$\mathcal{I}^2\mathcal{SDS}$ The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2012-3 February 2, 2012

Simulation-Based Two-Stage Stochastic Programming with Recourse

Tahir Ekin
Department of Decision Sciences
The George Washington University

Nicholas G. Polson Graduate School of Business University of Chicago

Refik Soyer
Department of Decision Sciences
The George Washington University

Simulation-Based Two-Stage Stochastic Programming with Recourse

Tahir Ekin, Nicholas Polson and Refik Soyer*

11/30/2011

Abstract

In this paper we provide a simulation-based approach to solve two-stage stochastic problems with recourse. By adopting a simulation-based approach we are able to simultaneously solve for the expected recourse function and optimal first stage decision by calculating the mode of a suitably defined joint probability distribution. Both decision and stochastic uncertainty variables are treated as random. We can directly use Markov chain Monte Carlo (MCMC) simulation algorithms such as Metropolis-Hastings for our non-standard joint probability distribution. We illustrate the accuracy of our approach in a one stage stochastic problem and in two-stage recourse problems with both discrete and continuous uncertainty.

^{*}Polson is at the Graduate School of Business, University of Chicago, 5807 S. Woodlawn, Chicago IL 60637, ngp@chicagobooth.edu. Ekin and Soyer are at the George Washington University, soyer@gwu.edu.