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Abstract: Recent advances in computation technology for decision/simulation and uncertainty

analyses have revived interest in the  the triangular distribution and its use to describe uncertainty of

bounded input phenomena. The trapezoidal distribution, explicitly suggested by Pouliquen (1970) in

the framework of risk and uncertainty analysis, is a generalization of the triangular distribution that

allows for the specification of the modal value by means of a range of values rather than a single

point estimate. While the trapezoidal and the triangular distributions are restricted to linear

geometric forms in the successive stages of the distribution, the generalized trapezoidal (GT)

distribution introduced by van Dorp and Kotz (2003) allows for a non-linear behavior at its tails and

a linear incline (or decline) in the central stage. In this paper we shall develop two novel elicitation

procedures for the parameters of a special case of the GT family by restricting ourselves to a

uniform (horizontal) central stage in accordance with the central stage of the original trapezoidal

distribution. We shall demonstrate the potential effect of allowing elicitation of the whole modal

range, rather than the narrower point estimate, in an illustrative Monte Carlo analysis for a small

decision tree.
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1. Introduction

In a recent survey paper a leading Bayesian statistician, O'Hagan (2006), explicitly mentions a

need for advances in elicitation techniques for prior distributions in Bayesian Analyses, but also

acknowledges the importance of their development for those areas where the elicited distribution

can not be combined with evidence from data, because the expert opinion is essentially all the

available knowledge. Garthwaite, Kadana and   (2005) provide a comprehensive review onO'Hagan

the topic of eliciting probability distributions dealing with a wide variety of topics, such as ,e.g., the

elicitation process, heuristics and biases, fitting distributions to an expert's summaries, expert

calibration and group elicitation methods.  We encourage the reader to review the bibliography of

Garthwaite, Kadana and  (2005) which is impressive and contains over 100 references.O'Hagan

The topic of this paper deals with fitting a specific parametric distribution to a set of summaries

elicited from an expert. Experts are traditionally classified into two, usually unrelated, groups: 1)

substantive technical domainexperts (also known as  experts or  experts) who are knowledgeable about

the subject matter at hand and 2)  experts mainly possessing knowledge of the appropriatenormative

quantitative analysis techniques (see, e.g., De Wispelare  (1995) and Pulkkinen and Simolaet al.

(2000)). In the absence of data and in the context of decision/simulation and uncertainty analyses,

substantive experts are used (primarily by necessity) to specify input distributions.

Advances in decision/simulation and uncertainty analysis methodology and their penetration

into applied sciences and engineering during the last several decades (recall  by now standard 

tools such as Decision Tool Suite by the Palisade Corporation, Crystal Ball by Decision Engineering,

and ARENA by Rockwell Software) have reinvigorated the use of distributions with bounded

support (that were not initially popular options). Integration of graphically interactive and statistical

procedures for bounded input distribution modeling has become a topic of research (see, e.g.,

DeBrota  (1989), AbouRizk  and Wagner and Wilson (1995, 1996)) in order toet al. et al. (1992)

facilitate their elicitation by experts. AbouRizk   have developed software with a graphicalet al. (1992)

user interface (GUI) to ease fitting of beta distributions using a variety of methods and DeBrota et al.

(1989) have developed software for fitting bounded Johnson S  distributions  Wagner and WilsonF Þ



MANUSCRIPT TEXT

3

(1995, 1996) introduced univariate Bézier distributions (or curves), which are a variant of spline

functions, and the software tool PRIME with a GUI to specify them. All these methods involve the

requirement of  the lower and upper bounds of the distribution's support. While tspecifying he system

of Bézier distributions allows for great flexibility in input distribution modeling for stochastic

simulations, Wagner and Wilson (1996) point out that random variate generation from a Bézier

distribution is at present computationally inefficient since its the inverse cumulativeJ Ð"

distribution function (cdf)) cannot be expressed in a closed form. The same applies for the beta or

Johnson S  distributions. Fortunately, triangular, trapezoidal and generalized trapezoidalF

distributions  form cdf's.do have closed

Trapezoidal distributions have been advocated for use in risk analysis problems, initially by

Pouliquen (1970) and more recently by  and Calvete (1987),  (1989), Powell andHerrerías Herrerías

Wilson (1997) and Garvey (2000). Other applications of trapezoidal distributions are prominent in

applied physics problems (see, e.g., Davis and Sorenson (1969), Nakao and Iwaki (2000), Sentenac et

al. (2000)) and medical ones, specifically in the screening and detection of cancer (see, e.g., Flehinger

and Kimmel (1987), Brown (1999) and Kimmel and Gorlova (2003)). Trapezoidal distributions have

also been used as membership functions in fuzzy set theory (see, e.g., Chen and Hwang (1992) and

Bardosi and Fodor (2004)).

Figure 1A plots a trapezoidal probability density function (pdf) suggested by Pouliquen (1970)

with the boundary parameters  and  The trapezoidal pdf depicted in+ œ !ß , œ !Þ$ß - œ !Þ& . œ "Þ

Figure 1A is a generalization of the "classical" triangular distribution dating back as far as Simpson5

(1755, 1757). Analogously to the triangular distribution, the trapezoidal distribution is appealing in

practice mainly due to the ease of the physical interpretation of its parameters  and . This+ß ,ß - .

would allow for their straightforward elicitation via a substantive expert knowledgeable about an

uncertain phenomenon represented by the distribution. However, the requirement of specifying the

bounds when using input distributions with bounded support in decision/simulation and uncertainty

5Thomas Simpson (1710-1761) a prolific writer of mathematical textbooks and able teacher at the Royal Military
Academy in Wolwich (England) made original and important contributions to statistics and actuarial sciences.
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analyses poses some challenges. Although the use of bounded distributions in the absence of data is

by now prevalent, the fact that the lower and upper bounds of an uncertain phenomenon as a rule

fall outside of the accumulated experience of a substantive expert (see, e.g., Selvidge (1980),

Davidson and Cooper (1980), Alpert and Raiffa (1982), Keefer and Verdini (1993)) is rarely

acknowledged. Instead these authors suggest the elicitation of lower and upper quantiles instead.

Keefer and Verdini (1993) solved for the lower and upper bounds of a triangular distribution in the

case when a point estimate for its mode is also available.  extendedKotz and Van Dorp (2006)

Keefer and Verdini's (1993) procedure for Two-Sided Power (TSP) distributions that are

generalizations of triangular distribution allowing for non-linear behavior in the two tails.

Van Dorp and Kotz (2003) provide the probability density function (pdf) of the Generalized

Trapezoidal (GT) distribution with parameters , and  given byα +ß ,ß -ß .ß 7 8

0 ÐBl Ñ œ Ð Ñ ‚ Ð"Ñ
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where the parameter vector ,  and  and the@ α αœ Ö+ß ,ß -ß .ß ß ß × +  ,  -  . 7ß 8ß  !7 8

normalizing constant is
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#
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The parameter  and is referred to as a boundary ratio parameter Theα @ @œ 0 Ð,l ÑÎ0 Ð-l Ñ Þ\ \

generalization allows  for non-linear behavior in the tails of the pdf via the tail parameters  andÐ"Ñ 7

8 and a linear incline (or decline) of the pdf in the central stage by setting the boundary ratio

parameter 1. It possesses a closed form cdf. Figure 1B plots a generalization of the pdfα Á

presented in Figure 1A with the same boundary parameters  and  and the additional+ß ,ß - .

parameter values and . By substituting  and  in  the pdfα αœ " ß œ $ œ & 8 œ 7 œ # œ " Ð"Ñ"
% 7 8

Ð"Ñ reduces to the "classical trapezoidal" pdf. Apparently, elicitation procedures for the additional



MANUSCRIPT TEXT

5

parameters of the GT distribution have not so far been developed. These type of procedures may be

useful for its application in problems of decision/risk and uncertainty analysis.
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Fig. 1. Generalized trapezoidal (GT) densities with common boundary parameters + œ !ß , œ !Þ$ß - œ !Þ&

and ; A: Original trapezoidal pdf with , B: GT pdf with and ,. œ " œ #ß œ #ß œ " œ $ß œ &ß œ "7 8 7 8α α "
%

C: GT Uniform pdf with and , D: GTU cdf with and 7 8 7 8œ $ß œ &ß œ " œ $ß œ &ß œ "Þα α

In the remainder of this paper we shall restrict ourselves to the analysis of GT distributions with

a uniform central stage. This is achieved by setting  in and  and referring to it asα œ " Ð"Ñ Ð#Ñ

Generalized Trapezoidal Uniform (GTU) distributions it has the pdf:
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where the parameter vector ,   and  and theF œ Ö+ß ,ß -ß .ß ß × +  ,  -  . 7ß 8  !7 8

normalizing constant  is given byV FÐ Ñ

V FÐ Ñ œ Ð%Ñ
Ð,  +Ñ  Ð-  ,Ñ  Ð.  -Ñ

78

8 78 7
.

Figure 1C (Figure 1D) displays the GTU pdf (cdf) with in Figure 1B. Note that the modalα œ "

value of the GTU pdf is attained for all values in the central stage . Hence, similarly to theÐ$Ñ Ò,ß -Ó

original trapezoidal distribution (Figure 1A) one may directly elicit this modal range by means of a

substantive expert (who may be more "comfortable" here, being relieved of providing a fixed point

estimate for the modal value as required for a triangular distribution). Unfortunately, this is not

plausible for the more general GT family  involving the boundary ratio parameter  (see, e.g.,Ð"Ñ α

van Dorp and Kotz (2003)).

In the remainder of this paper we shall propose two elicitation procedures for the parameters of

GTU distributions . In Section 2, the first method will be presented assuming that the boundaryÐ$Ñ

parameters  and  are known due to natural boundary constraints such as, for example, a return on+ .

investment (ROI) or a probability having a natural support . After eliciting the central stageÒ!ß "Ó

bounds  and , the tail parameters and will indirectly be elicited from a substantive expert, - 7 8

following the fixed interval method mentioned in . Garthwaite, Kadana and   (2005)O'Hagan The

second method, dealing with unknown boundary parameters  and  to be discussed in Section 3,+ .

elicits also a lower  and upper quantiles  which are used to solve for the lower  and+  , .  - +: <

the upper  bounds  and  are usually assumed to be equal to and  or  and ,. Ð: < !Þ!& !Þ*& !Þ"! !Þ*!

respectively). In Section 4, we present an illustrative decision tree example that compares the

potential effect of eliciting the information in Section 3 with eliciting a point estimate for the most

likely value and the lower and upper quantiles  and .7 + .!Þ"! !Þ*!

2. Indirect elicitation of tail parameters with fixed lower and upper bounds

Mixing distributions is common practice in dealing with e.g. Phase-Type, Erlang, Poisson and

Normal distributions (see, e.g., Johnson and Taaffe (1991) and Karlis and Xekalaki (1999)). The pdf
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Ð$Ñ may be expressed as a mixture (see, e.g., van Dorp and Kotz (2003)) involving three densities

0 ß 0 ß 0\ \ \" # $
 with bounded support, such that
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where V F 1Ð Ñ Ð%Ñ is given by . Observe that the mixture weight of the first stage  decreases as its tail
"

parameter  increases. A similar observation can be made for the third stage with obvious7

modification.

After some algebraic manipulations we derive from Ð&Ñ  Ð*Ñ
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Note that in expressions  and  the second factor is a weighted sum of the support widthsÐ"!Ñ Ð""Ñ

Ð,  +Ñß Ð-  ,Ñ Ð.  -Ñ and , where the weights of the first and the third terms are also, but not

solely, determined by the tail parameters  and , respectively. 7 8 Expressions and  allow forÐ"!Ñ Ð""Ñ
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where the mixture probabilities  and  are given by .1 1 1" # $ß Ð*Ñ

Assume now that the parameters  and  are known and that + . the modal range  has beenÒ,ß -Ó

directly elicited from a substantive expert. We shall now proceed using the fixed interval method

mentioned in . Namely, we suggest eliciting the relativeGarthwaite, Kadana and   (2005)O'Hagan

likelihoods of the uncertain quantity at hand falling in the1 1 1 1# " # $Î Îand (or their reciprocals) 

central stage  relative to the tails  and , respectively. Ò,ß -Ó Ò+ß ,Ñ Ð-ß .Ó Next, we directly solve for the

tail parameters and utilizing relationships:7 8
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which immediately follow from . Observe that expression  implies that the ratio of theÐ*Ñ Ð"%Ñ

central stage and first (third) stage probability equals ( times the ratio of the widths of their7 Ñ8

corresponding supports.

Figure 1C (Figure 1D) depicts a GTU pdf (cdf) of a ROI (with the natural support forÒ!ß "ÓÑ

which it is twice as likely for the uncertain quantity to fall in the modal range  as comparedÒ!Þ$ß !Þ&Ó

to the tails  and . Hence, . The parameter values  andÒ!ß !Þ$Ñ Ð!Þ&ß "Ó Î œ Î œ # œ $1 1 1 1# " # $ 7

8 œ & Ð"#Ñ B œ !Þ$ now follow directly from . Observe in Figure 1D that the quantiles and!Þ#&

B œ !Þ&Þ!Þ(&

3. Indirect elicitation of tail parameters and lower and upper bounds

The elicitation of lower and upper quantiles for a bounded uncertain quantity adheres to the

prevailing view that lower and upper bounds of an uncertain phenomenon as a rule fall outside of

the accumulated experience of a substantive expert (see, e.g., Selvidge (1980), Davidson and Cooper

(1980), Alpert and Raiffa (1982), Keefer and Verdini (1993))  Forcing a substantive expert in such a.

scenario to provide strict lower and upper bound estimates may lead to a misrepresentation of

uncertainty. he elicitation of the quantiles  and  was suggested by Keefer and Verdini T + .!Þ"! !Þ*!

(1993).  Instead of specifying the values and   an alternative procedure could be: œ !Þ"! < œ !Þ*!

to request the substantive expert to specify some other quantile levels  and  that he/she is: <

comfortable with. Thus we shall assume here that the lower and upper bound parameters  and + .

and tail parameters  are 7 8 and unknown.

Moreover, we shall assume that the bound parameters  and tail parameters and +ß . 7 8 need to

be determined from ( ) a directly elicited modal range , ( ) the relative likelihoods  and3 Ò,ß -Ó 33 Î1 1# "

1 1 1 1 1 1# $ : < # " # $Î 333 +  , .  - Î Î, and ( ) a lower  and upper  quantiles. The ratio  ( ) may be

elicited here by eliciting the likelihood of the central stage  relative to the uncertain quantityÒ,ß -Ó
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being less (larger) than the lower bound  (upper bound ) of this central stage. The probabilities, -

associated with each interval are then obtained utilizing that their sum must be  (see, " Garthwaite,

Kadana and   (2005)O'Hagan ). From expression , we can immediately write the lower  and theÐ"%Ñ +

upper  bounds as  functions of the tails parameters  and , respectively. Specifically,. linear 7 8

 + œ ,  ´ + Ð Ñß

. œ . Ð Ñ

1
1

"

#

Ð-,Ñ ‡

‡

7 7

8 8-  ´
Ð"&Ñ

1
1

3Ð-,Ñ

#
.

(Notation + Ð Ñ Ò. Ð ÑÓ‡ ‡7 8   for   emphasizes their dependence on  .) Note that the+ Ò.Ó 7 Ò8Ó

expressions   the lower Ð"&Ñ do not involve + .: < and upper  quantiles, but result directly from the

relations  linking the probability in each stage of the GTU distribution with the width of theÐ"%Ñ

support of each stage via the tail parameters  and .7 8

In the Subsections 3.1 and 3.2 we shall derive two additional functions such that  and+ Ð Ñ´ +~ 7

. Ð Ñ´ .
~

8 7 8 that describe a  relationship between the tails parameters  and  and thenon-linear

lower  and upper  bounds. These relationships   and  and, under certain+ . + .do involve : <

uniqueness conditions, we may solve for  ( by setting (by setting7 8 7 7Ñ Ð Ñ+ Ð Ñ œ‡ +~

. Ð Ñ œ‡ 8 8.
~
Ð Ñ).

3.1. Solving for the left tail parameter   and the lower bound 7 +

From the expressions for the GTU cdf  and the definition of a lower quantile  we obtainÐ"#Ñ +  ,:

(by substitution) that

J Ð+ l Ñ œ œ : Í + œ +  Ð,  + Ñ ´ Ð Ñ Ð"'Ñ
+  + Ð ß :ß Ñ

,  + "  Ð ß :ß Ñ
\ : " : :

: "

"
F 1

- 1

- 1
Š ‹7 7

7
7+~ ,

where  and:  1"

!  Ð ß :ß Ñ œ Ð:Î Ñ  "Þ Ð"(Ñ- 1 17 " "
"Î7

Note that the left hand side (LHS) of expression links the first stage probability to theÐ"'Ñ 1"

quantile level  the width of the support of the first stage  and the distance  from:ß Ð,  +Ñ Ð+  +Ñ:

the lower bound to the lower quantile + Þ:
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Note that both + +~ are just expressions for the same parameter  in differentÐ Ñ7 7 and + Ð Ñ‡  

situations. e may now solve for a tail parameter  satisfying the lower quantile constraint 4  byW 7 Ð" Ñ

setting

+ ß Ð")Ñ~Ð Ñ œ7 7+ Ð Ñ‡

where  is the linear function defined by . + Ð Ñ‡ 7 Ð"&Ñ In the appendix we shall prove that the LHS

lower bound function +~Ð Ñ Ð")Ñ7  in  is concave, strictly decreasing with the asymptote

TÐ Ñ œ Þ Ð"*Ñ
,  + + 

Ð Ñ
7 7

,

#
: :

log :
1"



From + +~ ~Ð Ñ  +  ! Ð"'Ñ Ð Ñ7 7 7  for all  (see ) and the properties of the function : , it

immediately follows that the number of solutions of equation  equals that of the equationÐ")Ñ

TÐ Ñ œ Ð#!Ñ7 7+ Ð Ñ‡ .

However, this number can be at most one, since both functions in  are linear From,Ð#!Ñ Þ

+  ,

#
œ Ð#"Ñ

:
TÐ!Ñ  + Ð!Ñ œ ,‡ .

it next follows that a unique solution for the tail parameter  exists for equation when the7 Ð")Ñ iff 

slope of the asymptote TÐ Ñ7 7 is less steep than that of the  function linear + Ð Ñ‡  defined by ,Ð"&Ñ

i.e.

,  +
 ,  Ð-  ,Ñ  + Ð##Ñ

:

:
:

logŠ ‹1"


Ð-  ,Ñ1

1
"

#
Í 0 ,

where

0 œ  !Þ Ð#$Ñ
:

1

1
"

#
logŠ ‹1"

Hence, condition  determines both the existence and uniqueness of a solution for equationÐ##Ñ

Ð")Ñ.
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Figure 2A depicts both functions and the asymptote for the case that~+ Ð Ñ‡ 7 7,  +Ð Ñ TÐ7Ñ 

, œ )!ß - œ "!! Î œ "Þ& Î œ " + œ (", and  and lower quantile . We have from1 1 1 1# " # $ !Þ"!

1 1 1 1# " # $Î œ "Þ& Î œ "and  that

1 1 1" # $œ ß œ œ Ð#%Ñ
" $

% )
.

For the data in Figure 2A the condition  reduces toÐ##Ñ

)!  "$
"

$
logÐ#Þ&Ñ ¸ '(Þ()$  + œ ("Þ Ð#&Ñ!Þ"!

Hence, a unique solution of equation  exists for the data in Figure 2A. Ð")Ñ Solving for  using a7

standard root finding algorithm yields

7 œ "Þ%"* Ð#'Ñ

and substituting  in either 7 7 7œ "Þ%"* + Ð"&Ñ~  yields the lower boundÐ Ñ Ð"'Ñ  or + Ð Ñ‡  

+ œ + Ð#(Ñ~ .Ð7 7Ñ œ ¸ '"Þ!)&+ Ð Ñ‡
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Fig. 2  Lower bound functions  Þ + Ð Ñ Ð"&Ñ‡ 7 7 7  and ~+Ð Ñ Ð"'Ñ with its asymptote TÐ Ñ Ð"*Ñ  for the data

, œ )!ß - œ "!! œ #& œ $(Þ& + œ (" + ¸, %, %; A: lower quantile , B: lower quantile .1 1" # !Þ"! !Þ"! '(Þ()$
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Figure 2B plots the functions  +~Ð7Ñ 7 7, + Ð Ñ‡  and the asymptote for the boundary caseTÐ Ñ Ð##Ñ

+ ¸ '(Þ()$!Þ"! . Observe that in this case no solution for equations  and  existsÐ")Ñ Ð#!Ñ Þ

From and we conclude that the pre-assigned quantile level  provides a lowerÐ##Ñ Ð#$Ñ :

threshold for the quantile  defined . This threshold is just a function of the width of the+ Ð##Ñ:

central stage , its probability , the first stage probability  and the quantile level . In caseÐ-  ,Ñ :1 1# "

a substantive expert specifies a set of values for ,  and  and  for which the condition + ß , - Ð##Ñ: # "1 1

is not met, he/she may be given the option to revise his/her assessments utilizing the threshold

value  in as feedback. The use of feedback to enhance consistency in an expert's,  Ð-  ,Ñ Ð##Ñ0

judgement is quite common (see, e.g., Denham and Mengersen (2007)).

3.2. Solving for the right tail parameter  and the upper bound 8 .

After fully digesting the derivations in subsection 3.1 this subsection is straightforward. From the

expression for the GTU cdf  and the definition of the upper quantile  we obtain thatÐ"#Ñ .  -<

J Ð. l Ñ œ œ < Í . œ .  Ð.  -Ñ ´ Ð Ñß Ð#)Ñ
.  B Ð ß <ß Ñ

.  - "  Ð ß <ß Ñ
\ < < <

$

$
F

. 1

. 1
"  1$Š ‹8 8

8
8.

~

where  and1$  "  <

!  Ð ß <ß Ñ œ ÖÐ"  <ÑÎ ×  "Þ Ð#*Ñ. 1 18 $ $
"Î8

Analogously as in Subsection 3.1, we may solve for the tail parameter  satisfying the upper8

quantile constraint  by settingÐ#)Ñ

. ß Ð$!Ñ
~
Ð Ñ œ8 8. Ð Ñ‡

where  is the linear function defined by . . Ð8Ñ Ð"&Ñ‡ T ~he following properties of are derived in.Ð Ñ8  

the appendix:  is strictly increasing is convex and possesses the asymptote. .
~ ~
Ð!Ñ œ . ß Ð Ñ ß< 8

WÐ Ñ œ Þ Ð$#Ñ
-  . .

Ð Ñ
8 8

- 

#
< <

log "<
1$



A unique solution to equation  exists iffÐ$!Ñ
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.  -  Ð$$Ñ< <Ð-  ,Ñß

where

<
1

1
œ  !Þ Ð$%Ñ

3

#
logŠ ‹1$

"  <

Figure A depicts both functions defined by and the~
$ . Ð"&ÑÐ Ñ Ð#)Ñß8 8 defined by  . Ð Ñ‡  

asymptote for the case that  WÐ8Ñ Ð$#Ñ defined by  , œ )!ß - œ "!! Î œ "Þ& Î œ ",  and 1 1 1 1# " # $

and upper quantile For this data a unique solution of  exists since the RHS. œ "#"Þ Ð$!Ñ!Þ*!

threshold of equalsÐ$$Ñ -  <Ð-  ,Ñ 

"!!  #! . œ "#" Ð$&ÑlogÐ$Þ(&Ñ ¸ "#'Þ%#&  !Þ*! .
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Fig. 3  Upper bound functions Þ . Ð Ñ Ð"&Ñ‡ 8 8 and ~.Ð8Ñ Ð#)Ñ with its asymptote WÐ Ñ for the data

, œ )!ß - œ "!! œ œ $(Þ& . œ "#" . ¸, %;  A: upper quantile , B: upper quantile .1 1# $ !Þ*! !Þ*! "#'Þ%#&

Solving for  using a standard root-finding algorithm yields8

8 œ #Þ(&( Ð$'Ñ
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and substituting  in either 8 8 8œ #Þ(&( . Ð"&Ñ
~ defined by  yields theÐ Ñ Ð#)Ñ defined by  or . Ð Ñ‡  

upper bound

. œ . Ð$(Ñ
~
Ð8 7Ñ œ ¸ "&&Þ"$&. Ð Ñ‡ .

Figure 3B plots the functions  .
~
Ð7Ñ 7, . Ð Ñ‡  and the asymptote for the case of the LHSWÐ Ñ8

boundary given by . O. Ð$(Ñ!Þ*! ¸ "&&Þ"$&  bserve that here no solution exists for equation Ð$!ÑÞ

Finally, Figure 4 presents the GTU distribution which satisfies the constraints , œ )!ß

- œ "!!ß Î œ "Þ& Î œ " + œ (" . œ "#"1 1 1 1# " # $ !Þ"! !Þ*!and  and possesses lower  and upper 

quantiles Its mixture probabilities  and   follow from and .Þ ß Ð#%Ñ Î œ "Þ& Î œ "1 1 1 1 1 1 1" # $ # " # $

The unique tail parameters  and  that follow are provided by  and . The unique lower7 8 Ð#'Ñ Ð$'Ñ

and upper bounds  and  are given by  and .+ ¸ . ¸ Ð#(Ñ Ð$(Ñ'"Þ!)& "&&Þ"$&
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Fig. 4  GTU distribution  , lower quantile  andÞ Ð$Ñ , œ )!ß - œ "!! ß + œ ("with 1 1 1 1# " # $Î œ "Þ&ß Î œ " !Þ"!

upper quantile . The tail parameter values . œ!Þ*! "#" "Þ%"* #Þ(&( '"Þ!)&7 8¸ ß ¸ ß + ¸and the lower and

upper bounds  were determined utilizing the equations and .. ¸ "&&Þ"$& Ð"'Ñ Ð#(Ñ

4. An illustrative decision tree example

It is not uncommon that in case of complicated uncertainty models in a decision tree or an

influence diagram that a Monte Carlo analysis provides a convenient approach for solving the
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decision problem at hand (see, e.g., Clemen and Reilly (2001)). Consider the decision tree in Fig.5,

which is a modified version of the scenario in Clemen and Reilly (2001), p. 461.

Supplier 1

Supplier 2

11.26X

Amount of Fabric (in 1000 Yards)

X

X

X

X

X

12X

960 + 9 ( X-80 )

1140 + 6 ( X-100 )

1260 + 3 ( X-120 )

Cost ( in $1000’s)

X ≤ 80

80 < X ≤ 100

100 < X ≤ 120

120 < X

Fig. 5  Decision tree for the fabric buyer Janet DawesÞ

Here, the decision maker Janet Dawes (J.D.) is a purchaser for a factory that produces clothes

who needs to choose between two suppliers of the fabric to produces a new lines of clothes for the

upcoming season. Supplier 1 will supply the fabric at a cost of $11.26 regardless of the amount of

fabric that J.D. orders. Supplier 2 has a more gradual pricing structure. The first 80,000 yards will

cost $12.00 per yard. The next 20,000 will cost $9.00 per yard followed by a subsequent price drop

of another $3.00 dollars for the following 20,000. Finally, Supplier 2 charges only $3.00 per yard for

anything more than 120,000 yards.

After scrutinizing the uncertainty for the sales of the new clothing line in the upcoming season,

and drawing from her past experience, J.D. assesses that she is 90% sure that the amount of fabric

needed over the season will be above 71,000 yards, but with the same certainty level will not exceed

121,000 yards. In addition, she believes that the most likely value ranges between 80,000 and 100,000

yards. Finally, she assesses that it is 1.5 times more likely for the number of yards to fall within the
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estimated modal range 80,000 100,000 than being less than 80,000, while it is equally likely to be

larger than 100,000 yards. (A somewhat optimistic assessment.)

A distribution that is consistent with J.D.'s degree of belief statements above is the GTU

distribution  in Figure 4 and  in $1000 's). Using the Monte Carlo method we generateÐ$Ñ Ð+ß ,ß - .

the cumulative risk profiles in Fig. 6 for both suppliers using a sample of size  yielding an"!ß !!!

Expected Monetary Value (EMV) for supplier  of  1067.49 $1000 and an EMV of " ¸ ‚ ¸

1068.07 $1000 for the second. Hence, the difference between their EMV's is approximately‚

$584.76.  Since J.D.'s objective is to minimize cost (and being devout risk neutral) she would choose

Supplier 1 despite the larger standard deviation of 209.73 $1000 for Supplier 1 as compared to‚

the 147.56 $1000 for Supplier 2.‚

0.0

0.2

0.4

0.6

0.8

1.0

500 700 900 1,100 1,300 1,500 1,700
(in $1000's)

C
D

F

Supplier 1 GTU Supplier 2 GTU

Fig. 6  Cumulative risk profiles for Supplier 1 and Supplier 2 for the decision tree in Fig.5 developedÞ

using 10,000 samples generated using the Monte Carlo method.

In the absence of a GTU distribution to match J.D.'s (substantive expert's) degree of belief, a

traditional approach would have been for a normative expert (e.g. working for J.D.) to select say a

triangular distribution that matches the lower quantile  upper quantile  andB œ ("ß B œ "#"!Þ"! !Þ*!

carry out a sensitivity analysis by setting its most likely value to  and Lower and7 œ )! 7 œ "!!Þ
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upper bounds may be obtained for these triangular distributions using e.g. the method of Keefer and

Verdini (1993) or that of Kotz and van Dorp (2006). Another appropriate distribution for the

normative expert's sensitivity analysis would have been a uniform distribution with the same 10%

and 90% quantiles and having a mode at or at albeit degenerates ones). In case of the)! "!! Ð

uniform distribution this results in Supplier 2 having the lowest EMV 1079.80 $1000 amongst¸ ‚

the two (unlike for the previous GTU analysis). The optimal decision also switches between

Suppliers 1 and 2 with an optimal EMV of 1056.81 $1000 for Supplier 1 in case of the¸ ‚

triangular distribution with the left mode  and an optimal EMV of 83 38 $1000 for)! ¸ "! Þ ‚

Supplier 2 in case of the triangular distribution with the right mode  (both having the same the"!!

lower  and upper quantiles B œ (" B œ "#"ÑÞ!Þ"! !Þ*!

Noting this switching and the differences in the values of the optimal EMV's, J.D.'s normative

expert decides to plot the cumulative risk profiles for both Suppliers under these three scenarios.

Figure 7 reveals that the differences between the cumulative risk profiles can be quite substantial.
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(in $1000's)

C
D

F

Supplier 2 LM Triang Supplier 2 RM Triang
Supplier 2 Uniform
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Fig. 7  Sensitivity analysis of cumulative risk profiles for Supplier 1 and Supplier 2 for the decision tree inÞ

Figure 5 developed using 10,000 samples generated using the Monte Carlo method. The distribution of

the demand X was modeled using the Triangular Left Mode, Triangular Right Mode and Uniform

distributions with the parameters specified in Table 1.
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Observe a difference of at least  (at 1100 $1000) for the cumulative risk profiles of both!Þ"! ‚

suppliers, being solely a function of the choice of the distribution for the fabric yards required over

the season and the particular mode being selected in the range from  to . This could pose a)! "!!

dilemma for the normative expert regarding which distribution and which mode to utilize (in the

absence of the GTU distribution). Puzzled by the observed differences in Figure 7, the normative

expert decides to model the distribution for (fabric yards required) by means of beta, asymmetric\

Laplace (AL) distributions and gamma type distributions with the same lower  and upperB œ ("!Þ"!

quantiles  while switching between modes  and .B œ "#" 7 œ )! 7 œ "!!!Þ*!

In the AL case it seems to be convenient to use the so-called "quantiles-mode parameterization"

of Kotz and van Dorp (2005) with pdf

0 ÐBl+ ß7ß , Ñ œ Ð$)Ñ
; IB:  Ð7 BÑ B Ÿ 7

Ö"  ;× IB:  ÐB 7Ñ B  7
\ : <

Ú
ÛÜ

š ›
š ›

T T

U U ,  

where the coefficients  and  areT U

T Uœ œ Ð$*Ñ
P91 P91

7  + , 7

š › š ›; ";
: "<

: <
 and ,

respectively (don't confuse the constant  here with the asymptote in ); The modeT TÐ7Ñ Ð"*Ñ

probability in  and is the unique solution of the equation; Ð$)Ñ Ð$*Ñ

; ; "  ; "  ;
P91 œ P91 Ð%!Ñ

: "  "  <$ $
š › š ›,

where For the gamma distribution with support we shall use the$ #œ Ð7 + ÑÎÐ,  + ÑÞ Ò ß∞Ñ: < :

standard parameterization

0 ÐBl ß ß Ñ œ ÐB  Ñ /B:Ö  ÐB  ÑÎ ×
"

Ð Ñ
\

"# α " # # "
" > αα

α . Ð%"Ñ

A reflected gamma distribution with support - , (with a tail towards the left) is required toÐ ∞ Ó#

match the right mode  and the quantiles  and . The various7 œ "!! B œ (" B œ "#"!Þ"! !Þ*!

parameters settings for these distributions are presented in Table 1. While the distributions in Table
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1 are consistent with the lower and upper quantiles of J.D.'s degree of belief and the mode is located

within the specified range , neither of these distributions match her indirect estimates forÒ)!ß "!!Ó

1 1" $œ T<Ð\ Ÿ )!Ñ œ !Þ#& "  œ T<Ð\ Ÿ "!!Ñ œ !Þ'#&Þ and Table 1 also contains for

comparison two columns of the values for these probabilities.

Table 1. Parameter settings of various distributions with lower and upper  quantiles,B œ (" B œ "#"!Þ"! !Þ*!

and the mode of either  or Two columns contain values for  and where )! "!!Þ T<Ð\ Ÿ )!Ñ T<Ð\ Ÿ "!!Ñß \

represents the number of fabric yards required in J.D.'s decision problem in Figure 5.

Distribution

Uniform
Triangular

Beta

79./ œ )! T<Ð\ Ÿ )!Ñ T<Ð\ Ÿ "!!Ñ

+ œ '%Þ(&ß , œ "#(Þ#& !Þ#%% !Þ&'%

+ ¸ &'Þ'$&ß 7 œ )!ß , ¸ "%%Þ*&! !Þ#'& !Þ'%)

+ ¸ '"Þ)*(ß , ¸ #**Þ))&ß œ #ß ¸ "$Þ"%' !Þ#*$ !Þ')(

+ œ ("ß 7 œ )!ß , œ "#"ß ;Ð∞Ñ ¸ !Þ#)( !Þ#)( !Þ(#"

¸ #Þ%(!ß ¸ "$Þ#!&ß ¸ '!Þ'!! !Þ#*) !Þ

α "

α " #

Asymmetric Laplace

Gamma
!Þ"! !Þ*!

'*)

+ œ '%Þ(&ß , œ "#(Þ#& !Þ#%% !Þ&'%

+ ¸ %*Þ'(*ß 7 œ )!ß , ¸ "%!Þ!"" !Þ#!# !Þ&&(

+ ¸ &$Þ%*&

Distribution

Uniform
Triangular

Beta

79./ œ "!! T<Ð\ Ÿ )!Ñ T<Ð\ Ÿ "!!Ñ

ß , ¸ "$$Þ%#'ß œ #ß ¸ "Þ(")( !Þ#"% !Þ&&$

+ œ ("ß 7 œ "!!ß , œ "#"ß ;Ð∞Ñ ¸ !Þ !Þ"(# !Þ&&!

¸ $&Þ$('ß ¸ $Þ#*$ß

α "

α "

Asymmetric Laplace

Reflected Gamma
!Þ"! !Þ*! 550

# ¸ #"$Þ#$ !Þ"*# !Þ&%&

Table 2 contains the values of the EMV and the standard deviations for both suppliers for the

various choices of distributions presented in Table 1. We observe from Table 2 that the decision

switches from Supplier 1 to Supplier 2 when one switches from the left mode  to the right one)!

"!!, while the standard deviations are always smaller for the Supplier 2 distributions, independently

of the selected mode. To complete the sensitivity analysis, Figure 8 plots the cumulative risk profiles

for both suppliers for the distributions in Table 1 grouping them by suppliers and the two modes.
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Table 2. EMV and standard deviations of the cost distributions for the two suppliers using the GTU

distributions in Figure 8 and the various distributions in Table 1, to model , where represents the\

number of fabric yards required in J.D.'s decision problem in Figure 5.

EMV Supplier 1 
(in $1000's)

EMV Supplier 2 
in $1000's)

EMV Supplier 1 < 
EMV Supplier 2? 

False = 0, True = 1

St. Dev. MV 
Supplier 1   

(in $1000's)

St. Dev. MV 
Supplier 2     (in 

$1000's)

St. Dev. Supplier 1 < 
St. Dev. Supplier 2? 
False = 0, True = 1

GTU 1,067.49 1,068.07 1 209.73 147.56 0
Uniform 1,081.29 1,079.80 0 202.17 147.59 0
Triangular LM 1,056.81 1,060.23 1 209.36 149.03 0
Triangular RM 1,087.53 1,083.38 0 207.22 152.82 0
Beta LM 1,050.55 1,052.74 1 224.50 148.47 0
Beta RM 1,086.68 1,082.98 0 205.69 151.76 0
Gamma LM 1,049.15 1,050.50 1 232.13 149.66 0
Gamma RM 1,089.02 1,082.31 0 220.13 166.74 0
Laplace LM 1,040.67 1,042.00 1 245.76 160.26 0
Laplace RM 1,091.34 1,081.30 0 240.26 182.54 0

Observe from Figure 8 that, despite the equality of a mode and a lower and upper quantiles amongst

the distributions for , the differences between the cumulative risk profiles (CRP's) for the\

suppliers can be quite substantial. A largest difference of approximately  at !Þ") ""!! ‚ $1000 for

both suppliers in Figures 8A and 8B certainly decreases the comfort level of J.D.'s normative expert

even more. Apparently, a lower and upper quantiles estimate and a single mode do not provide

sufficient amount of information in order to fit  and choose a specific distribution. Kotz and Van

Dorp (2006) arrived at the same conclusion using a different scenario and suggest the elicitation of

one additional quantile to fit uniquely a TSP distribution with density

0 ÐBl+ß7ß ,ß 8Ñ œ Ð%#Ñ
+  B Ÿ 7

7 Ÿ B  ,
\

8 B+
Ð,+Ñ 7+

8"

8 ,B
Ð,+Ñ ,7

8"

ÚÝÛÝÜ
Š ‹
Š ‹ , 

where , to determine the power parameter . (This TSP distribution becomes a triangular8  ! 8

distribution for ).8 œ #

One approach that the decision maker J.D could follow here is to attempt to fit her degree of

belief statements  and  amongst the distribution inT<Ð\ Ÿ )!Ñ œ !Þ#& T<Ð\ Ÿ "!!Ñ œ !Þ'#&

Table 1. The distribution that matches most closely (but not exactly) is the triangular distribution
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with a mode at  yielding the same optimal decision for Supplier 1 as obtained in the earlier analysis)!

using the GTU distribution in Fig. 6, which does accurately matche these statements.
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Fig. 8  Sensitivity analysis of cumulative risk profiles for suppliers 1 and 2 for the decision tree in Figure 5Þ

developed by means of 10,000 samples generated using the Monte Carlo method. The distributions of

the demand X were modeled using 9 distributions in Table 1 which share .B œ ("ß B œ "#"!Þ"! !Þ*!

A: Supplier 1 CRP's when the distribution of  has the mode at ; B: Supplier 2 CRP's when the\ )!

distribution of  has the mode at ; C: Supplier 1 CRP's when the distribution of  has the mode at ;\ )! \ "!!

D: Supplier 2 CRP's when the distribution of  has the mode at ;\ "!!
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Moreover, the GTU distribution does match J.D.'s modal range statement of  while theÒ)!ß "!!Ó

triangular distribution does not. We are quite at ease that a normative expert would be most

comfortable with the GTU distribution when accepting J.D.'s degree of belief statements.

Concluding Remarks

The scenario in this paper has been specifically constructed with the displayed behavior in mind. It

provides an illustration of what could be the consequences when a substantive expert specifies a

modal range rather than a point estimate (in the absence of the generalized trapezoidal-uniform

distribution). We have succeeded to construct this example utilizing the fact that the specification of

lower and upper quantiles and a single mode prevent to fit a univariate continuous uniquely, and the

differences could be quite substantial. Hence, additional information ought to be elicited to further

refine such a fitting procedure. In case of the generalized trapezoidal-uniform distribution

distribution, this information is elicited in terms of the relative likilihood of the first and third stages

of the distribution as compared to its central modal range.  The purpose of introducing the

generalized trapezoidal-uniform distribution distribution here is not to replace well established

distributions such as the beta, triangular, asymmetric Laplace, gamma or any other appropriate

distribution. It, however, does provide one  additional distribution to the arsenal of available

ditribution to match to a substantive experts degree of beliefs statements.

We have described two elicitation procedures for generalized trapezoidal-uniform distribution

distributions defined in  and . The first method assumes that the lower and upper bounds areÐ$Ñ Ð%Ñ

known based on some physical boundary constraints. The second one, which is possibly more

realistic albeit more involved, solves for the lower and upper bounds by eliciting a lower and upper

quantiles. We believe that these elicitation procedures will facilitate an application of GTU

distributions in problems of decision, risk and uncertainty analysis.
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Appendix. Mathematical Properties of non-linear lower and upper bound functions involved

in the elicitation procedure.

Here we shall show that: ( ) the function3

0Ð8Ñ œ  Ð  Ñß 8   !ß
B

"  B
α " α

"Î8

"Î8
ÐEÞ"Ñ

with the auxiliary parameters s a strictly decreasing concave (increasing convex)B − Ð!ß "Ñ, and  iα "

function in  provided  Also, ( )8  Ð  ÑÞ 33α " α "

637 0Ð8Ñ œ 8  Þ ÐEÞ#Ñ
8 Ä ∞

" α α 

ÐBÑlog
"

#

and finally ( ) for all :333 8   !

0Ð8Ñ  8  ÐEÞ$Ñ
" α α

α "
 

ÐBÑ
Í 

log
"

#
.

In other words, the RHS of (which also appears in ) is an asymptote of the functionÐEÞ#Ñ ÐEÞ$Ñ

0Ð8Ñ ÐEÞ"Ñ defined by  and the two curves do not intersect.

Lemma 1: The function 0Ð8Ñ ÐEÞ"Ñ  defined by is strictly decreasing and concave for  and is strictlyα "

increasing and concave for .α "

Proof: Assume, without loss of generality, that  or equivalently . (Obviousα " " α   !

modifications can be carried out for the case ). α " Taking the first order derivative of  with0Ð8Ñ

respect to  we have8  !

. B

.8
0Ð8Ñ œ ÐEÞ%Ñ

B Ñ
Ð  Ñ ÐBÑ  !

8 Ð" 
" α log

"Î8

"Î8# #
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since B − Ð!ß "ÑÞ 0Ð8Ñ   ! Hence, the function is strictly decreasing when . Taking the" α

second order derivative with respect to  we have8

. B .

.8 .8
0Ð8Ñ œ  0Ð8Ñ ÐEÞ&Ñ

B

# "Î8

# "Î8

log
log

ÐBÑ " "  #

8 8 ÐBÑ" 
” • .

To prove that  is a concave function it is required to show that for all .0Ð8Ñ 0Ð8Ñ  ! 8  !.
.8

#

#

Utilizing it is sufficient to prove that, for all ,  and ÐEÞ%Ñ B − Ð!ß "Ñ 8  !

"  # #

" 
‚ 8   ! Í 1Ð8Ñ ÐEÞ'Ñ

ÐBÑ ÐBÑ

B

B

"Î8

"Î8
"

log log
  ,

where

1Ð8Ñ œ ‚ 8 ß 8  ! ÐEÞ(Ñ


" 

1
.

B

B

"Î8

"Î8
"

From and  it follows immediately  as ÐEÞ(Ñ B − Ð!ß "Ñ 1Ð8Ñ Ä ∞that  since 0 as8 Æ ! B Æ"Î8

8 Æ ! 8 Ä ∞ 1Ð8Ñ. Letting now , after some algebraic manipulations involving and applying the L'

Hopital rule we easily obtain

637 ÐEÞ)Ñ
8 Ä ∞

1Ð8Ñ œ 
#

ÐBÑlog
.

Thus to confirm the condition  for all  it is only required to prove that  is a strictlyÐEÞ'Ñ 8  ! 1Ð8Ñ

decreasing function.

Now denoting ), we have for :7 ´ B B − Ð!ß "Ñ 8  !"Î8 − Ð!ß "Ñ (recall 

7 œ ÐEÞ*ÑÈ8 B Í 8 œ
ÐBÑ

Ð7Ñ

log
log

,

.7 ÐBÑ 7 Ð7Ñ

.8 8 ÐBÑ
œ  B œ  ÐEÞ"!Ñ

log log
log#

#È8 .

Taking the derivative of with respect to and utilizing and  we arrive atÐEÞ(Ñ 8 ÐEÞ*Ñ ÐEÞ"!Ñ

. .7 . Ð7Ñ

.8 .8 .7 Ö" 7× ÐBÑ
1Ð8Ñ œ 1Ð7Ñ œ  ‚ 2Ð7Ñ ÐEÞ""Ñ

log
log

#

# #
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where

2Ð7Ñ œ #7 Ð7Ñ  Ð" 7 Ñ ÐEÞ"#Ñlog # .

Since the multiplier of in the RHS of is strictly negative it follows from ,2Ð7Ñ ÐEÞ""Ñ ÐEÞ""Ñ

7 ´ B"Î8 and  thatB − Ð!ß "Ñ

.

.8
1Ð8Ñ  ! 8  ! Í 2Ð7Ñ  ! 7 − Ð!ß "Ñ ÐEÞ"$Ñ for all for all .

From the definition of in , and noting that2Ð7Ñ ÐEÞ"#Ñ 7 − Ð!ß "Ñß

2Ð!Ñ œ " • 2Ð"Ñ œ ! ÐEÞ"%Ñ,

and observing the form of a graph of  in Figure 9, we verify that indeed  for all2Ð7Ñ 2Ð7Ñ  !

7 − Ð!ß "Ñ ÐEÞ"$Ñ ÐEÞ*Ñ 1Ð8Ñ (and thus from  and  it follows that  is a strictly decreasing function).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
m

h(m)

Fig. 9. A Plot of the function for  defined by .2Ð7Ñ 7 − Ð!ß "Ñ ÐEÞ"$Ñ

Admittedly the plot in Figure 9 cannot serve as a formal proof. However, it is not difficult but

somewhat tedious to show that the function  is strictly decreasing. This together with 2Ð7Ñ ÐEÞ"%Ñ

mathematically proves the RHS assertion  of . We invite the readers to provide an alternativeÐEÞ"$Ñ6

(possibly simpler) proof that the function  defined by is strictly decreasing for .1Ð8Ñ ÐEÞ(Ñ 8  !

6A proof of being strictly decreasing is available from the authors upon request.2Ð7Ñ
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Lemma 2: The conditions and hold for the function ÐEÞ#Ñ ÐEÞ$Ñ 0Ð8Ñ ÐEÞ"ÑÞ defined by 

Proof: From the derivative .
.8

"Î80Ð8Ñ ÐEÞ%Ñ 7 œ B given by , substituting ß B − Ð!ß "Ñ, and

applying the L'Hopital rule twice we have

637 0Ð8Ñ œ 637 ÐEÞ"&Ñ
.

.88 Ä ∞ 7 Ä "

" α " α 7 Ð7Ñ 

ÐBÑ Ð" 7Ñ ÐBÑ
œ

log log
log#

#
.

Thus

637 ÐEÞ"'Ñ
8 Ä ∞

0Ð8Ñ œ
" α

V


ÐBÑ
8 

log

where V V α " is a constant. To show that the value of (see ) we evaluateœ Ð  ÑÎ# ÐEÞ#Ñ

637 0Ð8Ñ  637 Þ ÐEÞ"(Ñ
Ð  B Ñ  8Ð "  B Ñ

"  B Ñ8 Ä ∞ 8 Ä ∞
š ›" α " α ÐBÑ  ÑÐ

ÐBÑ
8 œ

ÐBÑÐlog
log
log

α " "Î8 "Î8

"Î8

Substituting once more 7 œ B"Î8 we have

637 0Ð8Ñ  637 ÐEÞ" Ñ
Ð  7Ñ Ð " 7Ñ

" 7Ñ8 Ä ∞ 7 Ä "
š ›" α " α Ð7Ñ   ÑÐ

ÐBÑ Ð7ÑÐ
8 œ

log log
logα "

. 8

Applying of the L'Hopital rule twice to  yieldsÐEÞ")Ñ

637 0Ð8Ñ  ÐEÞ"*Ñ
#8 Ä ∞

š ›" α α 

ÐBÑ
8 œ

log
"

and the assertion  is valid. Condition  now follows immediately from the facts thatÐEÞ#Ñ ÐEÞ$Ñ

637 ÐEÞ#!Ñ
8 Æ !

0Ð8Ñ œ α,

α  ÐEÞ#"Ñ
α

α "


Í 
"

#

and from the concavity of the function 0Ð8Ñ iff (see Lemma 1).α "  
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