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Synopsis

In this chapter we consider decision problems that arise during software testing/debugging

process. We present game and decision-theoretic frameworks to develop optimal software testing

strategies. We discuss optimal choice of release time for software under different scenarios:

minimization of an objective function based on testing and failure costs as well as software

reliability at release time, minimization of costs subject to the achievement of an acceptable

reliability level and constrained simultaneous optimization of costs and reliability. We also

present a game theoretic approach where a software implementer and a tester involved in an

adversarial setting with both interested in producing quality software as well as maximizing

their respective rewards.

1 Introduction

As described in the chapters by Rigdon, Zacks and Pena, software reliability models are often

used for inference and prediction. Singpurwalla and Wilson (1999), among others, stated that

software reliability models can also be used for decision making. The chapter by Wilson and
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O’Riordain is an example: the authors are interested in determining the optimal time between

software (Mozilla Firefox, in their case) releases based on bug detection data. The development

of optimal testing strategies is an important component of software reliability modeling. In

particular, it is important to find those strategies determining how long software should be

tested and which test cases should be used, as pointed out by Singpurwalla and Wilson (1999).

In this chapter we consider different approaches, starting from the most common one based on

Decision Theory. In Section 2 we first present a decision model based on the optimization of

an objective function which combines testing and repair costs (that is, costs before and after

release), as well as software reliability at its release time. This is followed by a sequential decision

model where corrections and modifications are made to the software at the end of each test stage

with the hope of increasing its reliability. In Section 3 we present a game theoretic approach

where two players, namely an Implementer and a Tester, are involved in an adversarial testing.

The two parties are in adversaries, where maximization of individual payoffs are not necessarily

leading to the best quality software. In Section 4 a multi-objective optimization approach is

presented, where the interest of the software producer is not represented by a unique objective

function as in Section 2 but the simultaneous optimization of costs and reliability. Finally, few

concluding remarks are presented in Section 5, mostly based on a new paradigm, Adversarial

Risk Analysis, which has been an area of increasing interest for researchers in recent years. The

interested readers can find thorough illustration of Decision and Game Theory in many books,

like French and Rios Insua (2000) and Barron (2013), respectively.

2 Decision Models in Software Testing

The choice of an optimal release time to stop testing of software has been addressed in many

papers. We will provide a review of some of these contributions in the literature, including

their merits and shortcomings. The interested reader is encouraged to refer to those works for

2



a thorough mathematical development and illustration.

The first works addressing the issue of stopping the testing process and releasing the soft-

ware were not based on a formal decision-theoretic approach. Such works include Forman and

Singpurwalla (1977, 1979), Okumoto and Goel (1980), Yamada, Narihisa and Osaki (1984) and

Ross (1985). Dalal and Mallows (1986) were among the first who considered a decision theoretic

approach to the problem, providing an exact but complicated solution as well as an asymptotic

one. Singpurwalla (1989, 1991) also followed a Bayesian decision theoretic approach, consider-

ing a two-stage problem where the preposterior analysis requires complex computations. Later

work by Ozekici and Catkan (1993) provided characterizations of the optimal release policy

whereas McDaid and Wilson (2001) considered, from a Bayesian viewpoint, the case of a single

stage testing using a nonhomogeneous Poisson process model. The latter authors also consid-

ered a sequential testing problem but the solution was not analytically tractable. Ozekici and

Soyer (2001) considered optimal testing strategies for software with an operational profile as

discussed in Musa (1993). It was assumed that the software was tested sequentially for a given

time duration under each of the operations and optimal testing time for each operational profile

was obtained by the authors using a Bayesian approach. Boland and Singh (2003) considered

a geometric Poisson model for the release time, whereas Morali and Soyer (2003) considered

the testing process as sequential decision problem in a Bayesian framework. provide character-

izations of the optimal release policy. The work of the latter will be presented in Subsection

2.2.

2.1 Minimization of Expected Cost

The most common decision model in software testing considers the minimization of an objective

function, i.e., an expected cost, which combines (sometimes conflicting) losses due to testing

and repair costs as well as software reliability at release time. A particular, but a detailed
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representation of such expected cost function at time t is provided by Li, Xie and Ng (2012)

E[C(t)] = c0 + c1t
κ + c2µym(t) + c3µw[m(t+ tw)−m(t)] + c4[[1−R(x|t)], (1)

where

• c0 is the set-up cost for software testing

• c1 is the cost of testing per unit testing time

• κ, 0 < κ ≤ 1, is the discount rate of testing cost over time

• c2 is the cost of removing a fault per unit time during the testing phase

• c3 is the cost of removing a fault per unit time during the warranty phase

• µy is the expected time to remove a fault during the testing phase

• µw is the expected time to remove a fault during the warranty phase

• tw is the warranty period

• c4 is the cost due to software failure

• m(t) is the mean value function of the nonhomogeneous Poisson process (NHPP) describ-

ing the failure process

• R(x|t) = e−[m(t+x)−m(t)] is the software reliability at time t

Since fixing a fault during the warranty period is more expensive than during testing, c3 > c2.

Furthermore the parameter κ models the learning process of the testing team. Many NHPPs

can be chosen as illustrated in the chapter by Rigdon and Zacks.

The actual function to be minimized is obtained following a frequentist approach, by replac-

ing parameters with their maximum likelihood estimators, whereas integration with respect to

the posterior distribution of the parameters is needed when following the Bayesian paradigm.
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Minimization of equations like (1), or its expectation in a Bayesian framework, leads to

determination of the optimal release time. Although very practical, such approach is a cause

of concerns for some authors since uncertainty could arise from both statistical estimation

errors and misspecification of costs. The problem has been addressed, e.g., in Li, Xie and Ng

(2010) who investigated sensitivity of the software release time through various methods, like

one-factor-at-a-time approach, design of experiments and global sensitivity analysis. As an

alternative, construction of credible (confidence, in a frequentist setup) intervals about optimal

release times could be pursued like in Okamura, Dohi and Osaki (2011).

A constrained optimization problem arises when considering minimization of costs subject

to the achievement of a minimal reliability level R0. An example of such problem is given by

the minimization of

E[C(t)] = c0 + c1t
κ + c2µym(t) + c3µw[m(t+ tw)−m(t)], (2)

subject to R(x|t) ≥ R0.

The constrained optimization could also arise as a consequence of converting the problem

to maximizing the reliability R(x|t) subject to a constraint E[C(t)] ≤ C∗, where C∗ is the

maximum allowable cost level.

Simultaneous optimization of multiple objectives will be discussed in Section 4.

2.2 A Sequential Decision Model

We now consider the protocol where testing is done sequentially in stages up to a fault detection

or a pre-specified testing time, the one which occurs first. Software is then corrected and

modified at the end of each test stage, aiming to increase its reliability. Let Ti, i = 1, 2, . . .,

denote the (possibly censored) life-length of the software during the i-th testing stage, i.e. after

the (i − 1)-st modification has been made to it. Each Ti follows the same distribution but,
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in general, with different parameters. In particular, we consider, for illustrative purposes, an

exponential model with failure rate λi which changes from one stage to another as a result of

the modifications made to it after each stage.

At the end of each stage, after modifying the software, a decision is taken about termination

of the debugging process, based on the accumulated information T (i) = (Ti, T
(i−1)), where T (0)

is the available information before testing. Morali and Soyer (2003) assumed that the evolution

of λi’s was described by a Markovian model and considered, after each stage i, the loss function

Li(T
(i), λi+1) =

i
∑

j=1

LT(Tj) + LS(λi+1), (3)

where LT(·) is the loss related to the life-length for each individual stage, and LS(·) is the loss

associated with stopping and releasing the software after the stage. The latter loss depends on

the current value of the parameter (a proxy for the current software reliability) and it is an

increasing function of this since the parameter is proportional to the number of bugs present in

the software. It should be observed that the loss due to releasing software before any testing,

i.e., L0, is just a function of λ1.

Morali and Soyer (2003) presented the stopping problem as a sequential decision problem

described by the m-stage decision tree given in Figure 1. The solution of the decision prob-

lem requires dynamic programming, taking expectation at random nodes and minimizing the

expected loss at the decision nodes. At each decision node i, the additional expected loss

associated with the STOP and the TEST decisions are given by E[LS(λi+1)
∣

∣T (i)] and E[LT

(Ti+1)
∣

∣T (i)] + L*
i+1, respectively, where

L*
i = min

{

E[LS(λi+1) | T
(i)] , E[LT(Ti+1) | T

(i)] + L*
i+1

}

(23)

for i = 0, 1, . . ., It can be shown that the optimal decision at decision node i is the one associated
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with L*
i .

In Figure 1, the maximum number of testing stages, m, can be considered infinite with

L*
m+1 = ∞. It is worth mentioning that even for the case of finite m the calculation of L*

i in

(23) is not trivial as it involves implicit computation of expectations and minimizations at each

stage. Morali and Soyer (2003) studied the possibility of developing one-stage ahead optimal

stopping rules by using results from van Dorp, Mazzuchi and Soyer (1997) and illustrated

implementation of their approach using simulated as well as actual software failure data.

Figure 1: The m-stage decision tree for the optimal release problem

3 Games in Software Testing

Previously we have discussed approaches based either on optimal stopping rules minimizing

the total cost in testing, possibly combined with specific reliability constraints, or on optimal

allocation of testing efforts. In literature, minor emphasis has been placed on the aspect of

competition between rival producers of software. The adversarial nature of the problem problem

has been considered by Zeephongsekul and Chiera (1995) and Dohi, Teraoka and Osaki (2000)

who used a game theoretic approach. The former authors consider (for simplicity) the case of

only two competitors, labeled i, i = 1, 2,, which are producing software performing the same

set of tasks and with life cycle length non exceeding T .

The player i, i = 1, 2, can decide to release the software at any time t in [0, T ] and he succeeds

in selling the product with probability Ai(t). The functions Ai(t), i = 1, 2, are supposed to be
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continuously differentiable, concave and such that Ai(0) = Ai(T ) = 0 with a unique maximum

at time ηi. The choice of such functions is made not only for mathematical convenience but it

is also justified by the actual behavior. More specifically, the success probability is expected to

be close to 0 both at the beginning and the end of the life cycle [0, T ], because of initial poor

reliability and final obsolescence, respectively.

Zeephongsekul and Chiera (1995) make an assumption typical of game theory papers, i.e.

that both players know the functions Ai(t), i = 1, 2. Such assumption is sometimes unrealistic

and it could be addressed within an Adversarial Risk Analysis (ARA) framework where each

player has just guesses about the other’s probabilities. In this case the problem would be seen

from the viewpoint of one player, say 1, and she would have her opinion on the probability A1(t),

either as a unique function or a distribution on it, whereas she should elicit a distribution on

the space of the possible functions A2(t). More details on the ARA approach can be found in

Banks, Rios and Rios Insua (2015).

Zeephongsekul and Chiera (1995) consider a cost function quite similar to the one proposed

by Okumoto and Goel (1980), without assuming an infinite cycle length. They consider the

expected cost ci(t) incurred by player i in releasing the software at time t as

ci(t) = c1it+ c2im(t) + c3i (m(T )−m(t)) , (4)

where c1i is the cost of testing per unit time, c2i the cost of removing a fault during testing,

c3i the cost of removing a fault during operation and m(t) the expected number of faults

detected up to time t. Since fixing an error is more expensive after release than before it, then

c3i > c2i is assumed. Such assumption, combined with the choice of an increasing, concave and

differentiable m(t), with m(0) = 0, implies that the function ci(t) is convex with a minimum at
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γi such that

m
′

i(γi) =
ci1

(c3i − c2i)
.

The authors assume that T is sufficiently large so that γi < T .

The novelty of the work by Zeephongsekul and Chiera is that they introduce the notion of

competition where a player has to consider not only her cost but also the action of a competitor,

and his costs. If player 1 releases software at time x and player 2 at time y, then Mi(x, y) is

the expected unit profit to player i. Such profit is the consequence of the difference between

the unit price pi > 0 of the software produced by player i and the cost incurred ci given by (4).

In general, it holds M1(x, y) 6= M2(x, y), where

M1(x, y) =















p1A1(x)− c1(x) 0 ≤ x < y ≤ T

p1(1−A2(y))A1(x)− c1(x) 0 ≤ y < x ≤ T

and M2(x, y) can be described similarly. It is obvious that this is a non-zero sum game.

The simplifying assumption behind this model is that the success of a player in selling her

product implies the impossibility for the other player to sell his own. The model could be

acceptable when there is just one customer, interested in a unique purchase. More complex

models could be possible in other scenarios, e.g. when the existence of many customers can

provide opportunities for both players. A possibility could be offered by lowering the price of

the last marketed software. Therefore pi should be in this case a function of A3−i(x), i = 12.

The expected utility for each player depends on four factors:

• testing cost;

• fault removal cost (with an higher one for faults after release);

• reliability of the released product;

• release of software by the other player.
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In general, late releases imply higher reliability and higher costs combined with the risk of an

earlier successful release by the competitor.

The final goal of Zeephongsekul and Chiera (1995) consists of finding the optimal release

policies among Nash equilibrium points. Dohi, Teraoka and Osaki (2000) found their solu-

tion restricted to just a particular case and computationally quite intractable and proposed a

different approach addressing those issues.

Alternative approaches have been proposed in the literature. It is worth mentioning the

work by Feijs (2001) who considered a game where the two players have very specific, distinct

roles. One is an implementer (I) who is rewarded if she delivers an (almost) error-free piece of

software, where the other is a tester (T ) who is rewarded only if he performs a thorough testing

job. Fejis considers an Idealized Testing Game (ITG) which is a two-player strategic game

where each player has two choices about performing their jobs: bad (B) or good (G) quality.

Intermediate quality levels are also possible, as discussed in Fejis (2001). A pair (x, y) of payoffs

is associated with each combination of job quality, where x is the payoff for I and y for T . The

payoff matrix is given by

B G

B (2, 2) (0, 3)

G (3, 0) (1, 1)

The payoffs (0, 3) and (0, 3) have a clear interpretation: this is the case where one player (I in

the first case) is unable to detect faults whereas the other succeeds where fails. This explains

why one player get the lowest payoff in the matrix and the other gets the highest. The payoffs

(2, 2) and (1, 1) have a less evident explanation. The former pair corresponds to the case of

bad quality job by both the player: they are of course penalized because unable to discover

many faults but they are rewarded since they did not make significant efforts. The latter pair

corresponds to the opposite situation: the players are rewarded because they were able to
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discover many causes of faults but that occurred because of a large effort (and related cost).

The idea behind this model is that implementer I and tester T choose their performance

level simultaneously. Once the problem has been structured and the software specification

is available, I starts implementing the software whereas T starts looking for test cases and

describing them thoroughly. In this way, the overall project duration is reduced as much as

possible, leaving just the actual testing phase after the implementation of the software.

An alternative model, briefly described in Feijs (2001), corresponds to the case in which I

chooses first the quality of her job and then T decides what to do after observing what I has

done. This is another common situation where the tester can decide to make extra efforts if he

believes the implementer did a poor job (or vice versa). Considering the previous payoff matrix,

then I has two possible choices: B or G. In the former case T is left with just the first row of

the matrix and he can choose between payoffs (2, 2) and (0, 3). Of course he would choose the

second one, leaving I a payoff of 0. Should I choose good quality, then the choice of T would

be between the payoffs (3, 0) and (1, 1), with an obvious preference for the second one. From

the viewpoint of the implementer, she gets a payoff of 0 if she performs a bad quality job and 1

if the quality is good. Therefore, rational behavior leads to a pair of payoff (1, 1) corresponding

to good quality jobs by both players.

Those games, resembling the famous Prisoner’s Dilemma, could be rethought in an ARA

framework, as described earlier.

As pointed out in Feijs (2001), the actual software development is more complex and requires

balancing between different aspects like development time, code-size, reusability, etc. Another

critical aspect is the large number of possible test cases and the search for a restricted number

of them which could lead to a significant improvement of the software quality and, at the same

time, can be performed in a reasonable amount of time: good quality and quick delivery are

often clashing goals!
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Kukreja, Halfond and Tambe (2013) consider software testing as a security game where a

Defender uses her limited resources for protecting public infrastructure (e.g. airports) from an

Attacker (e.g. terrorist). In particular, they define a testing game in which the tester T is

playing the role of Defender and the implementer I is the Attacker.

The tester T is willing to ensure high software quality and therefore, and is interested in

developing a testing strategy which will execute the most efficient test cases, given constraints

on resources and/or time constraints. Therefore, T is the Defender of the software quality,

whereas I is treated as an Attacker who might produce a software full of bugs which could

have a negative impact on its quality. The tester should detect such bugs before the software

release. Implementers are Attackers not because they get a reward from bad quality software

but because they might get credit for the quick development of the software rather than for

a delayed one, even if due to careful testing. Kukreja, Halfond and Tambe (2013) associate

utilities, for both players, to the test cases and compute a distribution that maximizes the

tester payoff. Like in security games, the defender T may employ non-deterministic strategies,

i.e., selecting a particular action with some probability. This use of a distribution decreases the

predictability of T , making the task of the Attacker I harder.

4 Multi-objective Optimization in Software Testing

In Section 2.1 we formulated the optimization problem to determine the optimal release time

under three different scenarios: an unconstrained problem where the objective function was

depending on both (testing and failure) costs and software reliability and two constrained

problems where either costs were minimized subject to the achievement of a minimal reliability

level or, reliability was maximized subject to fixed cost level. Although simple to formulate,

those approaches can hardly describe the management’s attitude, especially the unconstrained

problem where there is the issue of how much reliability should be weighted with respect to cost.
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A more natural approach, although computationally more complex, consists of minimizing costs

and maximizing reliability simultaneously. Therefore, the problem becomes a multi-objective

optimization one where the goal is to find the optimal release time t∗ solution of

max
t>0

R(x|t) &min
t>0

E[C(t)], (5)

where x is the useful life or warranty time of the software once released.

Different approaches have been presented in literature as discussed in Li, Xie and Ng (2012).

A first approach is based on trade-off analysis which has the goal of identifying nondominated

actions which are solutions to (5). In the current context, we say that an action a (in this case

a release time) is nondominated if there is no other action b such that Rb(x|t) ≥ Ra(x|t) and

E[Cb(t)] ≤ E[Ca(t)], with strict inequality for at least one of them. In this case subscripts de-

scribe which action we are referring to. The nondominated solutions, called also Pareto optimal

solutions, are not inferior to any other solution. The approach simplifies the management’s de-

cision process since it reduces the search from all feasible solutions to a subset where a rational

compromise can be made among the different solutions.

Multi-attribute utility theory (MAUT) addresses the problem of having different objectives

in different scales and units. MAUT solves the problem considering weights and a single utility

function. For each attribute di, i = 1, . . . , n, (reliability and costs in our context) an utility

function u(di) is specified and then the multiattribute function

U(d1, . . . , dn)0
n
∑

i=1

wiu(di)

is considered, where wi, i = 1, . . . , n, are the importance weights assigned to each utility func-

tions. In this way each attribute is converted to a value in [0, 1] through its utility function where

the weights, adding up to 1, determine the relative importance of each attribute. Methods for
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elicitation of each utility function and the corresponding weight have been proposed, although it

should be remarked that they are subject to the same sensitivity concerns discussed earlier. In

practice, the utility is often chosen as a linear function for each attribute and management has

just to provide upper and lower value on the corresponding attribute. On the other hand, the

choice of the weights could be obtained comparing a certain scenario and a lottery. A thorough

illustration of the approach can be found in Keeney and Raiffa (1976).

5 Conclusions

In the chapter we have presented several game and decision theoretic formulation of problems in

software testing. We have not taken a firm position about the choice between a frequentist or a

Bayesian approach, since we recognize merits of both of them. Nonetheless, we believe that the

Bayesian approach can make better use of available information and preferences, providing also

a more coherent theoretical approach. As mentioned in the chapter, Adversarial Risk Analysis

(ARA) is an emerging field, thoroughly described in Bank, Rios and Rios Insua (2015), which

could be successfully applied in this context.
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