
The Institute for Integrating Statistics in Decision Sciences

Technical Report TR-2017-5

Modeling First Bid in Retail Secondary Market Online Auctions:
A Bayesian approach

Babak Zafari
Mathematics and Science Division

Babson College, USA

Refik Soyer
Department of Decision Sciences

The George Washington University, USA



Modeling First Bid in Retail Secondary Market

Online Auctions: A Bayesian Approach

Babak Zafaria , Refik Soyer b

aMathematics and Science Division, Babson College, Babson Park, MA 02457, USA - bzafari@babson.edu

bDepartment of Decision Sciences, School of Business, The George Washington University, Washington, DC 20052, USA

Abstract

We propose a Bayesian framework to model bid placement time in retail secondary

market online B2B auctions. In doing so, we propose a Bayesian beta regression

model to predict the first bidder and time to first bid, and a dynamic probit model

to analyze participation. In our development, we consider both auction-specific and

bidder-specific explanatory variables. While we primarily focus on the predictive

performance of the models, we also discuss how auction features and bidders’ het-

erogeneity could affect the bid timings as well as auction participation. We illustrate

implementation of our models by applying to actual auction data and discuss addi-

tional insights provided by the Bayesian approach which can benefit auctioneers.

Keywords: Dynamic Probit, Beta Regression, B2B Auction, Bidder Behavior
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1 Introduction

E-commerce has transformed trading markets for both businesses and consumers, mainly

by how online auctions are conducted. Beyond changes to business-to-consumer (B2C)

and business-to-business (B2B) auctions, advances in e-commerce have enabled users to

sell their merchandise directly to other users (consumer-to-consumer, or C2C, auctions).

The literature has extensively explored challenges with optimal auction design, optimal

bidder behaviors, and the role of major factors in these processes. In this paper, we study

two critical events in the online auction process: bidders’ first bid and their decision to

participate. Specifically, we investigate whether, and how, different strategies are adopted

over the time and whether future bidding behaviors can be predicted.

The first bid, both through its size and its arrival time, plays a crucial role in an auction.

Its influence on the number of bidders and final price was noted by Bajari and Hortacsu

(2003). These findings were echoed by Simonsohn and Ariely (2008) who pointed out that

early bidding is a ”necessary condition for herding” and that the first bid -by virtue of

the offered price and time - can influence the number of bids in an auction. Ku et al.

(2006) noted how lower starting prices lower entry barriers to attract more bidders, finding

that early bidders tend to bid more in an auction, ultimately increasing the final price.

Li et al. (2009), meanwhile, discussed how early bids signal information about the item’s

value, which may increase the final price and the broader auction’s recovery rate. Most of

these studies, however, are in the context of B2C or C2C auction platforms. Our study

focuses on the formation and timing of first bids in the retail secondary market of online

B2B auctions.

The B2B auction market is an important component of the retail industry’s cost-

recovery efforts for returned and liquidated goods. According to National Retail Federation

(2015) Consumer’s Return Report, total merchandise returns accounted for almost $260.5

billion (8% of total sales) in lost sales for U.S. retailers in 2015. While some retailers

sell their store returns to a small group of brokers, others have launched their own on-

line marketplaces to liquidate returns or rely on wholesale logistics companies to liquidate

their products. These companies post information on their online platform about a pallet’s

item quantity and retail value, offering few details on the contents. Given the nature of
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the products, they are sold ”as-is” with no defined return policy. This ultimately creates

uncertainty about the items’ condition, only compounded by a lack of seller feedback.

In marketplaces where buyers are uncertain about an item’s valuation, they are likely to

rely on other auctions’ outcomes and other bidders’ behavior (Bajari and Hortacsu (2003),

Li et al. (2009)). These signals can help reduce bidder uncertainty and prove influential

in bids through similar auctions. In Pilehvar et al. (2016), the authors investigated the

impact of bidders’ internal and external reference prices on the first bid and explored how

it is moderated by bidders’ heterogeneity, which is closely related to their experience and

participation level in concurrent auctions. Empirical analyses of online auction market-

places such as eBay have similarly shown that experienced bidders tend to place their bid

closer to the beginning or end of the auction (Borle et al. (2006), Wilcox (2000)), while

less-experienced bidders may over-value an auction and suffer from the ”winner’s curse,”

paying more than an item’s true value (Bajari and Hortacsu, 2003). This could be because

less-experienced bidders are still learning about these auctions, while experienced bidders

have adopted a strategy. At the same time, bidders’ experience may influence them to

”shade” their bids - offer less than they value the item - or avoid early bidding, staving off

others in an effort to keep the final price lower. The lack of information on pallets’ value

and contents in the secondary market increases the importance of this experience.

Modeling bid times in B2B auctions is an important step in studying auction dynamics.

As mentioned, the effect of the first bid on the final outcome of the auctions has been

studied in multiple works in the literature. However, most of the studies are in the context

of B2C auctions. Given the unique characteristics of the secondary B2B auction platform,

the first bid only grows in importance in this environment. In Pilehvar et al. (2016), authors

studied first bid in B2B platforms and how it is associated with the final price of the auction.

Consistent with the literature, they showed how first bid, through its arrival time and its

size, can influence auction’s dynamic and final price. But as also discussed in their paper,

arrival time and the size of the bids are both functions of the bidder’s characteristics and

auction’s features. Furthermore, facing the secondary market conditions, auctioneers can

benefit from knowing who will participate and who will start an auction; these factors

can change the dynamics and final outcome. Developing a greater understanding of these
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dynamics also carries important managerial implications. In general, an auctioneer is selling

many of these items under a consignment agreement under which the liquidator must move

as quickly as possible to avoid inventory problems and be able to pay retailers. Secondary

market auctions also tend to have a low recovery rate 1 ($0.261 in our dataset), thus a

quick sale at the highest possible final price mitigates the impact of unsuccessful auctions.

In this work, we address the central issues of who will place the first bid at what time and

who will participate in a given auction. More specifically, we answer the following questions:

How does information available across auctions and bidders’ past activities influence their

strategy? How can we use this information to make predictions about future auctions? In

so doing, we test for changes in the significance and the dynamics of the factors over the

time. Ultimately, this can help auctioneers revise operational strategies and design more

efficient marketplaces that adapt with, and benefit from, these changes.

A number of works in the literature consider the use of Bayesian methods in modeling

online auctions. A key advantage to this methodology is that it allows for information

sharing across auctions, which proves useful when some auctions have received few bids.

In Park and Bradlow (2005), the authors proposed a Bayesian framework to capture key

behavioral components of an Internet auction such as who bids, when they bid, and how

much they bid at the auction level. In an extension to this work, Bradlow and Park (2007)

considered a latent competing set of bidders, using a Bayesian data augmentation method

to develop a Bayesian record-breaking model for bidders’ changing auction valuations from

bid to bid. Li et al. (2009) implemented a hierarchical Bayesian framework based on the

developed model of Park and Bradlow (2005) to study how different auction features influ-

enced bidders’ perception toward the auction’s uncertainty. The authors have suggested a

need for studying the dynamics of bidding behavior over time to develop stronger models.

A central contribution of this paper is the development of Bayesian models to study

auctions at the bid level, incorporating participant bidding history and real-time activity. In

this work, we extend the use of Bayesian beta regression and dynamic models to understand

and predict bidder behavior. Few, if any, papers to the best of our knowledge have studied

auctions and bidding behaviors over time using these models. The developed models also

1Recovery rate is defined as the final price, divided by the pallet’s retail value.
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can help managers identify bidders with a low or high probability of participation or help

direct bidder traffic to less-attractive auctions. Using these models also helps managers

identify potential first bidders and obtain a more accurate estimation of first-bid value and

consequently final outcome of the auction.

The rest of the paper is organized as follows. In section 2, we propose a Bayesian beta

regression model to describe bid arrival times and to predict the first bidder. We also

discuss the studied auction platform, the data, and the results of the model. In section 3,

we consider a Bayesian dynamic probit model for bidder participation. In section 4, we

conclude by discussing limitations of our proposed approaches and possible extensions.

2 Modeling Time to First Bid

In view of our previous discussion on the major role that the first bid plays in auction

dynamics, here we propose a model to describe first time to bid in an auction. In doing

so, we model (potential) bidders’ time to their first bid and identify the first bidder by

comparing the distributions of bidders’ bid time. In defining the time of the first bid, it is

more appropriate to treat time relative to the total auction duration. Thus,the bid time is

defined as a ratio of the time passed (since the auction has started) to the total time of the

auction, that is, T imePassed
TotalT ime

. We refer to this relative bid time, which takes values in (0, 1),

as the bid time in our development.

We let random variable Yij denote the time of first bid of bidder i in auction j. Since

Yij takes values in (0, 1), we assume that it follows beta density given by

p(yij|aij ,bij | aij , bij) =
Γ(aij + bij)

Γ(aij)Γ(bij)
y
aij−1
ij (1− yij)

bij−1, 0 < yij < 1

where aij > 0, bij > 0 and Γ(.) is the gamma function. We denote the beta density as

Yij|aij, bij ∼ Beta(aij , bij) and reparametrize it as aij = φµij, bij = φ(1− µij) where

E[Yij] = µij, and V [Yij ] =
µij(1− µij)

1 + φ
,

are the mean and variance of Yij, respectively. Thus, we can denote beta density as

Yij|µij, φ ∼ Beta(µij , φ).
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The reparamerization of the beta density provides us with flexibility in considering

bidder and/or auction-specific covariates in our model. Specifically, we can write

h(µij) = βXij,

using a link function h(.) where β = (β1, ..., βk) is a vector of k regression parameters and

Xij = (X1,ij, ..., Xk,ij) is a vector of k explanatory variables corresponding to bidder i in jth

auction. In our development, we consider both probit and logit link functions and compare

their performance. We refer to this beta regression model with fixed precision parameter φ

as ”Model 1”. In Model 1 we assume a multivariate normal prior on β and a gamma prior

on the precision φ where β and φ are assumed independent apriori. Using the independence

assumption of the observations, the likelihood function will have the following form:

L(β, φ) =

n
∏

i=1

Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1
i (1− yi)

(1−µ)φ−1

We can use Gibbs sampling to generate MCMC samples from poster distribution of p(β, φ |

Y ) by repeatedly sampling from full conditional distribution of p(β | φ, Y ) ∝ L(β, φ)p(β)

and p(φ | β, Y ) ∝ L(β, φ)p(φ). In this development, we use normal priors for β’s and

gamma prior for φ.

As an alternative model, we relax the homogeneity assumption on the precision pa-

rameter by allowing it to change with the covariates. Specifically, we reparameterize the

precision as φij and use log link function to write

log(φij) = γXij ,

where γ = (γ1, ..., γk) is a vector of k parameters. We refer to the heterogeneous precision

model as ”Model 2” in our development. Specification of Model 2 is completed by assuming

independent multivariate normal priors on β and γ vectors.

In both models, the vector of covariates consists of two groups of variables: one group

provides information about the auction and the second group explains bidders’ heterogene-

ity. The bidder-specific variables can be divided into two categories: variables related to

bidders’ prior bidding activities and variables capturing their activities around the time of

the focal auction. The dataset and list of the variables will be discussed in the next section.
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2.1 Predicting the First Bidder

For each of the models, the next step is then to predict the first bidder in a given auction.

In other words, the objective is to identify the bidder that places his/her bid before other

bidders among a given set of bidders of an auction.

Let’s assume we have a set of n bidders for a focal auction. This is the list of bidders

who saw the auction and participated in it. In section 3, we propose a model for bidders’

participation where we also look at potential bidders; bidders who saw the focal auction

but did not participate in it.

Using the beta regression model of last section, we can obtain the posterior predictive

distribution for each bidder’s time to first bid in each auction. In other words, we obtain

P (yij|D) where D denotes all observed data. Having obtained all n potential bidders’

distributions, we calculate the probability of bidder i having the minimum bid time as

following:

P (yiji < ykjk , for all k 6= i | D)

In other words, this is the probability that bidder i places his/her first bid before everybody

else, i.e. probability of being the first bidder. Also, note that
n
∑

i=1

P (yiji < ykjk, for all k 6= i |

D) = 1 which means that the sum of these probabilities over all bidders of the auction is 1.

For a given auction and in each run of MCMC simulations, we label the bidder with lowest

bid time as the first bidder. Then by going all MCMC simulation runs, the probability of

being the first bidder (for each bidder in a given auction) is estimated by averaging the

number of times that the bidder was labeled as the first bidder.

In addition to predicting the first bidder, the use of posterior probabilities ,P (yij|D),

can be extended to obtain the probability distribution of the time of the first bid for each

auction. This distribution can be estimated by considering minimum value of P (yij|D)

among the set of bidders (i) of a given auction (j). So while the above-mentioned model

help auctioneers identify the first bidder, this model enables them to estimate time of the

first bid. Without the loss of the generality, both of the models can also be extended to

study next bids in auctions.
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2.2 Dataset and Variables

We consider the proprietary dataset used by Pilehvar et al. (2016). A major logistics

company specializing in wholesale returns and liquidations runs the studied marketplace,

auctioning uninspected returns, open-box items, and excess and salvage consumer electron-

ics that major North American electronics retailers send in pallets to its warehouse. Most

of the company’s customers (bidders) are re-sellers such as off-price retailers and members

of eBay’s PowerSeller program, which incentivizes high-volume sellers. The data collected

from this auction platform span five years, from 2003 to 2008. Observations are at the

bid level, encompassing bid information from 2,000 unique bidders who have participated

in more than 11,000 auctions. The average number of bidders per auction is 5.18 and the

average number of bids is 8.02. The market’s busiest season is the first quarter because of

holiday-season returns that begin in late November and continue into January. The rich

panel dataset enables us to track bidders’ activity over time. In other words, we can mea-

sure bidders’ overall experience, defined in terms of their number of participated auctions

and number of wins or losses. We also can see cross-bidding activities in similar open or

recently closed auctions at the time of the bid, which allows us to study their effect on

subsequent bidding decisions.

For the purposes of this study, we consider auction- and bidder-related variables. Auction-

specific characteristics include per-pallet item quantity and a normalized version of the

pallet’s declared retail value (i.e., per-unit price of pallet items, determined by dividing

retail value by quantity). We also consider the duration of the auction, typically two to

three days depending on the day posted. Other auction-specific variables are item condition

(return or salvage), day and time of day the auction starts, and retailer brand. We should

note that these auctions have no reserve price, with the starting price largely the same.

Our bidder-related variables include their past and current bid activity. These con-

structs can be divided into two sub-categories. The first is related to the bidder’s past

activities, where we measure variables such as participation volume, number of wins/losses,

time between the focal auction and prior bid, etc. The bidder’s experience can be defined

in terms of overall participation, number of wins, or number of losses. We define bidder

experience as one’s number of wins or losses in the last three months. This moving-window
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approach, which is based on the internal reference price literature in marketing, best rep-

resents experience at auction time and accounts for bidder inactivity over a long period of

time. The second group of bidder-specific variables is related to bidder activity around the

time of the focal auction. These cross-bidding activity variables measure several factors,

including the number of similar, overlapping auctions in which the bidder is participating

and the number of similar, just-ended auctions in which he or she has bid or won. In order

to define overlapping and similar auctions, similar to the work of Chan et al. (2007): we

pool all auctions running when the focal auction opens and calculate their mean quantity

and retail value. Next, we select auctions within one standard deviation of the focal auc-

tion’s quantity and retail value. We define these auctions as the ”similar auctions” superset,

from which the bidder gleans influential market price information. For one, the price and

dynamics of these auctions better inform the bidder about the focal auction, which has yet

to receive its first bid. Loss or win experience in just-finished similar auctions also might

influence bidder participation in similar, overlapping auctions.

In selecting the final set of covariates, we include the following instrumental auction-

specific variables: quantity (number of items in the auctioned pallet), value (average mone-

tary value of each item calculated by dividing the pallet estimated retail value divided by its

quantity), weekend (a variable showing whether the auction is posted on Friday/Saturday),

winter (a variable showing whether the auction is posted on first quarter) and simultane-

ous auctions (number of similar auctions that are posted at the same time with the focal

auction). In addition, we include the following bidder-specific covariates: average TOFB

(average time of the first bid placement in the participated auctions in the last three

months), first bidder rate (proportion of bidder’s participated auctions in the last three

months in which the bidder has placed the first bid), winning rate (proportion of bidder’s

participated auctions in the last three months in which the bidder has won the auction)

and just-finished auctions (number of wins in similar auctions that ended after the start of

the auction and before placement of the first bid).
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2.3 Implementation and Results - First Bidder

Before we move with the analysis, we remove all single-bid auctions (i.e., those with only one

participant). This avoids a potential false increase in the model’s predictive performance,

given that the bidder’s probability of being first in these cases is always 1. At each run, we

begin the process by sampling 550 auctions, only considering participants’ first bids. We

then split this sample into two subsamples of 500 and 50 auctions, fitting the model with

the larger sample and measuring models’ predictive performance with the smaller, holdout

sample. We repeat this sampling and testing process 10 times each on models 1 and 2.

In our analysis, we use proper but diffused priors for all parameters in the model. More

specifically, for the model with constant precision, we specify gamma priors on φ with

both shape and scale parameters of 0.01 for each. We assume all covariate coefficients β

and γ in both models have independent normal priors with mean 0 and precision 0.01.

In modeling µ′
is using covariates, we tested both probit and logit link functions. Given

the functions’ very similar performance and our use of probit in the model’s first essay,

we choose the probit model to stay consistent throughout the paper. Each run of the

iterative process for the model with common precision takes seven minutes, which includes

simulations and calculation of fit and predictive measures. Each run of the second model

takes 12 minutes. All results are based on running a Gibbs sampler with a burn-in sample

of 10,000 iterations and collecting 10,000 posterior samples after thinning by five. No

convergence issues emerged during the run of the models. In addition to the iterative

sampling and processing of the models, we conduct two separate models using the full

auction sets, with their convergence diagnostics plots and tables shown in the appendix.

The p-values associated with the Geweke diagnostic are large, while the Raftery and Lewis

dependence factors are all smaller than 5, suggesting no convergence issues.

Table 1 compares model 1 (i.e., the model with the regression structure for mean pa-

rameters and constant precision) and model 2 (i.e., the model with the regression structure

for both mean and precision parameters) over the 10 randomly constructed datasets. In

doing so, in addition to the Bayesian fit measures, we also compare the models in terms of

their accuracy 2. As the results suggest, model 2 performs better over all the runs, with

2Accuracy is defined as the ratio of the auctions in which the model correctly identifies the first bidder.
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considerably smaller values of D and DIC and higher accuracy in every iteration. In addi-

tion, pD has higher values in model 2 due to extra regression parameters used in modeling

the precision parameters. The average accuracy across all runs is 0.36 for model 1 and 0.38

for model 2. Given that the average number of bidders in these auctions is 5.4, the results

suggest both models effectively predict the first bidder, though model 2 performs better.

Model 1 Model 2

Run. Dbar pD DIC Accuracy Dbar pD DIC Accuracy

1 -3783.11 9.96 -3773.14 0.361 -3876.15 17.84 -3858.31 0.372

2 -3720.05 9.92 -3710.13 0.369 -3842.5 17.86 -3824.64 0.380

3 -3599.04 10.03 -3589.01 0.368 -3748.29 17.77 -3730.51 0.382

4 -3438.22 10.04 -3428.17 0.370 -3577.3 17.88 -3559.42 0.385

5 -3673.28 10.08 -3663.2 0.372 -3799.12 17.76 -3781.36 0.387

6 -3739.25 10.04 -3729.21 0.372 -3860.23 17.86 -3842.37 0.387

7 -3917.33 10.02 -3907.31 0.356 -4023.83 17.82 -4006.01 0.370

8 -3738.02 10.00 -3728.02 0.383 -3887.92 17.79 -3870.13 0.399

9 -3693.43 9.98 -3683.45 0.364 -3803.5 17.81 -3785.68 0.374

10 -3747.83 9.97 -3737.85 0.361 -3847.68 17.87 -3829.8 0.374

Table 1: Model Comparisons - Fit Measures over Main Datasets

The next two tables, show the predictive log likelihood and accuracy (Table 2) and log

Bayes factor in favor of Model 2 (Table 3) over the holdout sets. Consistent with the fit

measure over the main datasets, model 2 outperforms model 1, with higher predictive log

likelihood values and higher accuracy. The log predictive Bayes factor values in favor of

model 2, moreover, show evidence in support of the model. In terms of accuracy, results

are comparable to the results of Table 1, where higher accuracy is achieved by modeling

both mean and precision parameters using explanatory variables. Note that the average

number of bidders in holdout auctions is 5.5.

Model 1 Model 2

Run. Pred Log Likelihood Accuracy Pred Log Likelihood Accuracy

1 202.39 0.358 211.59 0.366
2 185.34 0.386 191.62 0.401
3 180.36 0.423 181.36 0.441
4 201.32 0.359 208.38 0.377
5 218.88 0.372 226.89 0.389
6 227.39 0.396 235.13 0.404
7 135.54 0.380 140.61 0.393
8 151.36 0.387 157.22 0.409
9 200.28 0.343 205.54 0.353
10 185.62 0.318 188.74 0.326

Table 2: Model Comparisons - Predictive Measures over Holdout Datasets
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Run 1 2 3 4 5 6 7 8 9 10
Log Bayes Factor 9.20 6.28 1.00 7.06 8.01 7.74 5.07 5.86 5.26 3.12

Table 3: Log Predictive Bayes Factor in Favor of Model 2

In order to illustrate how the model predicts the first bidder, let’s choose an auction

with two participants. Figure 1 shows posterior distributions of the timing of bidders’ first

bid. The plot on the right is generated by plugging posterior mean of estimated shape

parameters. The posterior mean of parameters for bidder1 (shown in red) are a = 1.19 and

b = 0.51 (i.e., µ = 0.69 and φ = 1.71) and a = 3.67 and b = 0.64 for bidder2 (i.e., µ = 0.85

and φ = 4.32). As the results suggest, bidder1 is more likely to place the first bid earlier

than bidder2 (µ1 = 0.69 < µ1 = 0.85). Using the model, the probability of bidder 1 placing

the first bid before bidder2 is estimated at 0.65. The dataset shows the actual bid time

of bidder1 is 0.88 and bidder2 bid’s time is 0.96, showing bidder1 was, in fact, first. As

discussed at the end of section 2.1, the use of these estimations can be extend to obtain the

probability of TOFB for the auction. In doing so, at each point, we consider the minimum

value of the curves to obtain the overall probability of the TOFB for this auction.

Figure 1: Posterior distribution of TOFB for the two participated bidders of the auction (left) and posterior predictive

distribution of their TOFB (right)

We also run both models over the full set of auctions (i.e. no sampling) to fully capture

the effect of different variables. Table 4 shows posterior parameter summaries of model

2. As the results suggest, the two most important factors that affect (i.e., delay) first-

bid arrival time are the bidder’s average time of first-bid placements in the last three

months and the number of wins in just-finished auctions. The average time over bidding

history suggests a behavior some bidders practice in bidding late or early; an observation

consistent with prior findings and our discussions regarding bid placement difference among
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experienced and inexperienced bidders. Further, bidders who just won in some auctions

show less interest in starting another right away. We also find that the more a bidder has

placed the first bid in prior auctions, the earlier he/she tends to place the first bid in the

focal auction. This bidding behavior again demonstrates the value of studying bidders over

time. In addition, the number of wins and participation volume in other open auctions do

not seem to have a significant effect on bid arrival time.

Parameter Mean StDev. 95% CCI Parameter Mean StDev. 95% CCI

βAve.TOFB 1.035 0.016 ( 1.003,1.067 ) γAve.TOFB 0.392 0.026 ( 0.342,0.445 )

βFB.Rate -0.623 0.029 (-0.681,-0.565) γFB.Rate -0.084 0.041 (-0.168,-0.006)

βNJFA 1.147 0.177 ( 0.800,1.498 ) γNJFA 1.261 0.341 ( 0.571,1.921 )

βNOA -0.158 0.067 (-0.291,0.025 ) γNOA 0.050 0.115 (-0.173,0.273 )

βQ -0.032 0.070 (-0.106,0.168 ) γQ -0.790 0.105 (-0.995,-0.585)

βWeekend 0.115 0.038 (-0.040,0.191 ) γWeekend -0.046 0.019 (-0.084,-0.007)

βWin3 0.053 0.039 (-0.024,0.130 ) γWin3 -0.051 0.070 (-0.188,0.089 )

βWinter -0.062 0.012 (-0.087,-0.036) γWinter 0.011 0.019 (-0.025,0.051 )

βRetailV alue 0.205 0.056 ( 0.153,0.342 ) γRetailV alue -0.604 0.084 (-0.774,-0.439)

Table 4: Posterior Summaries of Model 2

As for auction features, pallet items’ average retail value appears to be the most impor-

tant factor. Auctions with higher-value items discourage bidders from entering auctions

earlier, potentially because they are trying to avoid bidding wars that may increase final

price and trigger the ”winner’s curse.” In addition, first-bid arrival times are longer for auc-

tions posted over the weekend, which may be due to greater inactivity in that period. On

the other hand, bidders tend to enter auctions earlier during the market’s busy first-quarter

season. Item quantity, meanwhile, does not seem to have a significant effect on this process.

Table 4 shows posterior summaries of the different γ parameters, which are coefficients of

the regression model that estimates the precision parameters. Similar to β parameters, the

average time of previous first bids and number of just-finished auctions have the largest

effect (i.e., they have positive values, which leads to higher precision and lower variance

in bid-time distribution). On the other hand, item quantity and retail value add more

uncertainty to bidders’ first-bid time. Knowing how bidders’ and auctions’ heterogeneity

influence timing of bid arrivals, in the following section, we propose a new model to study

how bidders enter the auctions.
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3 Modeling Participation in Auctions

In the previous section, we proposed a model to assess time of first bid and to identify

the first bidder among a set of bidders who participate in the selected auctions. In this

section, we propose a dynamic model to study bidders’ participation in auctions. The

auction literature includes a number of models to study participation. Li and Zheng (2009)

proposed an empirical model based on a semiparametric Bayesian framework to study entry

and bidding based on only auctions’ heterogeneity. But in general, a bidder’s decision to

participate in an auction is endogenous. Pilehvar et al. (2016) noted that the entry decision

is derived from an underlying decision process, with the current marketplace structure (i.e.,

multiple similar auctions run simultaneously, which may affect bidders’ entry decisions)

adding to the modeling complexity. In studying the effect of market price and bidders’

heterogeneity on the value of the first bid, they modeled entry to the auction through a

discrete choice model. But their suggested static model does not take the time-varying

effect of these information on bidders’ decisions. In our model, however, we consider data

on multiple bidders across a set of different auctions and study how their decision process

changes over time using a dynamic approach. The proposed model is quite robust and has

good predictive performance as it is based on behavior of a set of heterogeneous bidders.

3.1 A Dynamic Probit Model for Participation

Modeling categorical longitudinal data using time-varying coefficients have been studied

by authors such as Carlin and Polson (1992) and more recently by Soyer and Sung (2013).

In our setup we consider a Bayesian dynamic probit model and develop Bayesian inference

for it following the work of Soyer and Sung (2013).

The binary random variable Yit takes value 1(0) if bidder i participates (does not partic-

ipate) in the t−th auction. Given K×1 a vector of covariates Xit we denote the probability

of participation by Pr{Yit = 1 | Xit} = πit and assume a probit model as

πit = Φ(βtXit),

where t = 1, . . . , T , i = 1, . . . , n and Φ is the cumulative normal distribution function. We

note that the 1×K vector of regression parameters βt is time-dependent. We assume that
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conditional on (πit, Xit) Yit is independent of Yjt and Yis for all i 6= j and t 6= s. In our

development, the dynamic structure of the model will be reflected by the state equation

βt = βt−1 + wt with ωt ∼ N(0,W )

where wt’s are uncorrelated multivariate normal error vectors with mean 0 and covariance

matrix W . This specific evolution of βt is referred to as the steady model in the literature;

see for example, West and Harrison (1999). Note that a static probit model can be obtained

by assuming βt = β in the above by setting W = 0 (i.e., 0 matrix).

An important concept in developing Bayesian inference for the dynamic probit model is

the use of latent variables. Albert and Chib (1993) have introduced a a data augmentation

approach using this latent structure within Gibbs sampling to develop Bayesian analysis

of the static probit models. Soyer and Sung (2013) proposed a dynamic version of Albert

and Chib (1993) by combining it with the Forward Filtering Backward Sampling (FFBS)

approach of Frühwirth-Schnatter (1994) to analyze dynamic probit models. This approach

provides an exact Gibbs sampler where all the full conditional distributions can be easily

obtained using conjugate Bayesian results. This is achieved by specifying a multivariate

normal prior for β0 as β0 ∼ N(m0, C0) and a Wishart prior for W−1, the inverse of the

covariance matrix (that is, the precision matrix) in the steady model; see Soyer and Sung

(2013) for details of the Gibbs sampler.

3.2 Numerical Implementation

3.2.1 Data

We start by creating a set of participated and potential auctions for each bidder. A partici-

pated auction is an auction in which bidder i has placed a bid (Yit = 1). On the other hand,

potential auctions are auctions in which we assume the bidder has seen and has shown in-

terest in but has not participated, that is, Yit = 0. We do so by searching the data set

during running time of that auction to see whether the bidder has placed a bid in a similar

auction during that time. For participated auctions, we consider his/her characteristics

at the time of the first bid. For potential auctions (during which the bidder has placed

multiple observed bids in other comparable auctions), we consider bidder’s characteristics
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at the time of his/her last observed bid. We should note that bidder’s characteristic is

referring to bidder’s time-specific (i.e. time-varying) covariates such as number of open

auctions he/she is participating, number of just finished auctions he/she has won which

are specific to the time each bid is placed. The process is repeated for other bidders to

construct the set of their participated and potential auctions. We then randomly select a

set of n bidders and for each bidder, we choose T of his/her consecutive auctions activity

which can either be a participation in an auction or being a potential bidder of an auction3

Having built this dataset (which has n× T records), we go through the following steps

for both the dynamic (A1) and the static (A2) models:

Step One: Divide the data into two time frames: main period (from time/auction 1 to

time/auction s) and a prediction period (from auction s + 1 to auction T ) and run

the model on the main period to calculate the parameters up to the time/auction s

(i.e., βt for t = 1, ..., s).

Step Two: Calculate fit measures for the s data points and make a one-step ahead

prediction for each bidder’s participation in his/her upcoming auction πi(s+1) =

Pr{Yi(s+1) = 1 | Xi(s+1)} = Φ(βs+1Xi(s+1)).

Step Three: Calculate predictive measures in terms of bidders’ future participation and

store πi(s+1)’s as the posterior predictive values for the i
th bidder’s participation status

in his/her (s+1)th auction. The predictive measure for each model Ai is the one-step

ahead log predictive likelihood PLAi
(s+ 1) = p(Ys+1 | Ys, Ai).

Step Four: Update both data frames by moving the just-forecasted auctions from the

prediction period to the main period. Based on this rolling basis approach, the main

period is now from auction 1 to s+1 and prediction period is from s+2 to T . If the

prediction dataset is empty we stop, otherwise go to Step Two.

3
T is the same for every bidder. We should note that index t refers to a bidder’s tth auction. In other

words, one bidder’s first auction is not necessarily another bidder’s first auction and so on.
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3.2.2 Results

In running and comparing the results of static and dynamic models, we randomly select

50 (n = 50) bidders along with 210 (T = 210) consecutive auctions activities for each. We

choose bidders’ first 200 (s = 200) auctions as the main dataset, while their next 10 auctions

represent the holdout set. Following the discussed algorithm, we run each model 10 times,

making a one-step-ahead prediction at each iteration, after which we update the datasets

and move to the next iteration. As for covariates, we select two distinct categories. The

first specifies auction characteristics, including item quantity and retail value (value per

item); a binary indicator to show whether the auction is posted over the weekend; a binary

indicator to show whether the auction is running in the first quarter; and the number

of similar, overlapping auctions running simultaneously. The second category explains

bidders’ characteristics and includes participation volume in the past three months; win

experience (i.e., ratio of wins in participated auctions over the past three months); number

of open auctions in which the bidder has placed a bid; number of wins in auctions that have

finished after the start of the focal auction but before his or her bid placement; number of

days since bidder’s last bid (i.e., a measure of inactivity); and, finally, bidder’s participation

rate (i.e., the ratio of participation in potential auctions over the past three months).

In the dynamic setting, the Wishart prior on W−1 has r = K degrees of freedom with

the scale matrix R = diag(1, ..., 1), which has K ×K dimension (K = 13 includes all the

covariates plus the intercept term). For the analysis, we use R and WinBUGS on a personal

computer with an INTELI i7-2600 CPU 3.40Ghz processor and 16GB RAM memory. This

dynamic setting requires 41 minutes for each run of the iterative process, which includes

simulations and calculation of fit and predictive measures. Inferences are made based on

5,000 posterior samples after burn-in sample of 10,000 iterations and thinning by five.

For model fit comparisons, we use the Deviance Information Criterion (DIC) of Spiegel-

halter et al. (2002), a criterion that accounts for both model fit and complexity. Having

deviance defined asD = −2logL(Θ) with Θ representing unknown parameters of the model,

DIC in its general form is defined as DIC = D + pD, where D is the posterior mean of the

deviance and pD = D − D(Θ̂), where D(Θ̂) is a point estimate of the deviance obtained

by substituting in the posterior means for Θ. In DIC formulation, pD is a penalty measure
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for the complexity of the model by its effective number of parameters. At each run of the

model, DIC is calculated only over the main, not prediction, period. Referring to Table 5,

we calculate iteration 1 fit measures over the first 200 data points, iteration 2 the first 201,

and so on. We find the dynamic model outperforms the static model in all of the iterations

by having smaller values of D and DIC.

Static Dynamic

Iter Dbar pD DIC Dbar pD DIC

1 10876.1 13.0 10889.0 10372.3 377.3 10749.6

2 10943.9 13.3 10957.2 10429.5 379.0 10808.6

3 11001.0 13.0 11014.0 10473.5 379.2 10852.7

4 11055.5 13.1 11068.6 10515 382.8 10897.8

5 11108.3 13.0 11121.4 10561.6 385.5 10947.2

6 11167.8 12.8 11180.6 10624.2 384.1 11008.4

7 11220.3 13.0 11233.3 10673 387.1 11060.1

8 11269.8 12.8 11282.7 10731.4 389.7 11121.1

9 11323.5 13.3 11336.8 10771 394.2 11165.2

10 11369.6 13.1 11382.7 10802.8 397.6 11200.4

Table 5: Fit comparisons of static and dynamic models over the main dataset in each of 10 iterations

We also evaluate predictive performance in terms of bidders’ future participation. The

one-step-ahead predictions are on a rolling basis because we use observations up to time s

to make a prediction for observation at time s+1, then include the (s+1)th observation to

predict observation at s+ 2, and so on. In evaluating models’ predictive quality, we follow

the work of Geweke and Amisano (2010) by obtaining one-step-ahead log predictive like-

lihoods and calculating the cumulative log predictive Bayes factors. Given two competing

models A1 (dynamic) and A2 (static), the log Bayes factor may be decomposed as:

log

[

p(YT | Ys, A1)

p(YT | Ys, A2)

]

=
T
∑

t=s+1

log

[

PLA1
(t)

PLA2
(t)

]

where PLA(s+1) = p(Ys+1 | Ys, A) and PLA1
/PLA2

is the predictive Bayes factor in favor

of A1 over A2 for observation t. This decomposition shows how individual observations

contribute to the evidence in favor of one model over another. In our setup, at each time

t we are making 50 one-step-ahead predictions to account for all 50 bidders’ next-step

prediction. In other words, we have: PLA(s+ 1) = p(Ys+1 | Ys, A) =
n
∏

i=1

p(Ii,s+1 | Ys, A).

We conduct evaluations according to Kass and Raftery (1995), scoring rules where a

log Bayes factor value between 0 and 1 is ”not worth more than a bare mention,” values

between 1 and 3 show positive evidence, values between 3 and 5 show strong evidence, and
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values greater than 5 show very strong evidence in favor of the dynamic model over the

static model. Table 6 shows the results of the one-step-ahead predictions (i.e., classification)

in each iteration. The first two columns show the log predictive likelihood of models, and

the third column shows the log predictive Bayes factor in support of the dynamic model

over the static model in that iteration. The cumulative log Bayes factor is 14.03 > 5, which

shows a very strong support for the dynamic model.

Log Predicitve Likelihood

Iter. Static Dynamic Log Predictive Bayes Factor

1 -33.830 -30.490 3.340

2 -28.797 -23.614 5.184

3 -27.223 -23.712 3.511

4 -26.483 -23.649 2.834

5 -30.859 -31.575 -0.716

6 -27.177 -26.995 0.182

7 -26.937 -28.545 -1.609

8 -26.617 -26.933 -0.316

9 -23.149 -21.174 1.975

10 -24.062 -24.411 -0.349

Table 6: Log Predictive Likelihood and Log Bayes Factor Over 10 Iterations

Figure 2 compares the estimated posterior probabilities of 50 bidders’ participation for

their 210th potential auctions (i.e., s = 209, the last run of the model) versus their actual

values. We can see that both models slightly underestimate participation probabilities but

the dynamic model predictions (right) are generally better than the static ones (left). In

comparing both models, we also evaluate their predictive classification performances, as

shown in Figure 3. The plot on the left compares the average (over iterations) accuracy

of both models for different cutoff values. The plot on the right is a comparison of their

receiver operating characteristic (ROC) curves by plotting their average true positive rates

versus false positive rates for different cutoff values.4 In addition, a cutoff sensitivity

analysis of the dynamic model over the whole dataset suggests that by considering a cutoff

value between 0.3 and 0.35, we can achieve reasonably high accuracy of about 70%, a high

true positive rate of about 66%, and a low false positive rate of about 25%. This finding is

similar to those in Figure 2 (i.e., an overall underestimation of posterior probabilities).

In addition to prediction performances, we analyzed regression parameters in terms of

their significance and possible change over the study period. Figure 4 plots posterior means

4Each boxplot shows the spread of the estimated measure over 10 iterations at that cutoff point.
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Figure 2: Posterior Probability of the 50 Bidders’ Participation in their 210th Auction - Static Model (left) vs. Dynamic

Model (right) - (blue points are actual participation status (1’s and 0’s) and red points are posterior means)

Figure 3: Average Accuracy and ROC Performance Curves Over Prediction Iterations

of four of the regression parameters in the dynamic model, where we can see the change in

the parameters over the course of auctions. This is yet another indication of the dynamic

model’s appropriateness. While some parameters such as ”past auction participations,”

”quantity of items,” ”retail value per item,” and ”days since last bid” show downward or

upward trends, others do not clearly exhibit these patterns. The plots suggest quantity has

a negative effect on participation that strengthens over time. The retail value of auction

items, meanwhile, has a positive effect on bidders’ entry decision, which strengthens over

time. In other words, bidders are more willing to participate in an auction with a smaller

pallet size (fewer items) and more valuable items. As they participate in more auctions,

these features grow in importance. The same positive relation holds between the number

of days since bidder’s last activity and his or her participation probability. In other words,

a bidder has a higher probability of participation in a potential auction after a longer

inactivity period. The results suggest bidders participating in more similar auctions also

are more willing to participate in the focal auction. On the other hand, the participation

rate decreases when the auction platform is busy. This illustrates the negative effect of
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Figure 4: Posterior Mean of the Regression Parameters

multiple auction postings - a key practice in this marketplace - on auction dynamics through

key factors such as bid arrival and time, bidder participation, and number of bids. The

effect of other covariates - bidder win rate in the past three months, auction opening day,

auction time of year - do not appear significant. The bidder’s participation rate in the

past three months (ratio of participation in potential auctions), meanwhile, has a mostly

positive effect on the entry decision.

4 Concluding Remarks

In this paper we proposed two models to study bidders’ timing of their first bid and

their participation by adapting to some dynamic aspects of online secondary retail auction

market. We explored different auction- and bidder-specific variables and their significance

to bidders’ time of the bid and participation, particularly how their effect may increase

or decrease as bidders participate in more auctions over time. We did so by presenting a

Bayesian beta regression model based on two different setups to study bidders’ first-bid

timing. Our analysis showed the effect of bidders’ heterogeneity, namely how those whose

past behavior differed from the time of the auction tend to place their first bid at different

times. We also proposed a Bayesian dynamic probit approach for modeling bidders’ entry

into auctions. The analysis of the tested models revealed that the performance is vastly

improved by using the dynamic modeling approach. The proposed dynamic probit approach

uses the full Gibbs sampler presented in Soyer and Sung (2013), which is based on using
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data augmentation and sequential updating method of forward filtering-backward sampling

in the context of Bayesian dynamic models (West and Harrison (1999)). To the best of

our knowledge, we are the first to use Bayesian dynamic and beta regression models in

studying auctions over time to predict bidders’ behavior in upcoming auctions.

As discussed, secondary market auctions tend to have low recovery rate and high in-

ventory costs. Auction designers and managers, however, could implement the developed

models to achieve quicker sales at higher final prices to generate more revenue and reduce

the number of unsuccessful auctions. Both models, we found, could be integrated to be

part of a predictive model to identify the first bidder in a given auction. While the first

model estimates bid arrival times and identifies the first bidder, the second model identifies

the participants. The developed models can help auctioneers identify bidders with a low

or high probability of participation or help direct bidder traffic to less-attractive auctions.

Using these models also helps managers identify potential first bidders and obtain a more

accurate estimation of first-bid value and final auction outcome. Beyond applying these

models to study the first bid, they could be generalized separately or together to study

other bids and their arrival times throughout the auction. Modeling first-bid arrival time,

however, remains instrumental as the arrival of subsequent bids will be truncated below by

the time of the first.

We note a number of possible limitations in our study, some of which we identified in

the course of our analysis. The first stems from the nature of our dataset, which is at

the bid level. As such, we only have information on placed bids, including auction and

bidder characteristics associated with that bid. A major part of this analysis is based on

the definition of available bidders (i.e., online status) at auction time. In our work we

have defined potential bidders as those who placed a bid in similar auctions during the

time of a given auction. A more robust model would could be developed around a dataset

that shows whether bidders are watching an auction before they bid or whether they leave

auctions after watching them, and so on. This would significantly increase the prediction

power of the model since lots of already-included potential bidders (0’s in the dataset) will

be removed. In other words, the model will only include actual potential bidders of the

auctions.
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The one-step-ahead forecasting and updating procedure in the dynamic models repre-

sents another limitation. The iterative process of a prediction and model re-run can be

impractical and computationally expensive for a large dataset and a large volume of pre-

dictions. Given that possible extension of our method for practical applications is crucial,

we will explore further extensions of the model by using particle filtering. This is a more

efficient way to updating the model in real time rather than running it with past data,

which could prove computationally expensive.
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