! Ÿ Ÿ #ß Ð#'Ñα α#   "Ñα α

:ÐDl8Ñ œ 8D ß 8  !ß Ð#(Ñ8"

:ÐDl7Ñ œ Ö# 7 " D 7D ×ß7  ! Ð#)Ñ
7  #

$7 %
( ) . 7 7"

:ÐDl Ñ œ ‚ " ÐDÑß ! Ÿ Ÿ "ß
"

" 
) )

)
Ò ß"Ó) Ð#*Ñ

:ÐDl+ß ,Ñ œ B Ð"  BÑ
Ð+  ,Ñ

Ð+Ñ Ð,Ñ

>

> >
+" ,", ,+  !ß ,  ! Ð$!Ñ

Pdf's - were utilized in Kotz and Van Dorp (2003) to introduce and exemplify their TSÐ#'Ñ Ð#)Ñ

framework of distributions and are referred to as the slope, power and ogive distributions,

respectively (all with full support .  Pdf's is Ò!ß "ÓÑ Ð$!Ñ the classical beta distributions also with full

support  whereas pdf may be recognized as Ò!ß "Ó Ð#*Ñ a uniform distribution with limited support

Ò ß "Ó) .

Figure 6 displays GDB copulas and their generating densities -  with parameter settingsÐ#'Ñ Ð#)Ñ

α œ "Þ&ß 8 œ $ß7 œ %Þ*"'Þ Ð$"Ñ

Figure 7 displays GDB copula and their generating densities -  with parameter settingsÐ#*Ñ Ð$!Ñ

) œ !Þ&à + œ , œ & Ð$#Ñ.

The generating densities in Figures 6A, C, E and 7A all have in common that  For theIÒ^Ó œ !Þ(&Þ

generating density in Figure 7C we have . Observe from Figure 7A that by reducing theIÒ^Ó œ !Þ&

support to  for the generating density of the TS framework,  leads via  to the originalÒ ß "Ó Ð)Ñ Ð#*Ñ)

DB copula displayed in Figure 1. The generating densities may also be observed in Figures:ÐDl Ñ<

6B, D and F and 7B, D as conditional densities of  or . Reflected versions ofÐ] l\ œ "Ñ Ð\l] œ "Ñ
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Figure 6. TS framework generating densities with associated GDB Copulae satisfying

IÒ^Ó œ !Þ(& À à œ "Þ&ÑA: Slope PDF B: TS Slope - GDB Copula (α

C: Power PDF D: TSP - GDB Copula ( ;à 8 œ $Ñ

E: Ogive PDF; F: TSO - GDB Copula ( )7 œ %Þ*"' Þ
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Figure 7. TS framework generating densities with associated GDB Copulae:

A: Uniform  PDF, ; B: DB Copula ( )Ò"  ß "Ó IÒ^l Ó œ !Þ(& œ !Þ& à) ) )

C: Beta PDF, ; D: TS Beta - GDB Copula ( )IÒ^l+ß ,Ó œ !Þ& + œ &ß , œ & Þ

the generating densities are observed in the same figures as conditional densities of  orÐ] l\ œ !Ñ

Ð\l] œ !Ñ. It may be somewhat surprising that the bivariate density in Figure 7D is a copula, i.e.

that it possesses uniform marginals. Perhaps even more remarkable might be that the copula in

Figure 7D has a product moment correlation of . However, for any symmetric density on  we! Ò!ß "Ó

have that for all , and thus from the reflection property in Section 3.1:Ð"  DÑ œ :ÐDÑß D − Ò!ß "Ó

and it follows that Blomquist's , Kendall's  and Spearman's  all equal to . Ð#$Ñ !" 7 3= In other words,

any symmetric generating density  for the TS framework yields uncorrelatedness within a:ÐDl Ñ Ð$Ñ<
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GDB copula, whereas when  is non-uniform the variables  are clearly not statistically:ÐDl Ñ Ð\ß ] Ñ<

independent (see Figure 7D).

GDB copulas with beta generating densities were studied by Bojarski (2001), but do not possess

a closed form cdf nor a closed form quantile function. We have for the remaining generating

densities  - for an arbitrary quantile level :Ð#'Ñ Ð#*Ñ ; − Ð!ß "Ñ

T

:ÐDl Ñß Á "ß Ð#'Ñß

; ß :ÐDl8Ñß Ð#(Ñß

  ;

"

Ð# Ñ Ð# Ñ % "Ñ
"Ñ

"Î8

#Ð7"Ñ #Ð7"Ñ
7 7 7

#
$7%

#ÎÐ7#

Ð;l Ñ œ<
  

α α α
α

 # Ð ;
#Ð ß α α Eq. 

Eq. 
Ñ

ß :ÐDl7Ñß Ð#)Ñß

Ð"  Ñ;  ß :ÐDl Ñß Ð#*ÑÞ

Ð$$Ñ

Eq. 

Eq. ) ) )

Thus, generating pdf's -  allow for an efficient GDB copula sampling algorithm since theirÐ#'Ñ Ð#*Ñ

quantile functions are available in a closed form. Perhaps one could slightly favor densities  andÐ#(Ñ

Ð#*Ñ since their quantile functions require the least number of elementary operations for their

evaluation.

We have from  for Blomquist Kendall's , Spearman's  for the generating densitiesÐ#$Ñ ß" 7 3=

Ð#'Ñ Ð#)Ñ - , respectively:


" α α

7 α

3 α α

Ö\ ] × œ

Ö\ ] × œ 

Ö\ ] œ

, 

, 

, 

l

l

l

:Ð † l Ñ   ß − Ò  ß Óß

:Ð † l Ñ  ß − Ò  ß Óß

:Ð † l Ñ  ß − Ò  ß Ó

Ð$%Ñ

" " " "
$ $ $ $
% % %
"& "& "&

=
# #
& &

%
"&

# #
& &

α

 ,


"

7

3

Ö\ ] × œ

Ö\ ] × œ

Ö\ ] × œ

, 

, 

, 

l

l

l

:Ð † l8Ñ ß − Ò  "ß "Óß

:Ð † l8Ñ  ß − Ò  "ß "Óß

:Ð † l8Ñ ß − Ò  "

8"
8"
8" 8"
8# Ð8"ÑÐ8#ÑÐ#8"Ñ

=
Ð8"ÑÐ8'Ñ
Ð8#ÑÐ8$Ñ ß "Ó

Ð$&Ñ

,



"

7

Ö\ ] × œ

Ö\ ] × œ

, 

, 

l

l

:Ð † l7Ñ ß − Ò!ß "Óß

:Ð † l7Ñ

7Ð7"ÑÐ$7)Ñ
Ð7 ÑÐ7 ÑÐ$7%Ñ3 4
7Ð7"ÑÐ"'#7 #'%$7 ")"$#7 ''"!)7 "%!!$#7&)))!Ñ

Ð7

' & % $

$ÑÐ7%ÑÐ7'ÑÐ#7&ÑÐ$7%Ñ Ð$7)ÑÐ$7"!Ñ# ß − Ò!ß "Óß Ð$'Ñ

:Ð † l7Ñ ß − Ò!ß "Ó3=
7Ð7"ÑÐ$7 (!7 %#%7($'Ñ
Ð7%ÑÐ7&ÑÐ7'ÑÐ7)ÑÐ$7%ÑÖ\ ] × œ, l

$ #

,
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and




" ) )
7 ) )

3 )

Ö\ ] × œ
Ö\ ] × œ

Ö\ ] × œ

, 
, 
, 

l
l

l

:Ð † l Ñ ß − Ò!ß "Óß
:Ð † l Ñ ÑÎ$ß − Ò!ß "Óß

:Ð † l Ñ ß − Ò!ß "Ó
Ð$(Ñ)

) ) )

Ð  #

Ð"   Ñ=
# .

Figure 8A, B, C and D provides a comparison of ,  and for expressions  - ." 7 3= Ð$%Ñ Ð$(Ñ
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Figure 8. Comparison of ordinal measures of association  forÐ$%Ñ  Ð$(Ñ

GDB copulae with TS framework generating densities;

A: Slope( ) B: Power( C: Uniform ; Ogive( .α )à 8Ñà Ò ß "Ó 7Ñ
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Observe from  and Figure 8B that GDB copulae with a TS power( ) generating densityÐ$&Ñ 8

Ð#(Ñ ß allow for a complete coverage of and . To achieve a full coverage for the generating" 7 3=

densities and  one would have to utilize the reflection property see, Section 3.1) of GDBÐ#)Ñ Ð#*Ñ Ð

copulae. The slope generating density  only allows for a limited coverage of and , but stillÐ#'Ñ ß" 7 3=

larger than the coverage, for example, of  for the Fairly-Gumbel-Morgenstern (FGM)3=
" "
$ $− Ò  ß Ó

copulae (see, Observe from Figure 8A, B, C and D that for allSchucany et. al (1978)). 7 " 3  =

parameter values. Kruskal's (1958) paper, however, contains examples with a reversed orderings of

these measures of association. We invite the reader to show that the ordering 7 " 3  = applies to

all GDB copulae with TS generating densities, which is still an open question. Finally, observe from

Figure 8A that all measures and expressions  and are linear functions of the slopeÐ$%Ñ ß" 7 3=

parameter , which is remarkable. Solving for  and  given a value for or  from secondα α ) " 7 3ß 8 ß =

order or less equations in ,  and involves simple algebraic manipulations, whereasÐ$%Ñ Ð$&Ñ Ð$(Ñ

higher order expressions in  and may require the use of  root finding algorithms.Ð$&Ñß Ð$'Ñ Ð$(Ñ

5. AN ELICITATION EXAMPLE

Assume that an expert has assessed a value  and that we are1 œ !Þ(&T<Ð] Ÿ !Þ&l\ Ÿ !Þ&Ñ œ

tasked to develop a GDB copula with a TS generating density that matches this constraint. We have

from -  and  thatÐ#'Ñ Ð#*Ñß Ð"$Ñ Ð"'Ñ

1 G

α

)

Ö\ ] × œ, l:Ð † l Ñ

Ð − Ò ß Ó :ÐDl Ñ Ð#'Ñß

8ÎÐ8  "Ñ − Ò!ß "Ó :ÐDl8Ñ Ð#(Ñß

− Ò!Þ&ß "Ó :ÐDl Ñß

  
#  ÑÎ'α " #

$ $

Ð7#Ñ
$7% Ð7%ÑÐ7$Ñ

$7'

, , Eq. 
, , Eq. 

,
#

Eq. 

, , Eq. .

Ð#)Ñß

Ð  "ÑÎ# − Ò!Þ&ß "Ó :ÐDl7Ñ Ð#*Ñ

Ð$)Ñ

)

From Ð$)Ñ 8 œ $ß7 œ %Þ*"' œ "Î#ß œ !Þ(&it follows that for  and the above  constraint is met) 1

using the power( , ogive (  and uniform  generating densities - , respectively.  The8Ñ 7Ñ Ò ß "Ó Ð#(Ñ Ð#*Ñ)

corresponding copula densities are displayed in Figures 6D, 6F and 7B. For  it follows from7  #

the ogive pdf that its derivative equals  at  and  As a result, the GDB copula inÐ#)Ñ ! D œ ! D œ "Þ
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Figure 6F is smooth over its entire support whereas the other copulas in Figures 6D and 7B are not.

Hence, if smoothness of the copula were a requirement one could favor the ogive generating

density. For  one obtains for ogive pdf  that .7  # Ð#)Ñ Ð7Ñ  œ !Þ'%1 "'
#&

What if smoothness were not a requirement? How would one choose amongst these three

generating densities? From an argument of being as uniform as possible, one could perhaps select

that copula with the smallest correlation coefficient. We have from and that forÐ$&Ñß Ð$'Ñ Ð$(Ñ

8 œ $ß7 œ %Þ*"' œ "Î#, , respectively:)

3 3 3 )Ð8Ñ œ ß Ð7Ñ œ !Þ'!&* Ð Ñ œ Ð$*Ñ
$ &

& )
and .

Hence, this would favor the power( ) generating density, albeit ever so slightly. However, this raises8

the question if the argument of selecting a copula with the smallest correlation coefficient from a

family of copulae that matches a conditional probability constraint, is generally applicable? In the

case that  between uniform random variables and  one1 œ !Þ& Ò!ß "Ó \ ]T<Ð] Ÿ !Þ&l\ Ÿ !Þ&Ñ œ

would perhaps prefer the copula with independent uniform marginals. However, the copula in

Figure 7D also matches the constraint  and too possesses a zero correlation. In fact, recall1 œ !Þ&

from Section 4 that the same holds for any symmetric generating density . Thus, one arrives:ÐDl ÑG

at the conclusion that the above question cannot be answered affirmatively. On the other hand, a

procedure that selects a copula by minimizing the distance between it and the uniform copula with

independent marginals would have selected the latter (and not the one in Figure 7D) given the

1 œ !Þ& Ð#(Ñ constraint. This suggests to select amongst the GDB copula with generating densities -

Ð#*Ñ the one that minimizes a distance measure between it and the copula with independent uniform

marginals.

A well known distance measure between two densities  and  is the relative0ÐBß CÑ 1ÐBß CÑ

information of one candidate density  with respect to another specified density  given0ÐBß CÑ 1ÐBß CÑ

by

MÐ0 l1Ñ œ 0ÐBß CÑ Ö0ÐBß CÑÎ1ÐBß CÑ×.B.C Ð%!Ñ  ln .



24

The quantity  is known as the cross entropy or the Kullback-Liebler distance between twoÐ%!Ñ

distributions  and . The quantity  is non-negative and only equal to zero when0 1 MÐ0 l1Ñ

0ÐBß CÑ œ 1ÐBß CÑ everywhere. Soofi and Retzer (2002) provide a more general discussion on

various information indices. Setting  and  in where0ÐBß CÑ œ -ÖBß C× 1ÐBß CÑ œ ?ÐBß CÑ Ð%!Ñß

?ÐBß CÑ Ò!ß "Ó Ð%!Ñis the density on  with independent uniform marginals,  reduces to:#

MÐ-l?Ñ œ -ÐBß CÑ Ö-ÐBß CÑ×.B.C Ð%"Ñ 
W-

ln ,

where  is a copula with support . The quantity  is known as the-ÐBß CÑ W § Ò!ß "Ó I œ  MÐ-l?Ñ-
#

entropy of the density The measure measures the information imbedded-ÐBß CÑÞ I œ MÐ-l?Ñ   !

within  relative to the uniform density .-ÐBß CÑ ?ÐBß CÑ

Hence, given a particular constraint imposed on a sub-family of copulae, one could select that

copula that is least informative by minimizing  or equivalently maximizing its entropy. Ð%"Ñ Bedford

and Meeuwissen (1997) specifically used the relative information  to construct maximumÐ%"Ñ

entropy copulae given a correlation constraint.  theirUnfortunately,  maximum entropy copulae do

not possess closed form distribution function expressions and require a discrete approximation on a

fine grid on  for their evaluation, which is not computationally efficient from a samplingÒ!ß "Ó#

perspective. Utilizing numerical integration over a 100 by 100 grid over we have for theÒ!ß "Ó ß#

copulas in Figures 6B, C and 7B and F and parameter settings , respectively,Ð$*Ñ

MÖ-ÐBß CÑl:Ð † l Ñ× œ Ð%#Ñ
!Þ#"$' :ÐDl8Ñß 8 œ $ß
!Þ#### :ÐDl7Ñß7 œ %Þ*"'
!Þ$%!! :ÐDl Ñß œ !Þ&ß

<
) )


 .

Summarizing, given the constraint set by  the relative1 œ !Þ(&T<Ð] Ÿ !Þ&l\ Ÿ !Þ&Ñ œ ,

information approach above would suggest to use the GDB copula with the TSP generating density

with .8 œ $

Figure 9 provides a relative information analysis for DB copulae and GDB copulae with TS

slope, power and ogive generating densities as a function of  and as a1 œ T<Ð] Ÿ !Þ&l\ Ÿ !Þ&Ñ

function of the copula correlation coefficient  since 's maximum3= Ð Bedford and Meeuwissen
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entropy copulae were constructed with  in mind . Figure 9 is split in four sub-panels. Panels 9A3= Ñ

(9B) deals with the range  ( ) which coincides with the restricted range! Ÿ Ÿ ! Ÿ Ÿ !Þ%1 3#
$

associated for the slope generating densities. Thus, a slope generating density analysis is not

included in Figures 9C (9D) since it deals with  ( )  #
$ Ÿ Ÿ !Þ*& !Þ% Ÿ Ÿ !Þ** Þ1 3 Figures 9B and 9D

also include combinations of correlations and relative information values for Bedford and

Meeuwissen's (1997) minimal information copulas. These data points are indicated by the large solid

bullets in Figures 9B and 9D and were provided by .Lewandowski's (2005) Table 1, page 65
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From Figure 9 one immediately concludes that GDB copulae with TS slope, power or ogive

generating densities outperform the original DB copulae from a relative information perspective.

Secondly, from Figures 9A and 9B it follows that for the lower ranges in these figures the slope and

power generating densities are competitive. Observe from Figure 9B that the relative information

values of GDB copulae with these generating densities are close to those of Bedford and

Meeuwissen's (1997) minimum information copulae. From Figures 9C and 9D it follows that for the

higher ranges in these figures the power and ogive generating densities display similar results.

Indeed, the relative information values for the power and ogive cases in Figure 9D are very close to

the ones obtained for Bedford and Meeuwissen's (1997) minimum information copulae.

6. A DECISION ANALYSIS EXAMPLE

As a matter of illustration, we apply GDB copulae with TS generating densities to a farmer's

decision problem (DP) reminiscent of the one presented in Clemen and Reilly (2002) (Problems 5.9

and 12.13, pages 209, 521, respectively). The farmer is faced with protecting his/her crop of oranges

(with a total worth of $50,000) against freezing weather with the objective of minimizing his or her

losses. In case the temperature drops below freezing (32 degrees Fahrenheit) he/she will loose the

entire crop without protection. The farmer assesses the temperature  that evening to be betweenX

24 and 34 degrees and uniformly distributed in between. Hence, the probability of freezing

T<ÐX  $#Ñ )!that evening is assessed at %.  To protect the crop the farmer has two alternatives:

(1) to use burners with a fixed mobilization cost of $10,000 or (2) sprinklers with a fixed

mobilization cost of $3,000.  Effectiveness of the burning (sprinkler) option is uncertain and the all-

in loss including mobilization and crop loss, is assessed by the farmer to vary  betweenF ÐWÑß

+ œ , œ 7 œ$25000 ($28,000) and $35,000 ($33,000) with a most likely value of $27,000

($29,000). Both and are assumed to be triangular distributed with parameters  and ,F W +ß7 ,

respectively. Recalling that the mean of a triangular distribution equals the arithmetic mean of +ß7

and  (see, e.g., Kotz and van Dorp (2004), we have $29,000 and $30,000. Hence,, IÒFÓ œ IÒWÓ œ
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due to its lower mobilization cost the sprinkler option follows from Figure 10A as the optimal

decision with an expected loss of follows of $24,600.
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Figure 10. A: A farmer's DP; B: EVPI on "freezing"; C: EVPI on temperature .X
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Effectiveness of both the burner and the sprinkler options depends on the temperature  thatX

evening. Since the protection of the sprinkler option is based on an insular layer of freezing water on

the oranges and the burner option is based on gas usage, effectiveness of the burner option is more

adversely affected by low temperatures than the sprinkler option. The farmer assesses a % chance*!

( % chance) that the burning loss (sprinkler loss ) is above it median value ( when the'! F W , = Ñ!Þ& !Þ&

temperature is below its median value . Hence, we have:X #*J

T<ÐF  , l X  #*Ñ œ !Þ"ß T <ÐW  = l X  #*Ñ œ !Þ%ß Ð%$Ñ!Þ& !Þ&

where $28,675 and $29,838  Following the suggestions from Section  the dependence, ¸ = ¸ Þ &!Þ& !Þ&

between  ( ) and  is modeled using a GDB copula with a power (slope) generating density andF W X

utilizing we have  and , respectively  Please note that since the probabilitiesÐ$)Ñ 8 œ "Î"" œ !Þ% Þα

in  are less than /2 negative dependence follows between  and  consistent withÐ%$Ñ " ÐX ßFÑ ÐX ß WÑ

the notion that lower temperatures result in higher losses.

To reduce his losses further, the farmer considers consulting either a clairvoyant Expert A on

"freezing" or a clairvoyant Expert B on the temperature that evening. Recalling $29,000,X IÒFÓ œ

IÒWÓ œ T<ÐX  $#Ñ œ !Þ)$30,000 and  it immediately follows from Figure 10B that the expected

value of perfect information (EVPI) for Expert A equals $1,400. Observe from Figures 10A and

10B that the optimal decision switches to the burner option given the information that ( ).X  $#

The evaluation of the EVPI on the temperature  from Expert B is more complicated due toX

the dependence between  and  (  and The structure for its evaluation is depicted in FigureX F X WÑÞ

10C. Firstly, given a value for the temperature  we evaluate and  using> X ß IÒFl>Ó IÒWl>Ó = œ #&!!

realizations using the following steps:

Step 1: Recall, B œ Ð X µ Y8309<7Ò#%ß $%ÓÑ>#%
$%#%

Step 2: Sample quantile levels  from GDB copula with C ß 3 œ "ßá ß = :9A/<Ð8Ñ3

generating density for as per Section 2.1 .F ß 8 œ "Î""

Step : $25,000 $27,000 $35,000 ,$ IÒFl>Ó œ L ÐC Ñß F µ X<3+81Ð à à Ñ"
=
3œ"

=
"

3
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where is the inverse cdf or quantile function of Evaluation of  is analogousL Ð † Ñ FÞ IÒWl>Ó"

realizing that $28 000 $29,000 $33,000  and a GDB copula with a W µ X<3+81Ð ß à à Ñ =69:/Ð Ñα

generating density is used in Step 2 with  Note that, Figure 10C contains a continuous fanα œ !Þ%Þ

node for

X œ ÐX lX  $#Ñ µ Y8309<7Ò#%ß $#Ó Ð%%Ñw ,

since Figure 11 plots the behavior of the functions and  as aX µ Y8309<7Ò#%ß $%Ó. IÒFl>Ó IÒWl>Ó

function of the temperature  The size of the hatched area in Figure 11 equals>  $#Þ

I ÐQ38ÖIÒFlX Óß IÒWlX Ó×Ñ ¸ Ð%%ÑX ' ' ' $28,700,

which was evaluated by averaging 101 equidistant values of over theQ38ÖIÒFl>Óß IÒWl>Ó×

temperature range . Hence, we obtain from Figure 10C for the EVPI of Expert B $1640Ò#%ß $#Ó

($240 dollars more than the EVPI for Expert A).
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Figure 11. Graphical depiction of the evaluation ' ' .I ÐQ38ÖIÒFlX ÓßIÒWlX Ó×ÑX '

Summarizing, the farmer is willing to pay $240 dollars more for perfect information on the

temperature  that evening than for the more limited (but perfect) information on whether it willX
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freeze or not. Also observe from Figure 11 that given perfect information on  operationally theX ß

optimal decision switches from the sprinkler option to the burner option at . It isX ¸ #'J

worthwhile to note that by the law of total expectation the total area underneath the solid line curve

reduces to while the total area underneath the dotted curve reduces to . Hence, weIÒFÓß IÒWÓ

visually observe from Figure 11 that  which further explains the optimal decision inIÒFÓ  IÒWÓ

Figure 10B given . Finally, it is illuminating that in the case of independence between X  $# ÐX ßFÑ

and  that the decision tree in Figure 10C reduces to the one in Figure 10B yielding the sameÐWßFÑ

EVPI value of $1,400 for Expert A currently displayed in Figure 10B.
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