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In this paper, we study extensions of the classical Markowitz mean-variance portfolio 
optimization model. First, we consider that the expected asset returns are stochastic by 
introducing a probabilistic constraint which imposes that the expected return of the 
constructed portfolio must exceed a prescribed return threshold with a high confidence 
level. We study the deterministic equivalents of these models. In particular, we define 
under which types of probability distributions the deterministic equivalents are second-
order cone programs, and give closed-form formulations. Second, we account for real-
world trading constraints (such as the need to diversify the investments in a number of 
industrial sectors, the non-profitability of holding small positions and the constraint of 
buying stocks by lots) modeled with integer variables. To solve the resulting problems, 
we propose an exact solution approach in which the uncertainty in the estimate of the 
expected returns and the integer trading restrictions are simultaneously considered. The 
proposed algorithmic approach rests on a non-linear branch-and-bound algorithm which 
features two new branching rules. The first one is a static rule, called idiosyncratic risk 
branching, while the second one is dynamic and is called portfolio risk branching. The 
two branching rules are implemented and tested using the open-source Bonmin 
framework. The comparison of the computational results obtained with state-of-the-art 
MINLP solvers (MINLP_BB and CPLEX) and with our approach shows the effectiveness 
of this latter which permits to solve to optimality problems with up to 200 assets in a 
reasonable amount of time. The practicality of the approach is illustrated through its use 
for the construction of four fund-of-funds now available on the major trading markets. 
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1 Introduction

Since Markowitz groundbreaking work in portfolio selection [40], portfolio optimization has been receiving

sustained attention from both asset liability professionals and academics. The mean-variance approach

studies how investors can construct optimal portfolios taking into consideration the trade-off between market

volatility and expected returns. Out of a universe of r risky assets and one non-risky asset characterized by

a known return µ0 that usually reflects the interest rate on the money market, an efficient frontier of optimal

portfolios can be constructed. Portfolios on the efficient frontier offer the maximum possible expected return

for a given level of risk. The original Markowitz model assumes that the expected returns µ̄ ∈ Rr of the

risky assets and the variance-covariance matrix Σ ∈ Rr×r of the returns are known. One of the several

formulations of the mean-variance portfolio selection problems involves the construction of a portfolio with

minimal risk provided that a prescribed return levelR is attained. This model is formulated by the following

mathematical program:
min wTΣw

subject to µ0w0 + µ̄Tw ≥ R
r∑
j=0

wj = 1

w ∈ Rr+1

. (1)

In the problem above, the decision variables wj , j = 1, . . . , r represent the proportion of capital invested in

the risky asset j, while w0 is the fraction of capital invested in the money market. The objective function

aims at minimizing the variance of the portfolio wTΣw, and the constraint

w0 +
r∑
j=1

wj = 1 (2)

enforces that the sum of the investments is equal to 1. Clearly, the investor can allocate part of the available

capital K to the money market w0.

In the last decade, much effort has been devoted to extending Markowitz work and making the modern

portfolio theory more practical. In this study, we propose models that account for two limitations associated

with the mean-variance approach, namely (i) the randomness in the parameters describing the model and

(ii) some of the trading restrictions of stock markets.

The classical mean-variance framework relies on the perfect knowledge of the expected returns of the

assets and the variance-covariance matrix. However, these returns are unobservable and unknown. Even

obtaining accurate estimates of them is very complicated. Indeed, many possible sources of errors (e.g.,

impossibility to obtain a sufficient number of data samples, instability of data, differing personal views of

decision makers on the future returns [45], etc.) affect their estimation leading to the so-called estimation risk

[4] in portfolio selection. The estimation risk has been shown to be the source of very erroneous decisions,

for, as pointed in [10, 16], the composition of the optimal portfolio is very sensitive to the mean and the

covariance matrix of the asset returns, and minor perturbations in the moments of the random returns can

result in the construction of very different portfolios. Decision-makers would often rather trade-off some
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return for a more secure portfolio that performs well under a wide set of realizations of the random variables.

The need for constructing portfolios that are much less impacted by inaccuracies in the estimation of the

mean and the variance of the return is therefore clear.

The focus here is on the uncertainty associated with the estimation of the expected returns. It is indeed a

widespread belief among portfolio managers, and it was shown in [8, 14], that the portfolio estimation risk

is mainly due to errors in the estimation of the expected return and not so much to errors in the estimation

of the variance-covariance matrix [10]. In this paper, we assume that the expected return is stochastic and

characterized by a probability distribution, and we require that the expected return of the portfolio is larger

than a given target with a high confidence level. We show that the associated problem takes the form of

a probabilistically constrained problem with random technology matrix [30, 47] that can be reformulated

as a non-linear optimization problem (not necessarily convex). We define under which conditions and for

which classes of probability distributions the deterministic equivalent problem is convex and takes the form

of a second-order cone problem. If a closed-form formulation of the deterministic equivalent cannot be ob-

tained, we provide convex approximations that are obtained by using variants of the Chebychev’s inequality

[41] and whose tightness depends on the properties of the probability distribution. This convexity analy-

sis of the model gives insights about its applicability and its computational tractability. In related studies,

Costa and Paiva [17], Tütüncü and Koenig [58] and Goldfarb and Iyengar [25] have also studied the mean-

variance framework in a robust context, assuming that the expected return is stochastic. They characterize

the parameters involved in the mean and the variance-covariance matrix with specific types (polytopic, box,

ellipsoidal) of uncertainty, and build semi-definite or second-order cone programs. In [20], a risk-averse

approach is used for the value-at-risk formulation of the optimization problem, in which only partial infor-

mation about the probability distribution is known.

The performance measure used in this paper falls within the Markowitz framework where the trade-

off between expected return and variance is analyzed. More precisely, this measure belongs to the family

of downside risk measures which focus on avoiding the return to fall below a specified target. Our risk

measure is related to Roy’s safety-first risk criterion [51] that identifies as optimal the portfolio for which

the probability of its return falling below a prescribed threshold is minimized. Roy’s risk measure, which

was later extended in [35] for multi-period portfolio selection problems, is close to the Sharpe Ratio [53]

which maximizes the ratio of excess return to risk. Many other risk measures exist, such as value-at-risk [43],

conditional value-at-risk [50], stochastic dominance [18, 19, 26], semi-deviation [46], excess probabilities

[56], mean-absolute deviation [32], semi-absolute deviation [21], measures of outperformance with respect

to a benchmark, etc. Criteria for the selection of risk measures is a topic widely discussed in the literature

and it is analyzed under different angles, including the coherence of risk measures [1], portfolio holdings

[9], convexity properties [23], and computational tractability [38]. Needless to say, provided the variety of

criteria and objectives, that there is no universally recommendable risk measure.

The need to account for stock market specifics exacerbates the complexity of the portfolio selection

problem. Real-life trading restrictions, such as minimum amount to invest in an asset, requirements to buy

assets in large lots, or purchase of assets in a minimal number of industrial sectors, are not considered in the

classical mean-variance models. In the present study, we consider these requirements that are respectively
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called buy-in threshold, round lot, and diversification trading constraints. The modeling of such constraints

involves the introduction of integer variables and further challenges the computational tractability of the

associated problems [16, 54]. In the next paragraph, we proceed to a review of the literature in which the

construction of optimal portfolios satisfying such integer constraints is addressed.

Bienstock [6] looks at variants of the Markowitz model which feature a cardinality constraint and buy-in

threshold constraints. He shows that the problem is NP-complete when a cardinality constraint on the num-

ber of assets in the portfolio is present. A branch-and-cut solution framework is developed and computa-

tional results are presented. In [29], an exact branch-and-bound solution approach is proposed for problems

subject to buy-in threshold, cardinality and round lot constraints. Heuristic approaches have been proposed

for models enforcing the mean-variance [15], mean-absolute deviation [39], and the mean-semi-absolute de-

viation [31] risk criteria, and including round lot constraints. Frangioni and Gentile [24] also consider buy-in

threshold constraints, and develop a new family of cutting planes to handle them. Computational results for

problems with up to 300 assets are reported. Using mean absolute deviation as optimization criterion, Konno

and Yamamoto [33] take into account cardinality and fixed transaction cost constraints and solve problems

in which up to 54 assets can be included in the portfolio. An exact solution approach is proposed in [36] for

the mean-variance model containing a cardinality and a concave transaction cost constraints. Computational

results were reported for portfolios containing up to 30 securities. In [42], a branch-fix-and-relax algorithm

is proposed to solve a multi-factor model in which the expected return of the portfolio is maximized subject

to the satisfaction of cardinality or buy-in threshold constraints. It is important to remark that all the studies

above do not account for uncertainty in the problem parameters.

To the best of our knowledge, this study is the first one to propose an exact solution approach for

portfolio optimization problems in which uncertainty in the estimate of the expected return and real-life

market restrictions modeled with integer constraints are simultaneously considered. The combination of

integer and probabilistic constraints makes such problems very difficult to solve. These problems belong to

the family of Mixed Integer Non-Linear Programs (MINLP) for which only very few solvers are available.

In this paper, we use the computational framework offered by the open-source mixed-integer non-linear

solver Bonmin [7]. We propose a non-linear branch-and-bound algorithmic approach, and we develop two

new branching rules, called idiosyncratic risk and portfolio risk branching rules. Extended computational

experiments on problems containing up to 200 assets clearly show the effectiveness and utility of the two

new branching rules. The reader will note that, although the results reported in the paper are obtained for

one of the variants of the probabilistic Markowitz model (i.e., risk minimization subject to the attainment

of a predefined return level), the proposed solution approach can be easily extended to the other variants.

The relevance of the performance measure and the optimization model, as well as the applicability of the

solution method are confirmed, by their use by the Private Banking Group of a major financial institution to

construct four long-only absolute return Fund-of-Funds (FoF).

The paper is organized as follows. In the first part of Section 2, we describe the characteristics of the

constraint enforcing that the portfolio return exceeds with a probability p a given prescribed return level.

We present the problem formulation and its deterministic equivalent, we study under which condition it

is convex, and we propose exact or approximate closed-form formulations of the deterministic equivalent
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problem. The second part of Section 2 is devoted to the formulation of the integer constraints and models

associated with three types of trading restrictions. Section 3 describes the proposed solution approach.

Section 4 reports and comments on the computational results. Section 5 illustrates the applicability and

relevance of the optimization model and solution method. Section 6 provides concluding remarks and

suggests extensions to the proposed study.

2 Problem formulation and properties

2.1 Probabilistic portfolio optimization model

The proposed portfolio optimization model takes the form of a probabilistically constrained optimization

[12] model with random technology matrix. We refer the reader to [30, 47] for a first study of probabilistic

constraints with random technology matrix in applications pertaining to the transportation and diet problems,

and to [13, 27, 49] for more recent studies.

We denote by ξ the random vector of expected returns of the r risky assets; ξ has an r-variate distribution

with the following mean vector

µ = (µ1, µ2, . . . , µr)T , µj = E(ξj), j = 1, . . . , r,

and variance-covariance matrix

Σ = E[(ξ − µ)(ξ − µ)T ] .

The probabilistic constraint

P
(
µ0w0 +

r∑
j=1

ξjwj ≥ R
)
≥ p , (3)

in which the coefficients ξ multiplying the decision variables w are stochastic and not (necessarily) indepen-

dent, guarantees that the expected return of the portfolio µ0w0 +
r∑
j=1

ξjwj is above the prescribed minimal

level of return R with a high probability p, typically defined on [0.7, 1).

The stochastic version of Markowitz mean-variance portfolio optimization problem [40] reads:

min wTΣw

subject to P
(
µ0w0 +

r∑
j=1

ξjwj ≥ R
)
≥ p

w0 +
r∑
j=1

wj = 1

w ∈ Rr+1
+

. (4)

The decision variables are given by the [r + 1]-dimensional vector w of portfolio positions. We recall

that w0 is the proportion of the available capital K invested in the money market with fixed return µ0, wj ,

j = 1, . . . , r is the proportion of the capitalK invested in the risky asset j, and the objective functionwTΣw

represents the variance of the portfolio. In our model, we assume that the variables are positive, not allowing

short-selling positions. This constraint can be removed without affecting the nature of the problem.
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2.2 Deterministic equivalent

We shall first show that the deterministic equivalent of the probabilistic portfolio optimization model is a

non-linear programming optimization problem. Defining by ψ = ξTw−µTw√
wTΣw

the random variable with mean

0 and variance 1, thereafter referred to as the normalized portfolio return, it follows that

P(ξTw ≥ R) =P
(
ψ ≥ R− µTw√

wTΣw

)
= 1− F(w)

(
R− µTw√
wTΣw

)
, (5)

where F(w) is the cumulative probability distribution of the (normalized) portfolio return and F−1
(w) is its

inverse. We note that the exact form of the probability distribution F depends on the holdings w of the port-

folio and has always mean 0 and standard deviation 1. Therefore, the probabilistic constraint (3) becomes

1− F(w)

(
R− µTw√
wTΣw

)
≥ p

⇔ F(w)

(
R− µTw√
wTΣw

)
≤ 1− p

⇔ µTw + F−1
(w)(1− p)

√
wTΣw ≥ R

, (6)

where F−1
(w)(1− p) is the (1− p)-quantile of F(w).

The deterministic equivalent of (4) is the following non-linear optimization problem:

min wTΣw

subject to µTw + F−1
(w)(1− p)

√
wTΣw ≥ R

w0 +
r∑
j=1

wj = 1

w ∈ Rr+1
+

. (7)

In the next-subsections, we shall study under which conditions, i.e. for which classes of probability

distributions the above problem is a second-order cone optimization problem (i.e., thus convex, and solvable

in polynomial time). We shall see that it is not always possible to derive an exact closed-form formulation

of the second-order cone problem for each probability distribution. We shall, therefore, using variants of

Chebychev’s inequality, derive closed-form approximations of the second-order cone problem that are valid

for some families of probability distributions.

2.2.1 Convexity results

a) Symmetric probability distributions

The probability distribution F of a random variable ξ is symmetric around its mean µ if P (ξ ≥ µ+b) =

P (ξ ≤ µ − b), b ∈ R, and is centrally symmetric if P (ξ ≥ b) = P (ξ ≤ −b). We provide a more formal

definition below.

Definition 2.1 A probability distribution of an r-variate random vector is centrally symmetric if its density

function f is such that f(A) = f(−A) for all Borel sets A ⊆ Rr.
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Theorem 2.2 If p ∈ [0.5, 1) and if the probability distribution of ξTw is symmetric, the deterministic

equivalent µTw + F−1
(w)(1− p)

√
wTΣw ≥ R of the probabilistic constraint P(ξTw ≥ R) ≥ p is a second-

order cone constraint.

Proof: The matrix of variance-covariance Σ is positive semidefinite, and thus the function
√
wTΣw is

convex. To show that µTw + F−1
(w)(1 − p)

√
wTΣw ≥ R is a second-order cone constraint whose feasible

set is convex, it is enough to prove that the function µTw + F−1
(w)(1 − p)

√
wTΣw is concave, which is the

case if F−1
(w)(1− p) is smaller than or equal to 0.

Since the probability distribution of ξ is symmetric, the probability distribution F of the normalized

random variable ψ is centrally symmetric. It follows that F(w)(0) = 0.5 (or, equivalently, that F−1
(w)(0.5) =

0). This, combined with the fact that any cumulative distribution function is increasing, implies that F−1
0 (1−

p), p ∈ [0.5, 1) is at most equal to 0, which was set out to prove.

Clearly, problem (7) minimizes a convex quadratic function over a second-order cone and some linear con-

straints, and is therefore a convex, second-order cone problem.

b) Positively skewed probability distributions

The skewness is a measure of the asymmetry of a probability distribution of a real-valued random vari-

able [2], and is computed as

skew(ξ) =
E[ξ − µ]3

σ3
,

where µ and σ are respectively the mean and standard deviation of ξ.

The probability distribution F of a random variable is said to be right-skewed or to have positive skew-

ness (left-skewed or negative skewness, respectively) if the right, upper value (left, lower value, resp.) tail

is longer or fatter than the left, lower value (right, upper value, resp.), or, stated differently, if its median m

is strictly smaller (larger, resp.) than its mean µ.

Definition 2.3 The probability distribution of an r-variate random vector ξ has positive skewness if

P (0 ≥ ψ) ≥ P (m ≥ ψ)⇔ F−1(α) ≤ 0, α ≤ 0.5

where E[ψ] = E[ξ − µ] = 0 and F (m) = P (m ≥ ψ) = 0.5.

Theorem 2.4 If p ∈ [0.5, 1) and if the probability distribution of ξTw has positive skewness, the deter-

ministic equivalent µTw + F−1
(w)(1− p)

√
wTΣw ≥ R of the probabilistic constraint P(ξTw ≥ R) ≥ p is a

second-order cone constraint.

Proof: As mentioned above, µTw + F−1
(w)(1 − p)

√
wTΣw ≥ R is a second-order cone constraint if

F−1
(w)(1− p)(p ≥ 0.5) is smaller than or equal to 0.

This follows immediately from Definition 2.3:

0 > F−1
(w)(1− p), 1− p ≤ 0.5

for the probability distribution F(w) of the normalized random variable ψ has positive skewness.
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The exact value of the quantile F−1
(w)(1 − p) can be derived for some probability distributions. If we

assume the returns of the risky assets to be normally distributed, then the normalized portfolio return ψ has

a standard normal cumulative distribution function

φ(ψ) =
1√
2π

∫ ψ

−∞
e−t

2/2dt ,

and the numerical value of its quantile φ−1(p) is known. The same applies if the normalized portfolio return

is uniformly distributed in an ellipsoid Ω = {ω = Qz : ‖z‖ ≤ 1} with ‖z‖ being the Euclidian norm of z.

2.2.2 Quantile approximation

The exact value of the (1− p)-quantile F−1
(w)(1− p) cannot be derived for each probability distribution F(w)

which therefore impedes the derivation of the exact deterministic equivalent of the probabilistic constraint

(3) in (4). In this section, using variants of Chebychev’s inequality, we derive convex approximations of (3)

for different classes of probability distributions. Such approximations are popular in the robust optimization

literature [5], and differ in terms of their conservativeness.

Theorem 2.5 The second-order cone constraint

µTw −
√

p

1− p
√
wTΣw ≥ R

is a valid approximation of the probabilistic constraint

P
(
ξTw ≥ R

)
≥ p (8)

when the portfolio return follows any probability distribution defined by its first two moments µ and σ2.

Proof: Let us consider the random variable Y such that Y Tw = (2 µT − ξT )w: Y Tw has the same mean

and variance as ξTw.

Applying Chebychev’s inequality, we obtain

P
(
Y Tw − µTw > µTw −R

)
≤


1

1+
(µT w−R)2

wTΣw

= wTΣw
wTΣw+(µTw−R)2 if µTw ≥ R

1 otherwise
. (9)

Clearly,

P
(
Y Tw − µTw > µTw −R

)
= P

(
µTw − Y Tw < R− µTw

)
= P

(
ξTw − µTw < R− µTw

)
.

This, combined with (9), successively implies that

P
(
ξTw − µTw < R− µTw

)
≤ wTΣw
wTΣw + (µTw −R)2

1− P
(
ξTw − µTw ≥ R− µTw

)
≤ wTΣw
wTΣw + (µTw −R)2
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P
(
ξTw − µTw ≥ R− µTw

)
≥ 1− wTΣw

wTΣw + (µTw −R)2
(10)

Therefore,

1− wtΣw
wtΣw + (µTw −R)2

≥ p

is sufficient for constraint (8) to hold. The expression above can be successively rewritten as:

(1− p)
(
wTΣw + (µTw −R)2

)
≥ wTΣw

(1− p) (µTw −R)2 ≥ p wTΣw

µTw −
√

p

1− p
√
wTΣw ≥ R

which was set out to prove.

A tighter approximation can be obtained if the probability distribution is symmetric.

Theorem 2.6 The second-order cone constraint

µTw −

√
1

2(1− p)
√
wTΣw ≥ R

is a valid approximation of the probabilistic constraint

P
(
ξTw ≥ R

)
≥ p

when the portfolio return has a symmetric probability distribution.

Proof: Chebychev’s inequality for symmetric probability distributions is formulated as follows:

P
(
ξTw − µTw > µTw −R

)
≤

{
0.5 ·min

[
1, wTΣw

(µTw−R)2

]
if µTw ≥ R

1 otherwise
, (11)

where the expression min[a, b] returns the minimum value of a and b

Consequently, we have that

1− 1
2

wTΣw
(µTw −R)2

≤ P
(
ξTw − µTw ≤ µTw −R

)
,

and, using the same variable substitution approach as above, we obtain

P
(
ξTw − µTw ≥ R− µTw

)
≥ 1− 1

2
wTΣw

(µTw −R)2
. (12)

Therefore,

1− 1
2

wTΣw
(µTw −R)2

≥ p

is a sufficient condition for P
(
ξTw ≥ R

)
≥ p to hold true. Consequently,

2 (µTw −R)2 ≥ wTΣw
1− p

µTw −

√
1

2(1− p)
√
wTΣw ≥ R

which was set out to prove.
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2.3 Integrality constraints for stock market restrictions

We now propose extensions of problem (7) in order to take into account real-life stock market restrictions.

These are modeled through the introduction of integer decision variables in (7), and pertain to the prevention

from holding small positions (Section 2.3.1), to the requirement of purchasing shares by batch of a certain

size (Section 2.3.2), and to the investment in a predefined minimal number of industrial sectors (Section

2.3.3).

This leads to the formulation of a discrete optimization problem including a probabilistic constraint. The

relaxation of the integrality conditions results in a convex optimization problem whose deterministic equiv-

alent is a second-order cone problem. The deterministic equivalent of the discrete optimization problem

reads:
min wTΣw

subject to µTw + F−1
(w)(1− p)

√
wTΣw ≥ R

gj(w, y) ≤ 0, j = 1, . . . ,m

w ∈ Rr+1
+

y ∈ Z+

. (13)

Problem (13) minimizes the volatility of the portfolio over a convex feasible set determined by the second-

order cone constraint on the expected return and m deterministic constraints gj(w, y) ≤ 0. The decision

variables y are integer-valued.

2.3.1 Buy-in threshold constraints

In this section, we introduce constraints that prevent investors from holding very small active positions.

The rationale for this hinges on the fact that such small positions have very limited impact on the total

performance of the portfolio [54], but trigger some tracking and monitoring costs. Certain portfolio selection

models, such as the Markowitz model, are known for occasionally returning an optimal portfolio containing

very small investments in a (large) number of securities. Such a portfolio is in practice very difficult to

justify due to the costs of establishing and maintaining it (brokerage fees, bid-ask spreads, etc.), and the

usually poor liquidity of small positions. In order to avoid this, constraints preventing from holding an active

position representing strictly less than a prescribed proportion wmin of the available capital are useful. To

model such constraints, we introduce r extra binary variables δj ∈ {0, 1}, j = 1, . . . , r taking value 1 if the

investor detains shares of asset j (i.e., wj > 0):

wj ≤ δj , j = 1, . . . , r . (14)

Small investments are avoided by introducing the following constraints:

wmin δj ≤ wj , j = 1, . . . r . (15)
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With these additional variables and constraints, problem (13) becomes

min wTΣw

subject to µTw + F−1
(w)(1− p)

√
wTΣw ≥ R

w0 +
r∑
j=1

wj = 1

wj ≤ δj , j = 1, . . . , r

wmin δj ≤ wj , j = 1, . . . r

δ ∈ {0, 1}r

w ∈ Rr+1
+

. (16)

2.3.2 Round lot purchasing constraints

Large institutional investors usually purchase large (i.e., even lot) blocks of individual financial assets. This

is primarily because such blocks are more easily traded than smaller (i.e., odd lot) holdings, but also for

liquidity reasons, i.e., to avoid the risk of getting stuck with a small, poorly liquid holding of a financial

asset. Another reason to buy stocks by lots of large quantity is that, often, brokers require a premium for

odd lot trades because they may have to split an even lot which would leave them with the remaining odd lot

part. The effect of the round lot constraints on the structure of the portfolio is very important when assets

whose prices are large relative to the size of the trade are involved. In that case it is very important to have

a portfolio construction approach that effectively handles the round lot constraints within the optimization

procedure. This is what motivates the construction of portfolio models including round lot constraints that

require the purchase of shares by batches or lots of M stocks.

To each risky asset j, we associate a general integer variable γj , and a round lot constraint

xj = γjM , j = 1, . . . , r (17)

imposing that the number xj of shares of asset j in the portfolio is a multiple of M . Denoting by pj the face

value of stock j and by K the available capital, we have xj = wjK
pj

, and we reformulate (17) as

wj =
pjγjM

K
, j = 1, . . . , r .

Problem (13) becomes a second-order cone problem with general integer decision variables

min wTΣw

subject to µTw + F−1
(w)(1− p)

√
wTΣw ≥ R

w0 +
r∑
j=1

wj = 1

wj =
pjγjM

K
, j = 1, . . . , r

γ ∈ Zr+
w ∈ Rr+1

+

. (18)
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2.3.3 Diversification constraints

Many institutional investors have limitations on the allowable exposure to risky investments. Very often,

such limits are defined by an upper bound on the maximum percentage of the portfolio value that may

be invested in certain categories of financial assets, and/or by the requirement to invest in a predefined

minimum number of asset categories or industrial sectors. In this section, we consider constraints that force

the investor to diversify its portfolio by purchasing assets in at least Lmin different economic sectors. Every

asset j is linked with an economy sector k, so that the sets Sk, k = 1, . . . , L of assets affiliated with a sector

k form an exact partition of {1, . . . , r}. We associate a binary variable ζk ∈ {0, 1} with each economic

sector k: ζk is equal to 1 if and only if the investment in sector k (
∑
j∈Sk

wj) is above a minimum pre-defined

level smin:

smin ζk ≤
∑
j∈Sk

wj ≤ smin + (1− smin) ζk .

In addition to the constraint above we must add a cardinality constraint to satisfy the diversification require-

ment.

The diversification condition requires to detain ”representative” positions in at least Lmin sectors. Note that

the constraints above do not consider a very small position in a sector k (i.e., ≤ smin) as contributing to the

diversification of the portfolio. The probabilistic Markowitz model with diversification constraint reads:

min wTΣw

subject to µTw + F−1
(w)(1− p)

√
wTΣw ≥ R

w0 +
r∑
j=1

wj = 1

smin ζk ≤
∑
i∈Sk

wk ≤ smin + (1− smin) ζk, k = 1, . . . , L

L∑
k=1

ζk ≥ Lmin

ζ ∈ {0, 1}L

w ∈ Rr+1
+

. (19)

3 Solution Method

In this paper, we develop an exact mixed-integer non-linear programming solution method for portfolio

optimization problems subject to the joint enforcement of probabilistic constraint on the expected portfolio

return and integer constraints representative of trading mechanisms. More precisely, we rely on a non-linear

branch-and-bound algorithm that we complement with new branching rules, namely the idiosyncratic risk

and portfolio risk branching rules.
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The non-linear branch-and-bound method is a method aimed at solving problem of the general form

min f(x)

subject to gi(x) ≤ 0, ∀i = 1, . . . ,m

xi ∈ Z, ∀i ∈ I

x ∈ Rn

,

where f : Rn → R and gi : Rn → Rm are at least once continuously differentiable convex functions.

In the following, we give a brief reminder of the classical branch-and-bound algorithm and then describe

two new branching rules which are suitable for the considered portfolio optimization problems.

3.1 Non-linear branch-and-bound algorithm

The branch-and-bound algorithm solves problems of the form (13) by performing an implicit enumeration

through a tree search. The algorithm starts by solving the continuous relaxation where all integrality require-

ments have been removed. We denote by (w∗, y∗) the optimal solution of this continuous relaxation. If y∗

is integer valued, then (w∗, y∗) is the optimal solution and the problem is solved. Otherwise, at least one of

the integer variables (yi) has a non integer value. Such a variable is chosen for branching: two sub-problems

(or nodes) are created where the upper and lower bounds on yî are set to by∗
î
c and dy∗

î
e, respectively, and

the two sub-problems are put in a list of open nodes.

Then, at each subsequent iteration of the algorithm, a sub-problem is chosen from the list of open nodes,

and the continuous relaxation of the current node is solved providing a lower bound. The enumeration at the

current node can be stopped, or stated differently, the node is said to be fathomed or pruned, if any of the

three following conditions happen:

• the continuous relaxation is infeasible (pruning by infeasibility);

• the optimal solution of the continuous relaxation is not better than the value of the best integer feasible

solution found so far (pruning by bounds);

• the optimal solution of the continuous relaxation is integer feasible (pruning by optimality).

If the optimal solution of the continuous relaxation solution (w∗, y∗) cannot be pruned, then at least one

of the integer variables (yi) has a non integer value (y∗i 6∈ Z) in the optimal solution. One of the integer

infeasible variables yî is then chosen for branching, and two new sub-problems are thus added to the list

of open nodes. By iterating the process a search tree is created and the algorithm continues until the list of

open sub-problems is empty.

One of the key ingredients of the branch-and-bound procedure is the choice of the variable to branch-on.

The classical rule is to choose the variable that has the largest fractional part, but this rule is often not very

efficient. In this paper, we present two new rules specifically adapted to the portfolio optimization problems

presented in Section 2. These two rules are respectively called idiosyncratic risk and portfolio risk branching

and are described in the next sections.
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3.2 Static branching rule: Idiosyncratic Risk Branching

The idiosyncratic risk branching rule is a static branching rule in which branching priorities are determined

a priori (i.e., before the optimization is started).

For each integer decision variable, the branching priority is given by an integer πi. At each node, the

variable chosen for branching is the one, among the integer constrained variables with fractional value in

the optimal solution of the current continuous relaxation, that has the highest priority. In case of a tie (i.e.,

when several candidate variables for branching have the same priority), the variable selected for branching

is the one, among those with highest priority, that is the most fractional in the continuous relaxation.

It is important to recall that, in the optimization problems with buy-in threshold constraints (16) and

with round lot constraints (18), there is a mapping between assets and integer decision variables: to each

asset j corresponds a unique integer decision variable γj in (16) and δj in (18). In the context of mean-

variance portfolio optimization problems, we propose to give the highest priority to the integer decision

variable associated with the asset whose return has the greatest variance. We refer thereafter to this branching

procedure as the idiosyncratic risk branching procedure. The intuition behind these priorities is that the asset

with the largest variance is the one which has the most significant impact on the overall risk of the portfolio.

Therefore, if the variance is the largest, the two sub-problems resulting from the branching are more likely

to have an optimal value differing substantially from that of the parent node.

For the problems with diversification constraints, each integer decision variable is associated with a

specific industrial sector. To each binary variable, and therefore to each sector, we assign a branching priority

which is an increasing function of the sum of the variances of each asset stock related to the considered

sector.

3.3 Dynamic branching rule: Portfolio Risk Branching

The portfolio risk branching rule is a dynamic branching rule, in which the branching priorities change at

each node and tributary of the structure of the portfolio at the current node. Clearly, the branching variable

is determined by relying upon a dynamic, integrated risk approach. The dynamics of the branching rule

stems from the revision of the branching priorities at each node in the search tree, while its integrated risk

approach derives from the fact that the branching priorities are a function of the specific contribution of each

variable (asset) to the overall risk of the portfolio.

The dynamic feature is relevant since, in the course of the optimization process, a new optimal portfolio

can potentially be constructed at each node in the branch-and-bound tree. Therefore, an iterative (at each

node) evaluation of the contribution of each variable to the variance of the portfolio is desirable. As it

will be detailed in the next subsections, it is possible to establish a direct correspondence between an integer

decision variable and an asset. At each node in the branch-and-bound tree, we consider each integer variable

whose optimal value in the current continuous relaxation is not integer feasible. For each such variable,

we evaluate how the restoration of the integrality condition impacts (increases) the variance of the current

portfolio. The variable whose integer feasibility restoration has the largest impact on the variance receives

the highest priority, and is the one with respect to which we branch.

13



To carry out this evaluation, we approximate the problem at hand by a more simple disjunctive program

with quadratic objective function and linear equality constraints which takes into account the integrality of

only one variable:
min f(w) = wTΣw

subject to Aw = b,

(wi ≤ wi) ∨ (wi ≥ wi) , i ∈ 1, . . . , r

w ∈ Rr

. (20)

Clearly, the problem above, and therefore the evaluation of the impact of the integer feasibility restoration,

are obtained by omitting the non-linear term in the portfolio return constraint and relaxing the bounds on

the variables.

In the next subsections, we give a precise description of how this approximation is obtained for each

variant of the probabilistic Markowitz problem. Prior to this, we explain how the branching rule is applied

in the general setting of (20).

Let w∗ be the (continuous) optimal solution of (20), and let Lλ(w) be the Lagrangian function:

Lλ(w) = f(w) + λT (Aw − b) . (21)

We estimate the change in the objective value of (20) through the Lagrangian function. A movement of

δ ∈ Rr from w∗ induces the following change in (21):

Lλ(w∗ + δ)− Lλ(w∗) = (w∗ + δ)TΣ(w∗ + δ)− w∗TΣw∗ + λT (Aδ)

= δTΣδ + (2w∗TΣ + λTA)δ .

Since w∗ is optimal, it satisfies the KKT conditions:

2w∗TΣ + λTA = 0

λ(Aw∗ − b) = 0

which implies that Lλ(w∗ + δ)− Lλ(w∗) = δTΣδ.

Let us consider a variable wi with value w∗i , such that w∗i ∈ [wi, wi]. Branching on wi creates two

nodes: in each of them we add one of the constraints wi ≤ wi and wi ≥ wi. Using the procedure described

above, we estimate the change in the Lagrangian of (20) by computing the two estimates δ−i and δ+
i defined

by
δ−i = (w∗i − wi)eTi Σ(w∗i − wi)ei = (w∗i − wi)2σii

δ+
i = (wi − w∗i )eTi Σ(wi − w∗i )ei = (wi − w∗i )2σii

(22)

where ei is a vector whose components are all equal to 0 but the i−th one which is equal to 1.

By analogy to mixed-integer programming [37], we then combine these two estimates to obtain the score

of variable wi by taking a linear combination of the minimum and the maximum of the two [37]:

δi = Lmin(δ−i , δ
+
i ) + U max(δ−i , δ

+
i ) . (23)
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We set the values of L to 1 and U to 2.

We calculate δi for all integer variables with fractional values in the optimal solution of the continuous

relaxation, and we select as branching variable the one which has the highest score:

î = arg max
{i:w∗i ∈(wi,wi)}

δi .

The quality of the branching scheme depends on the quality of the relaxation (20) with respect to the

original problem. For the problems handled in this paper, it is easy to build such relaxations, and the

computational experiments indicate that they are of good quality.

3.3.1 Problem with buy-in threshold constraints

In this section, we discuss the implementation of the dynamic portfolio risk branching rule in problem (16)

in which the constraints (14) and (15) define the minimum proportion of available wealth K that must be

invested in any active position.

In this case, we use the following formulation:

min wTΣw

subject to µTw + F−1
(w)(1− p)

√
wTΣw ≥ R

w0 +
r∑
j=1

wj = 1

(wi ≤ 0) ∨ (wi ≥ wmin)

w ∈ Rr+1
+

. (24)

Note that this formulation is strictly equivalent to (16): imposing the condition wi ≤ 0 is equivalent to

setting γi equal to 0 in (16), and imposing wi ≥ wmin is equivalent to setting γi equal to 1. The continuous

relaxation is obtained by removing the disjunctive constraints.

The selection of the branching variable is performed by applying the scheme described in Section 3.3 to

the following relaxation
min wTΣw

subject to µTw = R

w0 +
r∑
j=1

wj = 1

(wi ≤ 0) ∨ (wi ≥ wmin)

w ∈ Rr+1

of problem (24). The relaxation is obtained by transforming the portfolio return constraint into an equality

constraint from which the non-linear component is dropped, and by removing the non-negativity constraints.

3.3.2 Problem with round lot constraints

The constraint γi = K
Mpi

wi establishes a direct correspondence between the continuous variables wj and the

integer ones γj in portfolio optimization problems with round lot constraints (18). Therefore, for a particular
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value of w∗, we use the following relaxation

min wTΣw

subject to µTw = R

w0 +
r∑
j=1

wj = 1

(wi ≤
⌊
K

Mpi
w∗i

⌋
) ∨ (wi ≤

⌈
K

Mpi
w∗i

⌉
)

(25)

to select the branching variable in portfolio optimization problems with round lot constraints (18).

3.4 Analogy between branching strategies and criteria for credit risk

An interesting analogy can be established between the two branching rules proposed in this paper and

the concepts of marginal and standalone risk of a security proposed by JP Morgan in its CreditMetrics

framework [44] for quantifying the credit risk of portfolios. More precisely, there is a direct link between

the portfolio risk branching rule and the marginal risk, on one hand, and between the idiosyncratic risk

branching rule and the standalone risk, on the other hand.

CreditMetrics recommendation to hold a financial instrument is based on its marginal risk defined as

the marginal increase in the portfolio risk that would result from adding this instrument to it. This approach

takes into account the co-movements between the instrument considered for incorporation in the portfolio

and those already included. The portfolio risk branching rule gives the highest branching priority to the

asset and the associated integer variable for which the restoration of the integrality condition would most

affect the risk of the portfolio. Both concepts are clearly linked to the diversification axiom and address

the concentration risk, which is the accrued portfolio risk due to an exposure to one obligor or groups of

correlated obligors (e.g., by industry, by location, etc.). The two approaches measure the portfolio volatility

of an instrument or position and assign branching priorities (portfolio risk), or decide the inclusion of the

asset (marginal risk) on that basis.

The standalone risk of an instrument is measured by its standard deviation and is independent of the

correlation between the instrument and the other assets in the portfolio. Similarly, the idiosyncratic risk

branching assigns the highest priority with respect to the integer variable associated with the asset which

has the highest volatility, i.e. standard deviation.

4 Computational results

4.1 Test problems

To build the test bed for our approach, we use the daily return data of more than 600 stocks that have been

part of Standard&Poor’s 500 index between 1990 and 2004. The data accounts for the splits that the con-

sidered stocks have undergone in the period indicated above. In order to test the computational tractability

of the solution method, we approximate the probability distribution of the expected returns (which is usu-

ally estimated through proprietary models by financial institutions [10]; see also the robust statistics and
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optimization literature) by the probability distribution of the returns. Using historical data, we compute the

geometric mean and matrix of variance-covariance of the returns. This has no bearing on the computational

results of our solution method which can be used for any probability distribution characterized by its first

two moments.

Using those data, we build 36 portfolio optimization instances of various sizes (12 problems with 50

assets, 12 with 100 and 12 with 200) by randomly selecting the assets included in the problems. For each

problem instance, we formulate three models corresponding to the trading constraints (buy-in threshold,

round lot purchase, and diversification) considered in this paper. To model the problems with diversification

constraints, we use the Global Industry Classification Standard (GICS) [57] developed by Standard&Poor’s

and Morgan Stanley Capital International to identify the industrial sector to which each company belongs.

The GICS structure consists of 10 Sectors, 24 Industry Groups, 67 Industries and 147 Sub-Industries. The

present study allocates each company to one of the 67 industries. The data come from the CRSP database

and were obtained using the Wharton Research Database Service.

In each problem instance, the prescribed return level R is set equal to 7%, the fixed return of the money

market is equal to 2% and the prescribed reliability level p, by which the investor wants the expected port-

folio return to exceed the prescribed return level, is set to 85%. The asset returns are assumed to follow

a normal distribution. The problem instances are modeled by using the AMPL modeling language. Table

1 reports the numbers of continuous and integer decision variables per type of models and per number of

considered assets.

Table 1: Size of optimization models:
Number of variables n, non-linear variables nnl, integer variables ni, linear constraints ml, non-linear con-
straint mnl and non-zeroes in the Jacobian njac.

Number of Assets
Models with 50 100 200

n nnl ni ml mnl njac n nnl ni ml mnl njac n nnl ni ml mnl njac
Buy in threshold constraints 101 50 50 101 1 300 201 100 100 201 1 600 401 200 200 401 1 1200

Round lot Constraints 101 50 50 51 1 200 201 100 100 201 1 400 401 200 200 201 1 800
Diversification Constraints 82 50 32 67 1 293 148 100 48 99 1 538 264 200 64 129 1 982

In our experiments, we compare the results obtained with the standard branch-and-bound algorithm of

the three solvers MINLP BB [34], CPLEX 10.1 [28] and Bonmin [7] to the results obtained with our

specialized branch-and-bound algorithms implemented within the Bonmin framework.

MINLP BB implements a branch-and-bound method for general non-linear programs and uses the se-

quential quadratic trust region algorithm called filterSQP [22] to solve the continuous relaxations.

CPLEX 10.1 is a commercial code that uses a branch-and-bound approach and that utilizes an interior

point algorithm to solve second-order cone optimization problems. Bonmin [7, 3] is an open-source solver

(available under the Common Public License) designed to solve to optimality general convex MINLPs.

Among the several algorithms implemented within Bonmin, we have chosen to use, based on preliminary

tests, a branch-and-bound algorithm that employs the general purpose interior point solver Ipopt [60] to

solve the continuous relaxations and the branch-and-cut code Cbc to manage the tree search.

Some of the main differences between the three codes are:
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• MINLP BB uses an active set method for solving the continuous relaxation, while Bonmin and

CPLEX 10.1 use interior point algorithms (MINLP BB has better warm-starting capabilities but

needs more memory to solve large problems);

• MINLP BB and Bonmin use general non-linear programming methods to solve the continuous relax-

ations while CPLEX 10.1 uses a method dedicated to second-order cone programming;

• MINLP BB uses the depth-first search strategy for choosing the next node to process in the tree search

(i.e., the next node to be processed is the the deepest one), while Bonmin, by default, uses the best-

bound approach (i.e., the next node to be processed is the one whose parent provides the smallest

lower bound);

• CPLEX 10.1 is the only solver to have advanced heuristic method for finding integer feasible solu-

tions.

Since Bonmin is an open-source code, it can be very conveniently used to implement modifications

of the general algorithm. We used this feature to implement the branching rules devised in Section 3.

The idiosyncratic risk branching is implemented through the definition of branching priorities, while the

portfolio risk branching is implemented in two specific branching rules for problems containing buy-in

threshold constraints and round-lot constraints.

All tests were performed on an IBM IntellistationZ Pro with an Intel Xeon 3.2GHz CPU, 2 gigabytes of

RAM and running Linux Fedora Core 3.

4.2 Evaluation of solution approaches

4.2.1 Model with buy-in threshold constraints

In this section, we analyze the computational results obtained for the problem instances containing buy-in

threshold constraints. The experiments have been conducted by setting the minimum fraction of wealth

(wmin) to be invested in an asset (should the investor decide to include that asset in his portfolio) equal to

2%, 3% and 5% for the instances with 50, 100 and 200 stocks, respectively.

Table 2 reports the results obtained with the five algorithmic approaches listed below on the 36 problem

instances with buy-in threshold constraints:

• Bonmin’s branch-and-bound algorithm with branching performed on the most fractional integer vari-

able (i.e., the default branching rule in Bonmin),

• Bonmin’s branch-and-bound algorithm with the idiosyncratic risk branching rule (Section 3.2),

• Bonmin’s branch-and-bound algorithm with the portfolio risk branching rule (Section 3.3.1),

• MINLP BB’s branch-and-bound algorithm,

• the CPLEX 10.1 solver.
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Table 2: Computational results for problems with buy-in thresholds constraints
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The above solution approaches will thereafter be referred to as MF, IR, PR, MBB, and CP, respectively.

For each ”combination” of problem instance and solution approach, Table 2 reports

• the quality of the best obtained solution (columns 2, 5, 8, 11, 14). We use the acronym NS to indicate

that no feasible integer was found. We report the value of the mixed-integer optimality gap when the

best integer solution found is not proven to be optimal by the algorithm, and use the symbol ”*” when

the optimality is proven;

• the computing time (in CPU seconds) needed to solve the problem to optimality (columns 3, 6, 9, 12,

15). If this latter cannot be found within the allowed computing time (3 hours), the entry in the table

reads ”>10800”;

• the number of explored nodes in the branch-and-bound tree (columns 4, 7, 10, 13, 16).

First, we comment on the accuracy of the found solutions. It is well known that the structure of the

variance-covariance matrix of returns often leads to numerical difficulties [6]. While we cannot establish the

optimality of the obtained solutions (outside of the tolerances of the solvers), we can compare the values of

the optimal solutions obtained with Bonmin, MINLP BB and CPLEX 10.1. We recall that those solvers

are based on very different continuous non-linear programming methods. We observe that the relative

difference between the optimal solutions found by Bonmin, MINLP BB and CPLEX 10.1 are in the order

of 10−4 except for problem 050 1 where it is 8.56 ∗ 10−3. We note that the solution found by the three

variants of Bonmin are always identical for these instances as well as for all the other instances in the

paper. It is also worth pointing out that the solution claimed by Bonmin always has a better objective value

than the one claimed by MINLP BB and CPLEX 10.1 on these problems.

The instances with 50 and 100 assets do not really allow us to discriminate the four solution approaches

in terms of the quality of the solution. Indeed, Figure 1 shows that the optimal solution is found by each

approach for every 50-stock and 100-stock problem instance.

For the most difficult problems containing 200 stocks, the solution approaches IR and PR utilizing the

two new branching rules clearly dominate MP, MBB and CP. The former two approaches solve all the

instances to optimality, while the latter three solve only 25% of those instances to optimality. It is also worth

noting that MP does not find any integer feasible solution when it cannot find the optimal one, while MBB

and CP always find an integer feasible solution, and the average value of the final optimality gap is equal to

7.06% (7.68%) for MBB (CP). This might be due to the node selection rule used in MP (best-bound) and to

the fact that no primal heuristic is implemented in Bonmin.

Another interesting point is to compare the time to solve a node by each of the three approaches. For

the three branch-and-bound algorithms (MINLP BB, CPLEX 10.1 and Bonmin), the largest fraction of

the node processing time is spent solving the continuous relaxation. Since filterSQP is an active set

method, it has the clear advantage of having more efficient warm-start capabilities, and this is corroborated

by the experiments: filterSQP needs on average 0.24 sec./node (on the test set) versus 0.52 sec./node

for Bonmin and 0.95 sec./node for CPLEX 10.1. Both CPLEX 10.1 and Bonmin use interior point
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methods to solve the continuous relaxation. Provided that CPLEX 10.1’s interior point method is special-

ized for the solution of second-order cone problems, it is surprising to observe that Bonmin is, on average,

almost twice faster than CPLEX 10.1 per node. This might be due to the fact that CPLEX 10.1 applies

more integer programming methods (primal heuristic, bound tightening, etc.) than Bonmin.
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Figure 1: Quality of solution for problems with buy-in constraints

Figures 2 and 3 display the average total computing time for each combination of solution approach and

size of problem instance.
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Figure 2: Average computing time for 50-stock and 100-stock instances with buy-in constraints

In Figure 3, the left-hand side graph shows the average time computed over 200-stock instances, while

the right-hand side one shows the average time computed over the only instances that could be solved to

optimality by every solution approach. It is clear that the IR and PR solution approaches, relying respectively

on the idiosyncratic and portfolio risk branching rules, are, regardless of the size of the problem, much faster

than MP, MBB and CP. The PR solution approach is slightly faster than IR, and is on average:

• more than 5 (respectively, 16 and 8) times faster than MBB on the 50-stock (respectively, 100- and

200-stock) instances.

• more than 5 (respectively, 8 and 9) times faster than CP on the 50-stock (respectively, 100- and 200-

stock) instances.

Figure 4 shows the evolution of the average computing time (for all instances on the right-hand side, for

instances solved to optimality on the left-hand side). We can see that PR and IR scale very well: the rhythm

at which their average computing time increases is very reasonable, therefore indicating their applicability

to problems of larger size. This must be contrasted to the MF, MBB and CP approaches for which the

computing time seems to increase exponentially with the number of assets.
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Figure 3: Average computing times for 200-stock instances with buy-in constraints
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Figure 4: Buy-in constraints: computing time as a function of dimensionality

4.2.2 Model with round lot constraints

Table 3 reports the computational results for the 36 problem instances with round lot constraints and in

which the investor is constrained to buy shares by multiples of M , set equal to 100 in our experiments.

Table 3 provides the same outputs (optimality gap, CPU time, number of nodes) and uses the same notations

as those in Table 2. The following five integer solution methods have been tested:

• Bonmin’s branch-and-bound algorithm with branching on the most fractional integer variable,

• Bonmin’s branch-and-bound algorithm with the idiosyncratic risk branching rule (Section 3.2),

• Bonmin’s branch-and-bound algorithm with the portfolio risk branching rule (Section 3.3.2),

• MINLP BB’s branch-and-bound algorithm,

• the CPLEX 10.1 solver.

Figure 5 shows that the PR solution approach using the dynamic portfolio risk branching rule is by far

the most robust method for problems with round lot constraints. The PR method is the only one solving

to optimality all 100-assets instances, while CP (respectively, MBB, IR, MF) finds the optimal solution for

66.67% (respectively, 58.33%, 58.33%, 66.67%) of those instances. Even more striking is the fact the PR

method solves to optimality 83% of the 200-asset problem instances, while none of the three other methods

can solve to optimality any of the 200-asset instances. A few additional comments are in order. First, the

MF approach does not find any feasible integer solution for any of the problem instances that it cannot solve

to optimality (i.e., 33% and 100% of the 100-stock and 200-stock instances, respectively). The IR does not

find any integer feasible solution for any of the 200-problem instances. This is again, most probably, due to

the fact that Bonmin does not have heuristic methods.
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Table 3: Computational results for problems with round lots constraints
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The average optimality gap amounts to

• 0.194% (100-stock instances) and 1.359% (200-stock instances) with MINLP BB;

• 0.202% (100-stock instances) and 1.416% (200-stock instances) with CPLEX 10.1.
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Figure 5: Quality of solution for problems with round lot constraints

Figure 6 shows that PR is not only the most robust but also the fastest regardless of the dimensionality

of the problem. The average computing times (i.e., irrespective of whether one considers all instances [left-

hand side in Figure 6], or only those solved to optimality by all approaches [right-hand side in Figure 6]) of

PR are significantly lower than those of the other methods. The difference in speed between PR and any of

the other three methods increases with the size of the problem; indeed, PR is

• 5.47 (respectively, 1.41, 4.41, 7.35) times faster than CPLEX 10.1 (respectively, MBB, IR, MF) on

the 50-stock instances;

• 8.55 (instances solved to optimality) and 12.41 (all instances) times faster than CPLEX 10.1 on the

100-stock instances;

• 2.33 (instances solved to optimality) and 8.26 (all instances) times faster than MBB on the 100-stock

instances;

• 6.24 (instances solved to optimality) and 10.75 (all instances) times faster than MF on the 100-stock

instances;

• 9.06 (instances solved to optimality) and 11.95 (all instances) times faster than IR on the 100-stock

instances.

No speed comparison can be drawn for the 200-stock instances since PR is the only method solving some

(83%) of them to optimality.

Finally, we note that the relative difference between the optimal values found by Bonmin, CPLEX

10.1 and MINLP BB is always smaller than 10−4.
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Figure 6: Average computing time for instances with round lot constraints

4.2.3 Model with diversification constraints

The results displayed in Table 4 are related to the 36 problem instances with cardinality-type diversification

constraints.

The results have been obtained by setting Lmin (the minimum number of sectors in which the investor

must allocate his capital) to 10, 15 and 20 for the problem instances comprising 50, 100 and 200 assets,

respectively, and by setting smin (minimal position in any of the Kmin sectors) to 1% for all problem

instances. The results obtained with the following four integer solution methods

• Bonmin’s branch-and-bound algorithm with branching on the most fractional integer variable,

• Bonmin’s branch-and-bound algorithm with the idiosyncratic risk branching rule (Section 3.2),

• MINLP BB’s branch-and-bound algorithm,

• the CPLEX 10.1 solver.

are given in Table 4.

The results in Table 4 indicate that the four methods above solve to optimality all 36 instances in very

limited computing time. On the largest problem instances, the average computing times for the slowest and

fastest methods (respectively CP and MBB) are equal to 429 sec and 69 sec. Clearly, the problems with

diversification constraints appear the easiest to solve.

4.3 Impact of integer trading constraints

We discuss below the impact on the various types of integer trading constraints. In particular, we analyze

• the difficulty of solving the problem associated with each type of constraints. The difficulty is eval-

uated with respect to the average computing time per type of models and for each problem size (50,

100, 200 stocks). Figure 7 shows that the computational time is an increasing function in the number

of stocks, and highlights the following hierarchy in terms of problem complexity: problem with (1)

cardinality, (2) buy-in threshold, and (3) round lot constraints.
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Table 4: Computational results for problems with diversification constraints
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Figure 7: Average computing time per model type and problem dimension

The largest problems (i.e., 200-stock instances) with diversification constraints require less computing

time on average than the least complex (i.e., 50-stock instances) problems with round lot constraints.

The accrued complexity of these latter is due to the presence of general integer variables which im-

plicitly require the detention of an integer number of shares of any asset included in the optimal

portfolio.

• the impact of the buy-in threshold constraints. Table 5 presents detailed results about the composition

of the optimal portfolio for each combination of model type (without integer constraints, with diver-

sification, round lot and buy-in threshold constraints) and problem size. The notation NP and NSP

respectively denote the average number of positions in the optimal portfolio and the average number

of positions which are greater than the threshold imposed by the buy-in constraints. The threshold

wmin is equal to 2%, 3% and 5% for the 50-, 100- and 200-stock instances, respectively. Table 5

shows that the buy-in constraints drastically change the structure of the optimal portfolio. The opti-

mal portfolio with buy-in constraints is less diversified than the optimal portfolio obtained with any

of the other three approaches. The optimal portfolio with buy-in constraints has positions in 16, 24

and 10 assets for 50-, 100-, and 200-stock instances, respectively. These numbers must be contrasted

to those of the optimal portfolios without any integer constraints (24, 30, 34), with diversification

constraints (26, 37, 41), and with round lot constraints (24, 28, 30).

Table 5: Concentration effect of buy-in threshold constraint
No integer Diversification Round lot Buy-in threshold

constraint (7) constraint (19) constraint (18) constraint (16)
50-stock NP 24 26 24 16
instances NSP 14 16 13 0

(wmin = 0.02%) NSP /NP 58.33% 61.54% 54.17% 0%
100-stock NP 30 37 28 24
instances NSP 13 21 11 0

(wmin = 0.03%) NSP /NP 43.33% 56.76% 39.29% 0%
200-stock NP 34 41 30 10
instances NSP 32 39 28 0

(wmin = 0.05%) NSP /NP 94.12% 95.12% 93.33% 0%
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• the impact of the diversification constraints. In addition to constraining the holding of positions in a

pre-defined number of industrial sectors, another effect of the diversification constraints, as shown by

Table 5, is that the investor detains positions in a larger number of assets (at least, on average, 20.5%

of the available assets) and detains a larger number of small positions (at least, on average, 56.76%).

• the impact of the round lot constraints. The effect of the requirement to buy shares by large lots is to

limit the number of active positions. This number is smaller than that for the model without integer

constraints and with diversification constraints.

5 Application by finance industry

The flexibility of our solution framework and its relevance for asset managers can be illustrated by its

utilization by the Private Banking Group of an international bank (ING) with over 1050 billion US$ in total

assets.

Within its new ”Absolute Return” investment program designed to individuals, the Private Banking

Group proposes investments in so-called Fund-of-Funds (FoF). To build these FoFs, investment managers at

ING identified the funds to be included in the market universe for the FoFs. The funds belong to seven fund

categories (short-term deposits, currencies, equity funds, bond funds, commodity funds, real estate funds,

and specialized funds) which are themselves divided into sub-categories (Table 6).

Table 6: Asset classes and sub-classes
Classes Short-term Currencies Equity Bond Commodity Real Estate Specialized

Deposits Funds Funds Funds Funds Funds
US$ North America Government Energy North America Equity Hedge
Euro Europe Inflation-Linked Metals Europe Directional Trading

Japanese Yen Asia Investment-Grade Corporate Agricultural Asia Event Driven
Sub-Classes High Yield Corporate Live Stock Relative Value

Structured Credits
Convertible

Emerging Market

The FoF positions are determined with the help of an optimization model which uses the risk measure

discussed in this paper (i.e., the minimization of the risk of the portfolio provided that the FoF expected

return exceeds a threshold return level with a certain probability) and the associated optimization model

has the same characteristics as (16). In particular, it includes buy-in threshold constraints imposing a lower

bound on each individual position, the budget constraint, and the no short-selling constraints plus additional

diversification, liquidity and currency constraints modeled as linear ones. Class and subclass diversification

constraints impose a lower and an upper bounds on the quantity of the capital invested per class and subclass.

Currency constraints limit the amount invested in assets traded in each currency (US$, Euro, Japanese Yen).

Liquidity constraints ensure that a minimal proportion of the capital is invested in assets with weekly or

monthly liquidities. The resulting model is solved using the portfolio risk branch-and-bound algorithm de-

scribed in this paper. Four long-only absolute return fund-of-funds (Serenity VSX 10.I CAP EUR,

Serenity VSX 10.I CAP USD, Serenity VSX 5.I CAP EUR and Serenity VSX 5.I CAP
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USD), which differ in terms of the threshold return level and the probability by which their expected return

exceeds it, have been constructed using our approach.

6 Conclusion

In this paper, we study the probabilistic Markowitz mean-variance portfolio optimization model with integer-

based trading constraints. We consider real-world trading constraints, such as the need to diversify the

investments in a number of industrial sectors, the non-profitability of holding small positions, or the con-

straint of buying stocks by lots, which are modeled with integer variables. We account for the uncertainty in

the estimation of the expected asset return through the introduction of a stochastic constraint ensuring that

the expected return of the portfolio exceeds the prescribed return with a high confidence level. We derive

stochastic integer formulations for each type of trading constraints, show under which conditions their con-

tinuous relaxations are convex, taking the form of second-order integer programming problems, and develop

exact solution techniques.

A key contribution of this paper is that it develops an exact solution approach for portfolio optimization

problems in which uncertainty in the estimate of the expected return and real-life market restrictions modeled

with integer constraints are simultaneously considered. The joint presence of integrality restrictions and of

a non-linear, probabilistic constraint explains the complexity of solving such problems, for which very few

solvers can be efficiently used.

The proposed solution approach is based on two new branching strategies that we implement in a non-

linear branch-and-bound algorithm. The first one is a static branching rule, called idiosyncratic risk branch-

ing, while the second one is an integrated, dynamic branching rule, called portfolio risk branching. The latter

updates, at each node in the branch-and-bound tree, the branching priorities given to the integer variables

depending on their impact on the variance of the portfolio.

We evaluate the efficacy of five exact integer solution approaches on 36 problem instances containing up

to 200 assets and constructed using the stocks included in the S&P 500 Index. We have not found any other

computational study that considers so many assets for a stochastic portfolio optimization model subject to

integer constraints. Computational results show that the solution approach using the portfolio risk branching

rule is the most performing one, both in terms of speed and robustness (i.e., percentage of problems solved

to optimality), and that it scales well. The results attest the marked superiority of our approach with respect

to the MINLP BB and CPLEX 10.1 solvers, and highlight the computational contribution of our approach.

Another recent computational study [59] has also shown the limited efficiency of the CPLEX 10.1 solver

to handle mixed integer conic optimization problems. Those results clearly suggest the importance and need

of developing efficient solution methods for such optimization problems.

We observe that, for credit risk (marginal risk rule developed by J.P. Morgan [44]) as well as for portfolio

selection (portfolio branching strategy), it is preferable to adopt an integrated approach considering the

composition of the entire portfolio and accounting for the diversification axiom. We also derive a hierarchy

of the integer trading constraints and give insights about the impact (concentration effect) of the buy-in

threshold and diversification constraints. Finally, the relevance and interest of the proposed approach are
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shown through its implementation for the construction by a major financial group of four long-only absolute

return fund-of-funds constructed.

The algorithmic results presented in this paper pave the way for multiple extensions. We would like to

point out and test the applicability of the solution approach to other risk measures, in particular value-at-

risk and first-order stochastic dominance. The scalability of the proposed solution approaches could lead

to their application to problems of larger dimension. The running time could be further reduced by relying

on a second-order cone programming solver to optimize the continuous relaxations of the second-order

cone problems (i.e., polynomial running time) at each node in the branch-and-bound tree. Branch-and-cut

solution approaches could also be considered. Other trading constraints (i.e., ”transaction cost”, ”tax lot”,

”maximum number of transaction” constraints, etc.) leading to the formulation of other types of second-

order cone problems with integer variables deserve attention.

Note that buy w+
j or sell w−j rebalancing decisions [42] modeled through balance constraints

w0
j + w+

j + w−j = wj ,

where w0
j is the initial position in asset j, and coupled with a turnover constraint

r∑
j=0

(w+
j + w−j ) ≤ t ,

where t is the turnover upper bound, can be handled by the proposed solution method. The relaxation of

the integrality conditions gives a deterministic equivalent which is also a second-order cone optimization

problem. The same observation applies to stochastic integer portfolio optimization problems of the same

form subject to proportional transaction costs aj (in addition to the rebalancing constraints). The transaction

costs for rebalancing the initial positions is given by
r∑
j=1

aj

(
w+
j + w−j

)
, the budget constraint becomes

r∑
j=0

wj +
r∑
j=0

aj

(
w+
j + w−j

)
= 1 ,

and the constraint (6) now requires the expected return of the portfolio, after payment of the transaction

costs, to be greater or equal to the prescribed return level

µTw + F−1
(w)(1− p)

√
wTΣw −

r∑
j=0

aj

(
w+
j + w−j

)
≥ R .

Our future research will be devoted to other forms of transaction costs involving integer decision variables

(application of fixed transaction cost component if any transaction regarding an asset j is carried out),

modelled as concave functions, and to market impact models in which, in addition to the transaction costs

themselves (e.g., brokerage commissions), the difference between the transaction price and what the market

price would have been in the absence of the transaction is taken into account. Another line of future research

relates to the study of portfolio selection problems satisfying the same risk criterion and the same trading

constraints, but in which the risk of assets is estimated through a factor risk model [11, 42].
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