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Abstract

In this note we consider a dynamic probit model where the coefficients follow a first- 
order Markov process. We present an exact Gibbs sampler for Bayesian analysis of the
model using the data augmentation approach of Albert and Chib (1993) and the forward
filtering backward sampling algorithm of Fruhwirth-Schnatter (1994) for dynamic linear
models. We discuss how our approach can be used for  probit based Markov regression
models and discuss Markov order selection in these dynamic models.

Key words: Markov models, Bayesian inference, longitudinal data, dynamic linear
models, model selection.

1. Introduction: Dynamic Probit Model

Time varying coefficient models for categorical longitudinal data has been

considered by authors such as  Shephard and Pitt (1997), Gamerman (1998), Kauermann

(2000), and more recently by Fruhwirth-Schnatter and Fruhwirth (2006). Most of the

previous work have considered logit-type state-space models. As noted by Fruhwirth-

Schnatter and Fruhwirth (2006), Markov chain Monte Carlo (MCMC) approaches
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proposed by Shephard and Pitt (1997) and Gamerman (1998) for the analysis of these

models are based on Metropolis-Hastings algorithm which requires specification of a

proposal density in high dimensions. To alleviate this the authors proposed a data

augmentation based MCMC method for analysis of dynamic logit models. A simpe

version of a dynamic probit model has been considered by Andrieu and Daucet (2002)

where the authors used particle filtering for Bayesian analysis.

In what follows, we consider probit-type state-space models and develop an exact

Gibbs sampler for Bayesian analysis of this class of models. Our approach is an extension

of the data augmentation approach of Albert and Chib (1993) to dynamic probit models

where we implement the forward filtering backward sampling algorithm of Fruhwirth-

Schnatter (1994).

We consider a binary time series  and we define a dynamic probit model\>

similar to considered by Andrieu and Daucet (2002) as

T<Ö\ œ "l × œ Ð Ñ> > > > > >1 1 1 F with (1.1)œ J )

where is a covariate vector and  is a vector of regression parameters.J> >" ‚ O O ‚ ")

We define the dynamic nature of the model via a state equation for )>

) )> >" >œ K A (1.2)

with A !>'s are uncorrelated multivariate normal error vectors with mean and covariance 

matrix [) and K is the speficified transition matrix of the model. It is most common to

assume that is an identity matrix implying a  in the sense of West andK steady model

Harrison (1997). Thus, in our development we consider

) )> >" >œ A . (1.3)

The procedure can be easily extended for a general known transition as well as forK 

certain cases where is unknown. These are discussed in Soyer and Sung (2008).K 
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We can extend this for longitudinal data for individuals In this case3 œ "ßá ßRÞ

we write the above as

T<Ö\ œ "l × œ Ð Ñ3> 3> 3> 3> 3> >1 1 1 F with (1.4)œ J )

and assume the same state equation (1.3) for all individuals.

 2. Bayesian Inference

We first consider the case for the individual Following Albert and Chib3>2

(1993), we can define the above model by using independent latent variables  such^3>

that

\ œ
" ^  !
!3>

3>œ  if 
otherwise. (2.1)

If we assume that 's are normally distributed with mean and variance , that is,^ "3> 3> >J )

^ µ RÐ ß "Ñß3> 3> >J ) then we have the probit model

1 F3> 3> >œ JÐ Ñ) . (2.2)

Given the above setup we can develop a Gibbs sampler for the inference using the

data augmentation algorithm of  Albert and Chib (1993) with the algorithm proposed by

Fruhwirth-Schnatter (1994) for dynamic linear models.

Given observed data we can design a Gibbs samplerH œ Ö\ à > œ "ßá ß X×ß3>

using full posterior conditional distributions  and with vectors:Ð lHß Ñ :Ð lHß Ñ@ @^ ^3 3
X X

@ @œ Ð ß ßá ß Ñ œ Ð^ ^ â^ Ñ :Ð lHß Ñ) ) )" # X 3" 3# 3Xand . In obtaining , we note that^ ^3 3
X X

^3>'s are independent random variables and use

Ð^ l ß\ œ "Ñ µ RÐ ß "Ñ MÐ^  !Ñ3> > 3> 3> > 3>) )J

Ð^ l ß\ œ !Ñ µ RÐ ß "Ñ MÐ^  !Ñ3> > 3> 3> > 3>) )J .

In implementation of the Gibbs sampler, we can directly draw from the joint

posterior distribution of :Ð) ) )" # Xß ßá ß l Ñ^3
X using the using the forward filtering
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backward sampling algorithm of Fruhwirth-Schnatter (1994) which is given in West and

Harrison (1997) for Kalman filter type models. It is possible to adopt the algorithm for

our case as  will be discussed next.

We define note that, similar to the Bayesian^ ^3 3
> >"œ Ð ß ^ Ñß > œ "ß á ß X3>  and 

dynamic linear models of West and Harrison (1997), using the Markov structure of our

model we can write :Ð) ) )" # Xß ßá ß l Ñ^3
X  as

:Ð l Ñ :Ð l Ñââ:Ð l ß Ñ) ) ) ) )X X" X " #^ ^ ^3 3 3
X X" ", , (2.3)

where the first term  is available from standard DLM updating. We can start:Ð l Ñ)X ^3
X

the sampling from ) ) )X X" " and then sequentially sample , ,  using densitiesá

:Ð Ñ) )>" >l ß^3
>"  for . The required distributions can be obtained using> œ X  "ßá ß #

the state equation of the DLM. We can write

:Ð Ñ º :Ð Ñ:Ð Ñß) ) ) ) )>" > > >" >"l l lß ß^ ^ ^3 3 3
>" >" >" (2.4)

where

Ð Ñ µ R9<7+6Ð ÑÞ) ) )> >" >"l ßß^3
>" [) (2.5)

Standard DLM setup yields

Ð Ñ µ R9<7+6 Ñ)>"l^3
>" Ð7 ßG>" >" (2.6)

where

7 œ 7 V V> >" > >J J Jw w
3> 3>3> >

"Ð"  Ñ / (2.7)

with / œ ^  > 3> 3>J 7 V œ G [>" > >" ,  is a scalar ) and

G œ V V V V> > > > >J J J Jw w
3> 3>3> 3>Ð"  Ñ . (2.8)

It follows from the above that

Ð Ñ µ R9<7+6Ð Ñ) )>" >l ß^3
>" 2 L>" >, " (2.9)

where

2 7 G V 7>"
"œ  Ð  Ñ>" >" >"> )> (2.10)
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and

L G G V G> >" >" >">"
"œ  . (2.11)

In the case where we have a prior on  which is an [) inverse Wishart form given

by

[ V V)
"l ß < µ [3=2Ð ß <Ñß (2.12)

where the scale matrix V and  are known quantities, the abovedegrees of freedom <  O

results will be all conditional on [ [) ). The full conditional of  can be obtained as

proportional to

l l /B:  >< Ð  ÑÐ  Ñ
"

#
W) )

" Ð<XO"ÑÎ#

>œ"

X’ šŠ ‹ “"V  ) ) ) )> >" > >"
w

[ "› , (2.13)

which is again a Wishart density with degrees of freedom,  and scale matrixÐ<  XÑß

Š ‹!V 
>œ"

X

Ð  ÑÐ  Ñ) ) ) )> >" > >"
w
Þ

When we consider data from  individuals for  time periods given byQ X

H œ Ö\ à > œ "ßá ß X 3 œ "ßá ßQ× \3> 3>;  where 's are conditionally independent cross

the individuals as well as time, we define  as a vector of latent variables .^> 3>Q ‚ " ^

We now assume that  has a multivariate normal distribution with independent^>

components denoted as  where   is a  matrix of covariates^ J J> > > Q >µ RÐ ß Ñ Q ‚O) M

and  is an  identity matrix. Since 's are conditionally independent randomMQ 3>Q ‚Q ^

quantities, their full conditionals will stay the same. In updating )>'s we will have

7 œ 7 V V> >" > >J J J /w w
>> >Q >

"Ð  ÑM (2.14)

with / ^ J> œ  > >7 V œ G [>" > >",  ) and

G œ V V V V> > > > >J J J Jw w
> >Q > >Ð  ÑM . (2.15)

where is a  vector. Updating of  /> Q ‚ " [) will stay the same.
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Thus, the proposed approach provides an exact Gibbs sampler for Bayesian

inference in the dynamic probit model (1.1) with evolution equation (1.2). Extension of

the approach to multinomial dynamic probit models is considered in Soyer and Sung

(2008).

3. Markov Regression Model Representation

We consider a  order nonhomogeneous Markov chain model defined as;  >2

T<Ö\ œ "l \ ß âß\ × œ Ð Ñ3> 3> 3ß>" 3ß>; 3> 3> 3> >1 1 1 F,  with (3.1)œ J )

where

J3> 3ß>" 3ß>; > !> "> ;>
wœ Ð"\ â\ Ñ œ Ð â Ñ and .) ) ) )

Thus, the transition probability  is given by13>

1 F ) )3> !> 4ß> 3ß>4

4œ"

;

œ Ð  \ Ñ" . (3.2)

For  we obtain the first-order chain model; œ "

1 F ) )3> !> "ß> 3ß>"œ Ð  \ Ñ

implying a transition matrix

T>
!> "ß> 3ß>" !> "ß> 3ß>"

!> !>
œ

Ð  \ Ñ "  Ð  \ Ñ
Ð Ñ "  Ð Ñ” •F ) ) F ) )

F ) F )
. (3.3)

The above model provides an nonhomogeneous extension of  Bayesian Markov

regression models of  Erkanli et al. (2001) who used logistic link functions. It also gives

an alternative class of Bayesian nonhomogeneous Markov chain models considered in

Sung et al. (2007).

We note that the transition probabilities can also be dependent on covariates and

such dependence can be easily incorporated by defining components of  J3> >)
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accordingly. The Bayesian inference results presented in the previous section can be

easily used for analysis of the model.
 

  4. Markov Order and Variable Selection in Dynamic Probit Models

As pointed by Kass and Raftery (1995), Bayesian model comparison selection isÎ

made using Bayes factors which are obtained as the ratio of marginal likelihoods :ÐHl3Ñ

under two competing models . In many   is not available in an3 œ "ß # problems :Ð l3ÑH

analytical form and its evaluation using posterior Monte Carlo samples is not a trivial

task. Thus, various alternatives to marginal likelihoods have been suggested for model

selection using Monte Carlo samples; see for example Gelfand (1996).

However, in certain problems where a Gibbs sampler is used and all the full

conditional distributions are known, it is possible to approximate the marginal likelihoods

from the posterior samples using a method introduced by Chib (1995). For example, Chib

(1995) showed that how marginal likelihood :Ð l3ÑH  can be obtained for the static probit

regression model  with a given 3 set of  independent variables. In so doing, Chib (1995)

used the data augmentation approach of Albert and Chib (1993) and discussed

computation of  :Ð l3ÑH  from the Gibbs sampler output. In what follows we will illustrate

how the approach by Chib (1995) can be extended for the dynamic probit model and

discuss how the approach can be used for Markov regression model order selection.

Thus, we present a Bayesian approach for order selecton in nonhomogeneous Markov

chains which have not been considered by Sung et al. (2007).

 Note that suppresing dependence on model  the marginal likelihood for a3

particular model is expressed as

:Ð œ
:ÐH Ñ:Ð Ñ

:Ð H
HÑ

|@ @

@| )
, (4.1)

where  is a vector of parameters. As pointed out by Chib (1995) the above holds for any@

value of , say , and the value of posterior density | ) can be estimated by@ @ @‡ ‡:Ð H
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:Ð H :ÐH Ñ :Ð Ñs @ @ @‡ ‡ ‡| ) using Monte Carlo samples. Since  and  can be evaluated at ,|@‡

the log marginal likelihood can be estimated as

68 :ÐHÑ œ 68 :ÐH Ñ  68 :Ð Ñ  68 :Ð Hs s|@‡   | ). (4.2)@ @‡ ‡

In evaluating (4.2), the only term which is not readily available is | ), but as shown:Ð Hs @‡

in Chib (1995) this can be obtained using the outputs from the Gibbs sampler.

In our case, we also have the the latent variables ^ ^X X
4œ Ð à 4 œ "ßá ßQÑ and

the parameter vector @ @œ Ð Ñ :Ð H) ) )" # Xß ßá ß ß[) . To estimate | ) we need the full‡

conditionals and  that are available to us. We can write:Ð ß HÑ :Ð l HÑ^ ^X Xl@ @ ,

:Ð H œ :Ð l HÑ:Ð HÑ .@ @‡ ‡| ) ( ^ ^ ^X X X, (4.3)l

and note that we have samples available from Gibbs sampler. thus,:Ð HÑ^  X l  via the 

(4.3) can be approximated as

:Ð H ¸ :Ð lÐ HÑ
"

K
@ @‡ ‡

1œ"

K

| ) ," ^X ÑÐ1Ñ, (4.4)

where  are samples from the posterior distribution . Note thatÐ :Ð HÑ^ ^X XÑ lÐ1Ñ  

:Ð l HÑ@‡ ^X ,  can be written as

:Ð l ß Ñ :Ð l ß Ñâ:Ð l ß ß Ñ :Ð l Ñ) ) ) ) )‡ X ‡ ‡ X" ‡ ‡ " X
X X" X " #^ ^ ^ ^[ [ [ [‡ ‡ ‡ ‡

) ) ) ), . (4.5)

In the above all terms are immediately available except the last one, that is, :Ð l Ñ[‡
) ^X .

We can obtain this term as

:Ð l Ñ œ :Ð l Ñ:Ð l Ñ.[ [‡ ‡
) )^ ^ ^X X X X X( ) ) (4.6)

where can be approximated as) ) )X œ Ð " Xßá ß Ñ. The above 

:Ð l Ñ :Ð l ßá ß Ñ[ [‡ ‡
) )^X ¸

"

K
"
1œ"

K

 ) )
Ð1Ñ Ð1Ñ
" X (4.7)
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where  samples from the posterior ) ) ) )
Ð1Ñ
"

Ð1Ñ
" Xßá ß :Ð ßá ß l Ñ are . Note that^X

:Ð l ßá ß Ñ[‡
) ) )" X  is the full conditional which is a Wishart density.

Thus, all components of (4.2) are now available and we can evaluate 68 :ÐHÑs  for

a given model as reflected by the order of the Markov process and or by the variablesÎ

included in (3.1).

Implementation of the proposed exact Gibbs sampler for the dynamic probit

models and the order selection approach are illustrated using real life longitudinal data  in

Soyer and Sung (2008).
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