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The Generalized Two-Sided Power Distribution

José Manuel Herrerías-Velasco , Rafael Herrerías-Pleguezuelo  and Johan René van Dorp1 2 3

Abstract. The Generalized Standard Two-Sided Power (TSP) distribution was mentioned only in

passing by van Dorp and Kotz (2004). In this paper we shall further investigate this three-parameter

distribution by presenting some novel properties and use its more general form to contrast the

chronology of developments of various authors on the two-parameter Two-Sided Power

distribution since its initial introduction. GTSP distributions also allow for J-shaped forms of its pdf,

whereas TSP distributions are limited to U-shaped and unimodal forms. Hence, GTSP distributions

allow for the same three distributional shapes of the classical beta distributions. A novel method and

algorithm for the indirect elicitation of the two power parameters of the GTSP distribution is

developed. We present a Project Evaluation Review Technique (PERT) example that utilizes this

algorithm and demonstrates the benefit of separate powers for the two branches of activity GTSP

distributions for project completion time uncertainty estimation.

1. Introduction

Kotz and Van Dorp (2004) briefly mentioned the three-parameter  TSP distributionGeneralized

with the pdf
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but did not further investigate its properties. The pdf reduces to the two-parameter TSP pdf inÐ"Ñ

Van Dorp and Kotz (2002a, b) with the parameter restriction With the parameter .  7 œ 8
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restriction  the pdf  reduces to  the two-parameter TSP pdf discussed  in) )7" 8"œ Ð"  Ñ Ð"Ñ

Nadarajah (1999, 2003, 2005). The family  allows for parameter combinations Ð"Ñ Ð7  "ß

!  8  "Ñ Ð!  7  "ß 8  "Ñ or  and as a result allows for J-shaped pdf's extending the

unimodal and U-shaped forms modeled by the two-parameter TSP pdf's in Van Dorp and Kotz

(2002a, b) and Nadarajah (1999, 2003, 2005). Thus, the three-parameter family  exhibits theÐ"Ñ

various distributional shapes that classical beta distribution possesses whereas the two parameter

versions in Van Dorp and Kotz (2002a, b) and Nadarajah (1999, 2003, 2005) do not. Van Dorp and

Kotz (2002a, b) originally suggested their two-parameter TSP pdf as an alternative to the beta

distribution in problems of risk and uncertainty and GTSP distributions can be thought of in the

same vain. Given that beta distributions are a member within the Pearson systems of distributions it

is interesting to note here that f Gor the TSP pdf  we have:Ð"Ñ
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Thus, whereas for a pdf in the Pearson system the quotient   is the ratio of a first0Ð † Ñ 0 ÐCÑÎ0ÐCÑw

and second degree polynomials, for the GTSP pdf this quotient is the ratio of a constant over a first

degree polynomial (analogously to Roy's (1971) extension)Þ

The main advantage of the pdf  (also shared by its two-parameter versions) over the betaÐ"Ñ

distribution is that it has a closed form cdf and a quantile function express able using only

elementary functions:
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where we have for the cumulative probability of at :] )

1 )( .ß7ß 8Ñ œ Ð&Ñ
)8

8 7) ) Ð"  Ñ

We provide several graphs for selected values of  and  and  of  the pdf  in Figure 1.7 8 Ð"Ñ)

Figures 1A and 1B demonstrate the addition of J-shaped forms. Figures 1D, 1E and 1F contrasts

unimodal and U-shaped forms (Figure 1C) previously introduced by Van Dorp and Kotz (2002a, b)

and Nadarajah (1999, 2003, 2005). For those distributions defined by Van Dorp and Kotz (2002a,

b), the density value at  (both in the anti-mode and mode case) equals the value of the power)

parameter . For , the Van Dorp and Kotz (2002a, b) TSP reduces to an asymmetric8 8 œ #

triangular distribution (see Figure 1D), whereas the pdf's defined by Nadarajah (1999, 2003, 2005)

do not. For , the pdfs in Van Dorp and Kotz (2002a, b) and Nadarajah (1999, 2003, 2005)) œ !Þ&

coincide (see Figure 1E). Thus we conclude that the unique triangular member of the TSP  family of

Nadarajah (1999, 2003, 2005) is the symmetric triangular pdf. Finally, from Nadarajah's (1999, 2003,

2005) parameter restriction  it follows that   ) ) ) )7" 8"œ Ð"  Ñ !   !Þ& ß7  " Ò!Þ&   "

ß7  "Ó 7  8 Ò7  8Óimplies . The effect of this property may be observed in Figures 1D and

1F from the Nadarajah TSP pdf's displayed in these figures.

A five parameters version of  follows via the linear scale transformation Ð"Ñ \ œ Ð,  +Ñ]  +

and possesses the pdf
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Figure 1. A graphical comparison of GTSP distributions, van Dorp and Kotz (2002a,b) TSP distributions

and those defined Nadarajah (1999, 2003, 2005) A: GTSP (  B: GTSP) œ !Þ'!ß7 œ "Þ#&ß8 œ !Þ(&Ñ

(  C: Van Dorp and Kotz TSP ( , Nadarajah) )œ !Þ%!ß7 œ !Þ#&ß8 œ !Þ(&Ñ œ !Þ(&ß8 œ !Þ&!Ñ

( D: Van Dorp and Kotz TSP ( , Nadarajah (7 œ !Þ&!ß8 ¸ !Þ*!ß œ !Þ(&Ñà œ !Þ#&ß8 œ #Ñ œ !Þ#&ß) ) )

7 œ #ß8 ¸ &Þ)#Ñà œ !Þ&ß8 œ $Ñ œ !Þ&ß7 œ 8 œ $Ñ E: Van Dorp and Kotz TSP ( , Nadarajah (  the) )

pdf's are identical and are superimposed in the plot F: Van Dorp and Kotz TSP ( ,à œ !Þ(&ß8 œ %Ñ)

Nadarajah () œ !Þ(&ß7 œ %ß8 ¸ "Þ'#Ñ
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where the boundary points  are:+ß ,

+Ð ß ß ß ß Ñ œ  Î ,Ð ß ß ß ß Ñ œ  Ð"  Ñ Îα " $ % # α "# % $ α " $ % # α " # $ %È È  and Þ Ð*Ñ

The pdf  combined with  was in fact mentioned by Ð)Ñ Ð*Ñ Schmeisser and Lal (1985) in a technical

report that only recently came to the attention of Kotz and Van Dorp (2004) through personal

communication with these authors and thus far has not been referenced in their monograph or

papers on novel distributions with a bounded support. While Schmeiser and Lal (1985), Nadarajah

(1999) and Van Dorp and Kotz (2002a) arrived independently at their versions of two-sided power

distributions (TSP) independently, evidently Schmeiser and Lal (1985) should be credited with the

earliest discovery of even the three-parameter GTSP distribution.

In Section 2, we present general moment expressions for the pdf and demonstrate itsÐ"Ñ

flexibility by developing a moment ratio diagram and a mean- , standard deviation-  coverage plot.. 5

In Section 3 we develop an indirect elicitation algorithm for the power parameters of GTSP

distributions using a lower and upper quantile that could further serve its application in practicalÐ"Ñ

problems of risk and uncertainty. In preparation of a PERT example in Section 5, we present in

Section 4 a novel comparison between classical PERT mean and variance expressions and those of

beta and TSP distributions. We close Section 4 with recently derived closed form expressions for the

skewness and kurtosis of TSP distributions. In Section 5, we present a Project Evaluation Review

Technique (PERT) example that utilizes the elicitation algorithm of Section 3, exemplifies the effect

of the PERT moment expressions in Section 4 and finally demonstrates the benefit of separate

powers for the two branches of activity GTSP distributions in this context.



6

2. Moment expressions for GTSP distribution

Mixing distributions is common practice in dealing with e.g. Phase-Type, Erlang, Poisson and

Normal distributions (see, e.g., Johnson and Taaffe (1991) and Karlis and Xekalaki (1999)). The pdf

Ð"Ñ 0 ß 0 may be expressed as a mixture involving two densities  with bounded support, such that] ]" #

0 ÐCl Ñ œ 0 ÐCl ß7Ñ  0 ÐCl ß7Ñ  œ "ß ß  !Þ Ð"!Ñ] ] # ] # " #F 1 ) 1 ) 1 1 1 11 12 2 ,
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where Observe that the mixture weight of the first branch  decreases as1 )(  is given by ß7ß 8Ñ Ð&ÑÞ 1
"

its tail parameter  increases (keeping the tail parameter of the second stage  fixed). A similar7 8

observation can be made for the second stage with obvious modification. We have from Ð"!Ñß Ð""Ñ

and Ð"$Ñ

1 ) F 1 ) F" \ # \0 Ð l Ñ œ 0 Ð l Ñ œ Ð"%Ñ
" #

78

Ð  Ñ7 81 ) )

and thus continuity of the mixture  (and consequently the GTSP distribution ) at theÐ"!Ñ Ð"Ñ

threshold  follows from  despite separate power parameters for its two branches.) Ð"%Ñ

By taking advantage of the mixture structure , tÐ"!Ñ he following general moment expression

may be derived for the pdf Ð"Ñ À
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From  we obtain the following expressions for the mean and variance of GTSP distributions:Ð"&Ñ

IÒ\Ó œ 7
8Ð8  "Ñ  Ð7 "ÑÐ"  ÑÐ8  Ñ
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Expression  also allows for a straightforward evaluation of other classical measures such as theÐ"&Ñ

skewness and kurtosis  and . By substituting , expressions ,  reduce to theÈ" "" # 7 œ 8 Ð"'Ñ Ð"(Ñ

less cumbersome mean and variance expressions of TSPVan Dorp and Kotz (2002a, b, 2004) 

distributions:

IÒ\Ó œ
Ð8  "Ñ  "

8  "

)
, Ð")Ñ

Z +<Ò\Ó œ Ð"*Ñ
8  #Ð8  "Ñ Ð"  Ñ

Ð8  #ÑÐ8  "Ñ

) )
#

Comparing  and  we note that the numerator of  ) is a linear (quadratic) functionÐ"'Ñ Ð")Ñ Ð"'Ñ ÐÐ")Ñ

of  while the denominators are independent of   or a linear function of  . We challenge) ) )Ð"'Ñ Ð")Ñ

the reader to simplify  and compare it with .Ð"(Ñ Ð"*Ñ

2.1 A graphical comparison of the first four moments

Before presenting a graphical comparison of È" "" # and  for the GTSP pdf's in a momentÐ"Ñ

ratio diagram, we note that it shares the power distribution [with pdf , ] and the8B ! Ÿ B Ÿ "8"

reflected power distribution [with pdf ]. Moreover, the pdf's  have8Ð"  BÑ ß ! Ÿ B Ÿ " Ð"Ñ8"
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Bernoulli asymmetric Laplace and degenerate distributions with single point mass at  as theirÐ:Ñß )

limiting distributions.  -diagram whereTurning to the diagrams, we present in Figure 2 a , Ð ß Ñ. 5

. 5œ IÒ\Ó œ Z +<Ò\Óand  È and in Figure 3 a moment ratio diagram for the pdf's  for theirÐ"Ñ

entire parameter ranges (since the boundaries are established by the limiting distributions above).

Nadarajah (2005) and Van Dorp and Kotz (2002a, 2004) considered only the parameter ranges

!Þ" Ÿ 8ß7 Ÿ #&ß ! Ÿ Ÿ " Þ)  in their moment ratio diagrams

Firstly, one observes that GTSP distributions completely cover the feasible ranges of the Ð ß Ñ. 5 -

diagram in Figure 2 demonstrating its flexibility. Moreover, we observe that the moment ratio

coverage in Figure 3 now also provides coverage in the J-shaped area also covered by the beta

distribution (see  for its pdf), but not previously covered by either version of the TSPÐ#&Ñ

distributions (see, . Nadarajah (2005) and Van Dorp and Kotz (2002a, 2004)) Indeed, we have from

Nadarajah's parameter restriction  that(2005) ) )7" 8"œ Ð"  Ñ

7  " Í 8  " • !  7  " Í !  7  " Ð#!Ñ   

and thus the Nadarajah (2005) TSP pdf's  similarly to the Van Dorp and Kotz (2002a, 2004)) pdf's

only admit for unimodal and U-shaped forms (not J-shaped).

3  An Indirect Elicitation Method for GTSP power parameters.Þ

To facilitate the application of GTSP distributions in problems of risk and uncertainty (such as

the PERT method) when data to estimate distributional parameters is not necessarily available, we

shall develop a procedure to elicit the power parameters  and  in an indirect manner. 7 8 In a recent

survey paper a leading Bayesian statistician, O'Hagan (2006), explicitly mentions a need for advances

in elicitation techniques for prior distributions in Bayesian Analyses, but also acknowledges the

importance of their development for those areas where the elicited distribution can not be combined

with evidence from data, because the expert opinion is essentially all the available knowledge.

We shall assume here that (similar to the PERT field) that a lower bound , most likely estimate+

)' and upper bound  have been elicited directly from a substantive expert. To elicit the power,
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parameters  and  in an indirect manner we suggest eliciting a lower quantile ' and an7 8 B : )

upper quantile '. We propose  and , although our elicitation method worksB  : œ !Þ"! < œ !Þ*!< )

equally well for other popular values, e.g. 5 and 5. In the procedure below, we shall: œ !Þ! < œ !Þ*

assume that the  and ' values have been standardized to values  and  in the domainB ß B C ß C: < : <) )

Ð!ß "Ñ ÐB  +ÑÎÐ,  +Ñ using the linear transformation . This allows us to work with the

standardized pdf . We obtain directly from the cdf  the following set of non-linear equationsÐ"Ñ Ð$Ñ

(the quantile constraints)

ÚÝÛÝÜ
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from which the parameters  and  need to be solved. From 7 8 :  1 )( given by weß7ß 8Ñ Ð&Ñ

immediately obtain the following upper bound for  given a fixed value of  and a specified7 8  !

quantile  and quantile level B : À:

7  Y Ð8ß :ß Ñ œ 8 ‚ ‚ Ð##Ñ
"  :

: " 
7 )

)

)
.

Moreover, we have that

JÐB l ß7ß 8Ñ Ä " 7 Æ Ð#$Ñ: )  when 0

and since it follows thatÐB:/)Ñ  "

JÐB l ß Y Ð8ß :ß Ñß 8Ñ  :Þ Ð#%Ñ: 7) )

Hence, from  it follows that the first equation in ( ) has a unique solution  for everyÐ#$Ñß Ð#%Ñ #" 7•

fixed value of and thus it defines an implicit continuous function  such that the8  ! Ð8Ñ0

parameter combination satisfies the first quantile constraint for all . TheÖ ß7 œ Ð8Ñß 8× 8  !) 0•

unique solution  may be solved for by employing a standard root finding algorithm such as, for7•

example, GoalSeek in Microsoft Excel. Analogously, the second equation defines an implicit

continuous function  such that the parameter combination  satisfies the' ) 'Ð7Ñ Ð ß7ß 8 œ Ð7ÑÑ•

second quantile constraint for all . We propose the following direct algorithm solving ( ):7  ! #"
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 Step 1: Set 8 œ "Þ•

 Step 2: Calculate  (satisfying for the first quantile constraint in ( )).7 œ Ð8 Ñ #"• •0

 Step 3: Calculate (satisfying for the second quantile constraint in ( )).8 œ Ð7 Ñ #"• •'

 Step 4: If ¹1 )( ß ß Ñ7 8• • Š ‹B:

)

7•

 : ¹ % Then Stop Else Goto Step 2.

Setting e.g.,  and  in the algorithm aboveß œ !Þ$!ß C œ !Þ#&ß : œ !Þ"!ß C œ !Þ)& < œ !Þ*!) : <

yields the power parameters Figures 4A and 4D plot the GTSP pdf and7 œ #Þ))% 8 œ "Þ$("and . 

cdf possessing these parameters. (A Microsoft Excel spreadsheet with an implementation of the

above algorithm is available from the authors upon request.)
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Figure 4. GTSP pdf with parameters  satisfying the) œ !Þ$!ß 7 œ #Þ))%ß 8 œ "Þ$("

quantile constraints  and .C œ !Þ#& C œ !Þ)&!Þ"! !Þ*!

We shall utilize the elicitation algorithm above to solve for the power parameters of the GTSP

distribution in a PERT example to be discussed in Section 5. We shall demonstrate the additional

flexibility of the GTSP distribution by means of a Monte Carlo analysis for the completion time of

an activity network (see, e.g., Elmaghraby (1978)) in this example and by contrasting it to earlier

suggested methods for distribution parameter specifications given a lower bound, most likely and
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upper bound for the activities in the activity network. A comparison of these earlier methods is

presented in the next section.

4. A comparison of PERT mean and variance expressions of beta and TSP distributions.

The three parameter triangular distribution with lower and upper bounds  and  and most likely+ ,

value  is one of the first continuous distributions on the bounded range proposed back in 1755 by)w

English mathematician Thomas Simpson. It received special attention as late as in the 1960's, in the

context of the PERT (see, e.g., Winston (1993)) as an alternative to the four-parameter beta

distribution

0 Ð>l+ß ,à ß Ñ œ

+ Ÿ > Ÿ ,ß  !ß  !
Ð#&ÑX

Ð  Ñ Ð>+Ñ Ð,>Ñ
Ð Ñ Ð Ñ Ð,+Ñ

α "

α "

> α "
> α > "

α "

α "

" "

 " ,
.

which involves some difficulties regarding the interpretation of its parameters  and . As a resultα "

Malcolm  1959  suggested to use the following PERT mean and variance expressionset. al 4

IÒX Ó œ

Z +<ÒX Ó œ Ð,  + Ñ
Ð#'Ñ

+% ,
'
"
$'

#

)w  

,

where  is a random variable modeling an activities completion time, and  being the lower andX + ,

upper bound estimates and  is a most like estimate for . The remaining beta parameters  and )w X α "

in are obtained from utilizing the method of moments  This somewhat non-rigorous useÐ#&Ñ Ð#'Ñ Þ

of  has resulted in what we call a 40 year PERT "controversy" Ð#'Ñ (see, e.g., Clark 1962, Grubbs

1962, Moder and Rogers 1968, Elmaghraby 1978, Keefer and Verdini 1993, Kamburowski 1997,

Johnson 1997, Lau  1998,   2003 and García  among others)et. al Herrerías et. al et. al 2005,    in

connection with the estimation of the parameters  and  of the beta distribution .α " Ð#&Ñ

4Kamburowski (1997) notes that: "Despite the criticisms and the abundance of new estimates, the PERT mean and

variance can be found in almost every textbook on OR/MS and P/OM, and are[given by ( ) in this paper] #'

employed in much project management software."
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In response to the criticism of using the approximation , Ð#'Ñ Herrerías 1989  suggestedÐ Ñ

substituting

α "œ "  = ß œ "  = ß
,  + ,  +

, ) )' ' +
Ð#(Ñ

where in the (four-parameter) beta pdf . This yields=   "ß +   , Ð#&Ñ)'

IÒX Ó œ
+  =  ,

=  #
Ð#)Ñ

)'

and

Z +<
Ð=  ÑÐ,  +Ñ  = Ð,  ÑÐ  +Ñ

Ð=  ÑÐ=  Ñ
ÒX Ó œ

1 ' '
3 2

# #

#

) )
Þ Ð#*Ñ

Essentially, Herrerías 1989  reparameterizes the beta pdf  by managing to express  and  inÐ Ñ Ð#&Ñ α "

terms of new parameters  and  while retaining the lower and upper bounds  and . )w = + , Note that for

= œ %ß IÒX Ó Ð#)Ñ IÒX Ó Ð#'Ñin  reduces to the expression for  in , but enhances the variance

expression in  by taking advantage of the mode location in . For  , theÐ#'Ñ Ð#*Ñ =  ! Ð!  =  "Ñ

beta pdf   is unimodal (U-shaped) and for  it reduces to a uniform distribution. Hence,Ð#&Ñ = œ !

Herrerías 1989  designated  to be a confidence parameter in the mode location Ð Ñ = )' such that higher

values of  indicate a higher confidence. Indeed, for , the beta pdf converges to a single= = Ä ∞

point mass at '.)

On the other hand, we obtain for the four parameter TSP pdf the following expressions for the

mean and the variance, respectively:

IÒ\Ó œ Ð$!Ñ
+  Ð8  "Ñ  ,

8  "

)'
,

Z +<Ò\Ó œ
8Ð,  +Ñ  #Ð8  "ÑÐ,  ÑÐ  +Ñ

Ð8  #ÑÐ8  "Ñ

#

#

) )' '
, Ð$"Ñ

where We immediately observe that by8  !ß +  )' . These are of course exact values.  ,

substituting in  and  the beta mean value  and TSP mean value 8 œ =  " Ð$!Ñ Ð$"Ñß Ð#)Ñ Ð$!Ñ
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coincide and as above reduce to  in  for or respectively. Malcolm  (1959)IÒX Ó Ð#'Ñ = œ % 8 œ &ß et al.

were indeed lucky in this respect. However, after some algebraic manipulations we obtain:

Z +<ÒX Ó Z +<Ò\Ó œ œ
Ð8  "ÑÐ,  ÑÐ  +Ñ

Ð8  #ÑÐ8  "Ñ

Ÿ !ß ! Ÿ 8  "ß
 !ß 8  "Þ

 Ð$#Ñ
) )' ' œ

Hence, in the unimodal [U-shaped] domains of the TSP  and the beta distributions Ð8  "Ñ Ð=  !Ñ

in , we have that the variance of the TSP distribution is strictly less [larger] than the PERTÐ#&Ñ

variance modification of Herrerías 1989  given by  (perhaps adding to the 40-yearÐ Ñ Ð#*Ñ

controversy). This result is consistent with the TSP distributions being more "peaked" than the beta

distribution (see, e.g. Kotz and Van Dorp 2004). Unfortunately, Malcolm et al. (1959) were after all

not so lucky.

4.1 Some additional results for TSP moments.

We close Section 4 with some novel results regarding TSP moments. From we derive forÐ"&Ñ

the the following recurrence relationship forVan Dorp and Kotz (2002a, b, 2004) TSP pdf, 

α5
5œ IÒ] Ó À

α α )5 5"
5œ 5  Ð$$Ñ

" 8Ð8  "Ñ

8  5 8  5  "
Š ‹ .

The recurrence relations  relies heavily on the  property of the Ð$$Ñ 7 œ 8 Van Dorp and Kotz

(2002a, b, 2004) TSP pdf.  Taking advantage of this same property, we recently were able to obtain

closed form expressions for the skewness and kurtosis for the Van Dorp and Kotz (2002a, b, 2004)

TSP distributions of  which are given by:

È
È

" )
)

) ) ) )

"

$

œ =318ÖÐ  ÑÐ8  "Ñ× ‚ ‚ Ð$%Ñ
" #Ð"  # ÑÐ8  "Ñ

# 8  $

Ö8  Ð8  $ÑÐ"  Ñ × ‚ Ð8  #ÑÎÖ8  #Ð8  "ÑÐ"  Ñ ×  ,
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"
) )

) )

) )

# #

#

# # #

œ ‚ ‚ Ð$&Ñ
8  # "

Ð8  $ÑÐ8  %Ñ Ö8  #Ð8  "ÑÐ"  Ñ ×

$Ð#  8Ð$8  "ÑÒ"  Ð8  "ÑÖ"  #Ð"  Ñ × Ó

 "#Ð8  "Ñ Ð8  %ÑÐ"  Ñ

š
›.

Expressions  -  have not been mentioned before in any of the previous publications dealingÐ$$Ñ Ð$&Ñ

with TSP distributionsVan Dorp and Kotz (2002a, b, 2004)) . We have not been able to derive a

similar expressions for GTSP distributions nor for the Nadarajah (1999, 2003, 2005) TSP

distributions.

5. A PERT Example

Figure 5 shows an 18-activity example project network representing a shipbuilding project from

Taggart (1980). Our starting point for our PERT example shall be the parameters  and  for the+ß7 ,

18 activity durations as provided in Table 1. Typically, these values are elicited from substantive

experts knowledgeable about the subject matter, but whom may not necessarily be trained in

quantitative methods to translate these activity durations estimates into a completion time

distribution for an activity network. This latter task is reserved for what we would like to refer to as

a normative expert.  Table 1 also provides the parameters  and  for beta distributions α " Ð#&Ñ

estimated from  and  via the method of Malcolm et al. (1959) that utilizes equation .+ß7 , Ð#'Ñ

Figure 6A provides project network completion time distributions for two different scenarios.

These completion time distributions were constructed from 25000 independent samples from the

activity duration distributions and subsequently applying the Critical Path Method for each sample.

This results for each scenario in 25000 completion time samples for the project network in Figure 5

from which the project completion time distribution for each scenario is constructed. For the first

scenario activity durations were sampled from by triangular distributions with parameters  and +ß7 ,

as specified in Table 1. For the second scenario in Figure 6A they were sampled from beta

distributions  with parameters  , ,  and  as specified in Table 1.Ð#&Ñ + , α "
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Figure 5. Example project network from Taggart (1980).

Table 1. Data for modeling the uncertainty in activity durations for

the project network presented in Figure 5. Beta parameters were

determined using Malcolm et al. (1959) expression .Ð#'Ñ

ID Activity Name a m b α β

1 Shell: Loft 22 25 31 2.94 4.62
2 Shell: Assemble 35 38 43 3.23 4.52
3 I.B.Piping: Layout 26 27 40 1.08 3.98
4 I.B.Piping: Fab. 6 7 15 1.34 4.24
5 I.B.Structure: Layout 23 24 30 1.56 4.40
6 I.B.Structure: Fab. 14 18 24 3.40 4.44
7 I.B.Structure: Assemb. 9 14 20 3.74 4.22
8 I.B.Structure: Install 5 7 13 2.33 4.67
9 Mach Fdn. Loft 26 28 33 2.59 4.67

10 Mach Fdn. Fabricate 29 30 42 1.12 4.02
11 Erect I.B. 27 30 37 2.70 4.66
12 Erect Foundation 5 7 14 2.13 4.64
13 Complete #rd DK 4 5 9 1.97 4.59
14 Boiler:Install 6 7 12 1.73 4.49
15 Boiler:Test 9 10 16 1.56 4.40
16 Engine: Install 6 7 15 1.34 4.24
17 Engine: Finish 19 20 26 1.56 4.40
18 FINAL Test 13 15 24 1.84 4.54
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Figure 6. Completion Time Distributions for the project network in Figure 5 for the

scenarios: Triangular, Beta (Malcolm), Beta (Herrerías), TSP (n=4) and GTSP.
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It is worthwhile noting here that the beta distributions estimated using Malcolm's (1959) method do

not share the most likely estimates  in Table 1, whereas the triangular distributions of course do.7

Figure 6A also provides the completion time of  days for the project network in Figure 5 that"%#

follows by only using the most likely values  for the activity durations in this project network.7

Two important conclusions follow from Figure 6A. Firstly, we immediately observe the

importance of modeling uncertainty in the activity durations since for example here we evaluate a

probability of less than % of making the deadline of  that would have followed from using only$ "%#

the most likely values  (and ignoring activity duration uncertainty). It should be noted that this7

small probability arises in this example since all most likely values of the activity durations in Table 1

are slanted towards the lower bound (in other words the activity durations uncertainties have long

right tails). One could argue that this may be prevalent in practice when  and  are estimated via+ß7 ,

the expert judgment method, where "job pressures" to win a contract may in fact bias an expert to

provide under estimated most likely estimates  that do tend more towards the lower  than upper7 +

bounds .,

Secondly, we observe from Figure 6A the remarkable large difference between the two

completion time distributions for this project network. For example, while the Malcolm et al. (1959)

scenario here has a approximately a % probability of finishing before 155 days, the scenario with*!

triangular distributions has only approximately a % probability of finishing before that time. Such%#

a large differences explains at least partially the 40-year controversy surrounding Malcolm's et al.

(1959) suggestion provided by equation  Ð#&Ñ (see, e.g., Clark 1962, Grubbs 1962, Moder and Rogers

1968, Elmaghraby 1978, Keefer and Verdini 1993, Kamburowski 1997, Johnson 1997, Lau et. al

1998,   2003 and García  among others)Herrerías et. al et. al 2005,  . Indeed, a normative expert ought

not be comfortable with such observed large differences that result from the assumption  and aÐ#&Ñ

subsequent modeling assumption of activity uncertainty via beta distributions.

Figure 6B displays completion time distributions for the project network for the scenario where

beta distribution parameters  and  were determined using the proposed method of Herreríasα "

(1989). This method is certainly an improvement over Malcolm's et. al (1959) method since the
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variance estimation in Herrerías' (1989) equations  and  takes advantage of the skewness asÐ#(Ñ Ð#)Ñ

specified by the estimates ,  and , but more importantly the parameters  in Herrerías' (1989)+ 7 , =

method is introduced to be elicited via  expert judgement as a measure of confidence in the most

likely value compared to the bound parameters, rather than being specified (as is the case in

Malcolm's (1959) method). For comparison purposes, we have set in Figure 6B for all activity= œ %

durations for the Herrerías' (1989) scenario.  The resulting parameters  and  for the betaα "

distributions  are specified in Table 2. It should be noted that similar to the Malcolm et al.Ð#%Ñ

(1959) scenario that these beta distributions estimated using Herrerías'(1959) method also do not

share the most likely estimates  in Table 1.7

Table 2. Beta Parameters and GTSP parameters for activity duration distributions that

have quantiles and  in common in addition to the lower and upper bound+ ,: ":

parameters specified in Table 1. Beta parameters were determined using

Herrerías (1989) expressions  and .Ð#)Ñ Ð#*Ñ

ID α β a0.10 b0.90 m n
1 2.333 3.667 23.38 27.80 1.86 2.78
2 2.500 3.500 23.57 28.06 1.96 2.64
3 1.286 4.714 22.37 25.93 1.26 4.15
4 1.444 4.556 22.49 26.25 1.36 3.86
5 1.571 4.429 22.60 26.49 1.43 3.63
6 2.600 3.400 23.70 28.21 2.02 2.56
7 2.818 3.182 23.98 28.53 2.16 2.40
8 2.000 4.000 23.01 27.26 1.68 3.09
9 2.143 3.857 23.16 27.49 1.76 2.95

10 1.308 4.692 22.39 25.98 1.28 4.10
11 2.200 3.800 23.23 27.59 1.78 2.90
12 1.889 4.111 22.90 27.06 1.60 3.22
13 1.800 4.200 22.81 26.91 1.56 3.31
14 1.667 4.333 22.68 26.67 1.48 3.49
15 1.571 4.429 22.60 26.49 1.43 3.62
16 1.444 4.556 22.49 26.25 1.35 3.85
17 1.571 4.429 22.60 26.49 1.43 3.63
18 1.727 4.273 22.74 26.78 1.52 3.41
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  In Figure 6B, we contrast the Herrerías' (1989) scenario to the a scenario where activity

durations are modeled via TSP distributions with parameters  and  in Table 1 with their single+ß7 ,

power parameters set to  (The power parameter of a TSP distribution could be elicited in a8 œ &

similar manner as the parameter  in Herrerías' (1989) method). In that case, the mean values of the=

TSP activity durations agree with those in the Herrerías' (1989) method, but from  it followsÐ$"Ñ

that the variances for TSP ( ) distribution are smaller. This then results in a difference in8 œ &

project completion time distributions as displayed in Figure 6B, where the TSP scenario project

completion time distribution is more steep and thus exhibits less overall variance.  While the

difference in project completion time distributions is much less than that exhibited in Figure 6A, it

could be considered substantial and could still leave a normative expert with the perhaps

uncomfortable choice between beta distributions using the Herrerías' (1989) method or TSP

distributions to model activity duration uncertainty.

Finally, in Figure 6C we compare the Herrerías' (1989) scenario project completion time

distribution to one where activity duration uncertainties are modeled using the GTSP distribution

Ð"Ñ with two power parameters. Similar to the TSP scenario in Figure 6B, these distributions share

the values  and  in Table 1. The power parameters  and  for the GTSP distributions are+ß7 , 7 8

specified in Table 2. They are solved from a lower quantile  and upper quantile  where+ ,: ":

: œ !Þ"! "! using the algorithm presented in Section 3.2. For comparison, these % and 90%

quantiles are determined here from the beta distributions in the Herrerías' (1989) as opposed to

having been elicited from expert judgement. We immediately observe the small difference between

the completion time distributions in Figure 6C as compared to those in Figures 7A and 7B.

Summarizing, we arrive at the overall conclusion that the information  and  elicited from+ß7 ,

substantive expert does not provide a sufficient amount of information for a normative expert to

perhaps comfortably select a matching uncertainty distribution. In this paper, we offer the alternative

of eliciting additional quantiles  and  and modeling activity duration uncertainty in a PERT+ ,: ":

context via GTSP distributions with two power parameters. Needless to say this method of

elicitation and the specification of distributional parameters via expert judgement is not unique to
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PERT, but also applies to problems of risk and uncertainty in general that use the Monte Carlo

method for propagating uncertainty of input parameters through quantitative models to ultimately

evaluate an output parameter's uncertainty. In PERT and our example above the output parameter

of interest is the project's completion time.

5. Concluding Remarks

We trust that this paper clarifies the chronology of developments regarding the two-sided power

distribution including the original and unpublished note by Schmeisser and Lal (1985). The GTSP

pdf enhanced available distributional shapes offered by the Nadarajah (1999, 2003, 2005) and Van

Dorp and Kotz (2002a, b, 2004)) versions of TSP distribution by allowing also for J-shaped forms.

While GTSP and the Van Dorp and Kotz (2002a, b, 2004)) TSP distributions share both the

asymmetric and symmetric triangular distributions as its members (and may thus be viewed as

generalizations of triangular distributions), the Nadarajah (1999, 2003, 2005) TSP pdf only shares the

symmetric triangular distribution.  We hope that the elicitation algorithm presented in this paper for

the two power parameters of the GTSP distribution further facilitates its applications of problems

involving risk and uncertainty in the absence of data and when distributional parameters need to be

estimated using the expert judgement technique.
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