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Abstract

Starting in the late 80’s Bayesian methods have gained increasing attention in the reliability litera-
ture. The focus of most of the earlier Bayesian work in reliability involved statistical inference and
thus the main focus was on modeling and analysis. Advances in Bayesian computing after the 90’s
have significantly contributed not only to the use of Bayesian inference but also to the implemen-
tation of Bayesian decision-theoretic approaches in reliability problems. In this review paper we
present an overview of Bayesian methods to solve decision problems in reliability some of which
involve two or more decision makers with conflicting objectives. We consider problems in areas
such as design, life testing, preventive maintenance, reliability certification, warranty policies and
others. In doing so, we present key aspects of the decision problems, give a brief review of earlier
methods and finally discuss recent advances in Bayesian approaches to solve them.

Keywords: Optimal replacement, design of life tests, stopping rules, warranties, adversarial
risk analysis, Markov chain Monte Carlo.



1 Introduction and Overview

In his review paper Barlow (1984) noted that ”The mathematical theory of reliability has grown out
of the demands of modern technology and particularly out of the experiences in World War II with
complex military systems”. Some of this earlier work in reliability was in the area of machine main-
tenance which involved renewal theory applications to replacement problems as in Lotka (1939). At
about the same time, in 1944, von Neumann and Morgenstern published their celebrated Theory of
Games and Economic Behavior which contained the axiomatization of utilities and laid down the foun-
dations of decision theory and analysis. Abraham Wald (1950) was the first statistician to recognize
the connection between game theory and the statistical theory of hypothesis testing. In 1954, the
publication of Leonard Savage’s The Foundations of Statistics completed the foundations of modern
decision theory and Bayesian statistics developing an axiomatic basis of probability based on behav-
ioral considerations in combination with utility theory.

As pointed out by Singpurwalla (2009), ”Reliability is a key ingredient for making decisions that
mitigate the risk of failure. The other key ingredient is utility”. The Bayesian decision theoretic
approach integrates both by quantifying uncertainty via probability and preferences via utility, pro-
viding a coherent framework for making decisions by subscribing to the principle of expected utility
maximisation, see Lindley (1985) and French and Rios Insua (2000). This is well recognized by many
authors in the Operations Research and reliability communities like Percy (2002), who points out
that the limited availability of data in many reliability related decision problems makes the Bayesian
approach inevitable. He mentions preventive maintenance and repair/replacement strategies, con-
dition monitoring of systems and specification of warranty policies, etc. as example areas.

Reliability problems involving a single decision maker can be formulated and solved with the
Bayesian decision-theoretic framework. However, as noted by Rios Insua et al. (2017), there are re-
liability problems that involve two or more decision makers, possibly with opposed interests. One
of the earliest Bayesian approaches in adversarial reliability settings is due to Lindley and Singpur-
walla (1991, 1993) who considered problems in acceptance sampling and life testing. Such problems
involving adversarial components can be framed as games and are typically solved using (non co-
operative) game-theoretic methods. Hausken (2002) provides examples of using the game-theoretic
approach in system reliability analysis especially in relation with infrastructure reliability of public
systems. Other adversarial application areas include warranty analysis, software testing, optimal
maintenance and reliability demonstration.

Barlow (1984) noted that ”Among statisticians working in reliability theory, perhaps the most
significant trend is the growing recognition of the usefulness of the Bayesian approach to inductive
inference.” Since then, there has been a considerable increase in the use of Bayesian methods in reli-
ability problems involving inference but also decision making. The objective of this paper is to focus
on the latter and provide a review of recent advances in Bayesian methods for decision making in
reliability, including Bayesian decision analysis methods to cope with adversarial issues in reliability.

The structure of our paper is as follows. The material in Section 2 focuses on Bayesian design for
life tests including censored life testing experiments. Extensions such as accelerated life testing are
considered. The main aspects of decision problems and the associated computational issues are dis-
cussed. Related problems of optimal stopping and planning of reliability demonstration tests are also
presented. Section 3 refers to Bayesian maintenance policies for both repairable and non repairable
systems. Different replacement protocols are presented and computation of optimal replacement in-
tervals are discussed. Recent work on nonparametric Bayesian policies that are based on advances in
Bayesian computing are also highlighted. The final part of the section considers sequential mainte-
nance problems and outlines implementation of semi-Markov decision processes. The focus of Sec-
tion 4 is on adversarial problems in reliability. Bayesian solutions are discussed for game theory and
adversarial risk analysis setups for acceptance sampling plans and Bayesian methods for specifying
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warranty policies are presented. Concluding remarks follow in Section 5.

2 Design of Life Testing Experiments

In reliability analysis experiments are conducted to obtain information about failure characteristics of
systems or components of interest, to assess reliability and, if necessary, improve system performance
based on information from the experiment. Such experiments are generally referred to as life tests.
For example, we may be interested in learning about the life length of a component under a certain
environment, its reliability at a given mission time, or the failure rate, and make a decision on whether
to change the design of the component based on such information. Design problems in life testing
involve the determination of one or more elements of the life test such as the testing environment, the
number of items to be tested or the stopping rule. Optimal selection of the design variables require
consideration of benefits from the life test as well as the associated costs with performing the test.

As noted by Polson and Soyer (2017), the Bayesian decision-theoretic approach to the optimal
design problem requires the specification of three components:

1. A utility (loss) function: reflecting the consequences of selecting a specific design

2. A probability model: life distribution of the items in question

3. A prior distribution: reflecting a priori beliefs about all unknown quantities.

Let a ∈ A denote the design variables, which may represent the number of items to be tested, the
duration of testing, or binary actions such as stop/continue testing. Let the observed outcome of
a life test be x and the probability model for x given parameter(s) θ be p(x|θ, a). We assume that
the uncertainty about θ prior to the life test is described by a probability distribution p(θ). Finally,
we denote the utility function associated with the consequences of selecting a specific design a as
u(x, θ, a) which will, therefore, depend on both x and θ in general. Then, the Bayesian solution to the
design problem is obtained by maximizing the expected utility, given by

E[u(x, θ, a)] = u(a) =

∫ ∫
u(x, θ, a)p(x, θ|a) dθ dx, (1)

with respect to the design variable a. Since (1) can be written as

u(a) =

∫ ∫
u(x, θ, a)p(θ|x, a)p(x|a) dθ dx, (2)

where p(θ|x, a) is the posterior distribution of θ, u(a) is usually referred to as the pre-posterior expected
utility. The optimal design is then obtained by solving

a∗ = argmax
a

ū(a). (3)

Life test data are typically censored and provide partial failure/survival information. The most
commonly used strategies are failure truncated (Type II) and time truncated (Type I) censoring. Under
the Type II scenario, n items are tested until k ≤ n of them fail. The testing duration, which is the
time of k−th failure, is an unknown quantity whereas n and k are pre-specified design variables.
In the time truncated censoring, n items are put on test for a pre-specified τ units of time, that is,
testing stops after τ . In this case test duration is known, but the number of items that will fail during
τ units of time is an unknown quantity. The design variables are a = (k, n) and a = (τ, n) in the
Type II and Type I censoring, respectively. It is also common to accelerate life-tests by changing the
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testing environment to induce early failures and, in this case, the testing environment is also part of
the design variables a. Sometimes life tests consist of several stages and are conducted sequentially
until a criterion known as stopping rule is satisfied; see, for example, Deely and Keats (1994).

In what follows, we first present the Bayesian optimal design of censored life tests and discuss
some of its extensions and recent Bayesian work. This is followed by a discussion of optimal accel-
erated life testing design. Finally, we present optimal stopping problems in life testing and sketch
optimal release problems in reliability analysis.

2.1 Optimal Bayesian life test design

As mentioned, by providing failure/survival data, life tests allow us to infer the failure characteristics
of the components in question. Earlier Bayesian work on design of life tests include Thyregod (1975)
who considered Type II censoring where the test results would be used to accept/reject a production
lot. Using a cost-based utility function, an optimal sampling plan was determined specifying the
failure truncation and the acceptance rule for the lot. In related work Barnett (1972) developed a
Bayesian sequential life test procedure using a posterior probability based criterion. An alternative
Bayesian sequential procedure was considered by Bancroft and Dunsmore (1978) using predictive
distribution of observed lifetimes.

The concept of gain in information about the failure characteristic from a life test, discussed by
Brooks (1982) and Barlow and Hsiung (1983), plays an important role in optimal design of Bayesian
life tests. A general utility function for the design problem is given by

u(x, θ, a) = g(x, θ, a)− c(x, a), (4)

where functions g and c are similar to the gain and cost functions of Bernardo (1997), respectively. It
is important to note that g and c have the same units. For example, if g(x, θ, a) = −V (θ|x, a), that
is, g is set to be the negative of the posterior variance of θ, then the evaluation of ū(a) in (2) requires
assessing of the pre-posterior variance of θ. If we choose the gain function as g(x, θ, a) = log p(θ|x, a),
where p(θ|x, a) is the posterior distribution of θ under design a, then the evaluation of ū(a) requires
assessing Lindley’s measure (1956). The utility function (4) provides an additive structure to reflect
the benefits and costs associated with the life test design a. It is possible to reflect such trade-offs by
using alternative forms as well, as in Section 2.2. Here, we consider additive utility functions.

2.1.1 Design of failure truncated life tests

As previously mentioned in the failure truncated censoring, the design variable to be determined is
a = (k, n). We assume a specific form for (4) given by

u(T (x, a)) = −V (θ|T (x, a))− ctT (x, a), (5)

where T (x, a) is the total time on test (TTOT) under the failure truncated scenario and ct represents the
cost of testing. The TTOT is given by

T (x, a) =

k−1∑

i=1

X(i) + (n− k + 1)X(k), (6)

where X(1) < · · · < X(k) are the first k order-statistics from the distribution p(x|θ, a).
Assume that the life-length of the items follow an exponential distribution with failure rate θ with
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gamma prior distribution

p(θ) =
bd

Γ(d)
θd−1e−bθ

denoted as θ ∼ Gam(d, b). The standard Bayesian updating implies that θ|T (x, a), a ∼ Gam(d +
k, b+ T (x, a)) and V (θ|T (x, a), a) = (d+ k)/(b + T (x, a))2. The evaluation of the preposterior utility
requires the predictive distribution of T (x, a) given by

p(T (x, a)) =

∫

θ
p(T (x, a)|θ)p(θ)dθ,

where (T (x, a)|θ) ∼ Gam(k, θ). It can be shown that

p(T (x, a)) =
Γ(d+ k)

Γ(d)Γ(k)

(1/b)(T (x, a)/b)k−1

[1 + (T (x, a)/b)]d+k
(7)

corresponding to a scaled inverted beta or beta prime density; see Dunsmore (1974). To obtain the
optimal design, we need to maximize the pre-posterior utility u(a). This is equivalent to minimizing

ET (x,a)[V (θ|T (x, a)) + ctT (x, a)], (8)

where the expectation is taken with respect to the predictive distribution (7). Note that in this setup,
the only design variable is a = k. Using properties of the scaled inverted beta distribution we can
obtain that the preposterior loss (8) is

d(d+ 1)

b2(d+ k)(d + k + 1)
+ ct

bk

(d− 1)
, (9)

for d > 1. The expected loss (9) can be easily minimized with respect to k to find the optimal design.

2.1.2 Design of time truncated life tests

We will assume the same utility function (5) for the time truncated censoring case with design vari-
able a = (τ, n). The TTOT is now given by

T (x, a) =

K∑

i=1

X(i) + (n−K)τ,

whereX(i) is the i−th order statistic of truncated exponential random variables with density function

p(x|θ, τ) = θe−θx

1− e−θτ
, (10)

for x < τ . In this case both the X(i)’s and the number K of failures are random quantities. Given K ,

it can be shown that
∑K

i=1X(i) is a sum of independent truncated exponential densities as in (10) and

the distribution of K is binomial with parameter [1− e−θτ ], that is,

p(k|θ) =
(
n

k

)
[1− e−θτ ]k e−θτ(n−k). (11)
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The sampling distribution of T (x, a) and K was obtained by Bartholomew (1963) as

p(t, k|θ) =
(
n

k

)
θk

(k − 1)!
e−θt

∑k
i=0 (

k
i)(−1)i[max{0, t−τ(n−k+i)}]k−1

(12)

for k > 0 and p(t, 0|θ) = e−θnτ , for k = 0. Assuming a gamma prior for θ ∼ Gam(d, b) we can obtain
the predictive distribution of T (x, a) and K as

p(t, k) =

(
n

k

)
Γ(d+ k)

Γ(d)Γ(k)

bd

[b+ h(t, k)]d+k
, (13)

where h(t, k) = t
∑k

i=0

(
k
i

)
(−1)i[max{0, t− τ(n − k + i)}]k−1.

As with Type II censoring, the utility function is given by

u(T (x, a)) = − d+K

b+ T (x, a)
− ctT (x, a). (14)

Note that evaluating the preposterior expected utility u(a) involves obtaining the expectation of (14)
with respect to the predictive distribution (13). This cannot be obtained analytically, but u(a) can be
approximated as a Monte Carlo (MC) average by drawing samples of (K, θ) from p(k, θ) = p(k|θ)p(θ),
and using these to draw samples from K independent truncated exponential random variables from

(10) to evaluate T (x, a) =
∑K

i=1Xi + (n − K)τ . Note that T (x, a) is a function of (τ, n). Once MC
draws (K(s), T (x, a)(s)) are available, we can find the optimal design a∗ = (τ∗, n∗) by minimizing the
MC average

1

S

S∑

s

d+K(s)

b+ T (s)(x, a)
+ ctT

(s)(x, a)

with respect to (τ, n).
The Bayesian optimal design setup presented for the exponential model under both censoring

scenarios can be extended to other failure models. For example, Zhang and Meeker (2005) consid-
ered life test plans for the Weibull model with known shape parameter under Type II censoring and
presented optimal plans using different criteria. More recently, Kundu (2008) considered life test de-
signs under progressive censoring, whereas Hong et al. (2015) developed Bayesian designs for the
log-location-scale family of distributions using Markov Chain Monte Carlo (MCMC) methods to eval-
uate expectations. Polson and Soyer (2017) proposed the use of augmented probability simulation
(APS) methods for design of Bayesian life tests and implemented their approach to accelerated life
testing problems.

2.2 Design of accelerated life tests

Accelerated life tests (ALTs) involve testing systems in an environment that is more severe than the
use environment and employing the data collected in the accelerated environment to infer failure
behavior in the use environment. The design problem in accelerated life testing is concerned with
specification of the number and magnitude of the accelerated stress levels, and the number of items
to be tested at such stress levels; see for example, Soyer (2007).

Original work in ALT design is due to Chernoff (1962). There is a considerable literature on
Bayesian ALT designs dating back to Martz and Waterman (1978) and DeGroot and Goel (1979).
Later work include Chaloner and Larntz (1990), who developed Bayesian designs for Type I cen-
sored tests using optimality criterion proportional to the expected asymptotic variance of the failure
characteristics of interest; Menzefricke (1992), who consider design of Type II censored ALTs for log-
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normally distributed lifelengths; Verdinelli et al. (1993,) who present optimal designs maximizing
Shannon information; and Soyer and Vopatek (1995), who introduce linear Bayesian designs for ALTs.
As pointed out by Soyer (2007), most of these Bayesian approaches are based on the theory of op-
timal Bayesian designs for linear models as in Chaloner (1984) and therefore, they either consider
normal or lognormal failure models or use asymptotics. In the case of non Gaussian models such
as exponential or Weibull, nonlinearities arise in the analysis. As a result, simulation methods are
required to compute optimal designs. For example, Erkanli and Soyer (2000) use MCMC methods
with nonparametric surface estimation to find optimal ALT designs and Zhang and Meeker (2006)
consider large sample results for Bayesian ALT designs, as well as simulation-based methods. Nasir
and Pan (2015) present simulation-based ALT designs for model discrimination.

A more recent treatment of the optimal design in ALTs can be found in Polson and Soyer (2017)
who propose to use the APS method in Bielza et al. (1999) to compute optimal design a maximizing
the preposterior expected utility (2). In the sequel, we discuss the APS approach of Polson and
Soyer (2017). In doing so, we assume that the environment is characterized by a single stress and
let the design a represent the stress level variable characterizing the accelerated test environment. It
is possible to consider extensions to multiple stresses, as in Zhang and Meeker (2006), or testing at K
accelerated levels of the stress variable.

2.2.1 APS model

Polson and Soyer (2017) point out that the evaluation of the preposterior expected utility u(a) via
traditional MC techniques can become inefficient and hinder computing the optimal design a∗ =
argmaxa ū(a), especially for high dimensional cases. To alleviate such inefficiencies, following Bielza
et al. (1999), they propose an alternative approach by treating the design variable a as random and
recasting the problem as one of drawing samples from the augmented probability model, defined
through

π(x, θ, a) ∝ u(x, θ, a)p(x, θ|a)p(a), (15)

where the distribution p(a) is generally specified as a uniform distribution over the decision space.
The ”tilted” marginal distribution of a, that is, π(a) is proportional to u(a) and therefore, the optimal
design can be obtained by simulating samples from the marginal distribution of a and finding its
mode. This can be done by using a MCMC scheme to draw from the augmented distribution (15).
Polson and Soyer (2017) use a Gibbs sampler in their development by simulating from π(x, θ|a) and
π(a|x, θ).

With higher dimensional a’s and flat expected utility surfaces, one can use π(a) with a power type
transformation as suggested by Mueller (1999). By drawing J samples (xj , θj)

J
j=1 for each design a,

we can obtain

πJ(x
J , θJ , a) ∝

J∏

j=1

u(xj , θj, a)p(θj , xj|a), (16)

where θJ = (θ1, . . . , θJ) and xJ = (x1, . . . , xJ ). It follows from (16) that πJ(a) ∝ uJ(a). As noted by
Polson and Soyer (2017) the APS approach performs evaluation and optimization of u(a) simultane-
ously by treating the design variable a as a random quantity and simulating a, together with (x, θ)
from the augmented probability model (15). In doing so, unlike the standard MC approach, the APS
”tilts” MC draws to regions of high utility values and provides computational efficiency.

2.2.2 APS for ALT designs

Assume that failure times Xi under the stress environment ai are exponentially distributed with
failure rate θai. Assuming that n items are tested under environment ai, the distribution of TTOT
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T (x, ai) =
∑n

j=1Xij is gamma Gam(n, θai). Using a gamma prior for θ ∼ Gam(d, b), we can show
that the predictive distribution is an inverted beta density

p(T (x, ai)) =
Γ(d+ n)ai/b

Γ(n)Γ(d)

(T (x, ai)ai/b)
n−1

(1 + T (x, ai)ai/b)d+n
.

The objective now is to select the accelerated environment ai > au to learn about the failure rate θau
at the use stress. Polson and Soyer (2017) consider a single point design and assume a utility function

u(x, a) =
1

(a/au)α
e−kT (x,a), (17)

where α and k are positive constants with α > 1. Note that (17) is a conjugate utility function in the
sense of Lindley (1976) and reflects the consequences of choosing a design a and observing a total
time on test T (x, a). It is desirable to test at a closer to au. However, smaller values of a will imply a
lower failure rate and, thus, larger TTOT. In (17), α reflects the cost of selecting a design a away from
au whereas k reflects the cost of testing. Without loss of generality we let au = 1 < a.

Using (17) and the gamma prior for θ, the augmented model (16) can be written as

πJ(T
J(x, a), θJ , a) ∝

J∏

j=1

1

aα
e−kTj(x,a)(θja)

n(Tj(x, a))
n−1 e−θjaTj(x,a)θd−1

j e−θjb, (18)

where a is uniform over (1, amax). The conjugate utility function allows us to design a Gibbs sampler
as all full conditional distributions are available. Polson and Soyer (2017) show that the full condi-

tional of a is Gam(J(n − α) + 1, sJ ) where sJ =
∑J

j=1 θjTj(x, a). Similarly, the full conditionals of
the θj’s are Gam(n + d, b + aTj(x, a)), for j = 1, . . . , J and the full conditionals of the Tj(x, a)’s are
Gam(n, k + aθj) for j = 1, . . . , J . By drawing iteratively from the full conditionals, the mode of the
draws a(g)’s histogram collapses on the optimal design. Polson and Soyer (2017) discuss implemen-
tation issues associated with APS as well as extension to multiple point designs.

2.3 Optimal stopping and optimal release

An important question in the testing of any product is when to finish testing and release it to the
customer or place it on the market. This decision depends on how reliable the product is believed to
be, as well as the costs and benefits of release: a decision to delay release will incur in costs for further
testing and a potential loss of market advantage, but benefits of increased reliability, or reduced
uncertainty about the reliability that will lead to lower expected repair costs or penalties for not
meeting warranty or service agreement targets. This can be formulated as a decision problem in
which:

• The actions are to release the product now, or test. If the decision is to test, this may be broken
down further to consider how much further testing to do. Hence the set A of alternatives
may simply take the form {test, release} or be the set of testing times A = [0,∞), with a = 0
corresponding to immediate release;

• A probability model p(x | θ) is assumed for the time to failure of the product with parameter θ
representing the failure characteristics of the product with an elicited prior distribution p(θ);

• The consequences are usually the financial implications of the action, or its utility. They are
usually based around the costs of testing, the costs of product failure after release and the po-
tential costs of the loss of market advantage due to delaying release. The utility can be specified
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Figure 1: Decision tree for single stage testing.

as u(θ, a) reflecting the consequences of releasing the product with failure characteristic θ fol-
lowing the testing decision a.

The simplest testing strategy in this context is that of single-stage testing, where testing is to be
done for a period of time and then the product is released, regardless of the results of the test. The
decision is to choose the optimal test time. This strategy can be represented by a decision tree (Figure
1). In this case, the decision is purely based on the utility and prior on θ, with the optimal decision
being

argmax
a
ū(a) =

∫

θ
u(θ, a)p(θ) dθ.

If the utility depends explicitly on the failure time x of the released product, u(x, θ, a), then as in (3),
the optimal decision is:

argmax
a

ū(a) =

∫ ∫

(x,θ)
u(x, θ, a)p(x | θ)p(θ) dx dθ.

The ’full’ solution would provide for multiple testing stages, with the option at the end of each
stage to release or continue for another stage. This gives the decision tree in Figure 2. The optimal
strategy now consists of a sequence of testing times a1, a2, a3, . . ., with ai depending on the prior and
the data up to the last testing period x1, . . . , xi−1. This would include conditions under which release
would occur after i testing stages. Unfortunately this optimal strategy is generally infeasible to com-
pute, being a dynamic programming type of problem with nested maximizations and expectations,
so that the utility at the n-th stage will depend in some way on the optimal action at the (n + 1)th
stage:

a∗n = argmax
an

E(u(Xn, θ, an; a
∗
n+1)),

where Xn = (xn, xn+1, . . .) are the test data from the nth and subsequent stages. Only in special
circumstances will such computations scale to even moderate n (Dunsmore and Wright, 1985).

The usual solution is to assume a Markov property, and solve the sequence of single stage prob-
lems, with the posterior distribution at stage n given x1, . . . , xn−1 being used:

a∗n = argmax
an

E(u(xn, θ, an) |x1, . . . , xn) =

∫

(xn,θ)
u(xn, θ, a)p(xn | θ)p(θ |x1, . . . , xn−1) dxn dθ.

The work of Barnett (1972) was one of the first to consider this idea.
An illustration of this approach is in McDaid and Wilson (2001), applied to software testing. The

goal is to determine the time a to test the software. Uncertainty arises from N(a), the number of bugs
discovered in the software by time a, and then N̄(a) = N(∞)−N(a), the number that are discovered
after time a. Many probability models have been proposed for this (Singpurwalla and Wilson, 1999).
A popular one is that of Goel and Okumoto (1979), in which N(a) is a Poisson process with mean
function M(a) = θ1(1 − e−θ2a), for parameters θ = (θ1, θ2) that represent the expected total number
of bugs in the software and the discovery rate, respectively. Thus, N(a) is Poisson distributed with
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expected value M(a). It is possible to consider extensions of this model by considering covariate
information as in Ray et al. (2006).

A simple form for the utility of testing to time a, with N(a) bugs discovered in testing and N̄(a)
discovered after release, is:

u(x = (N(a), N̄ (a)), a, θ) = B − CN(a)−DN̄(a)− Fa, (19)

where B is the profit from releasing the software without any testing, C is the cost of fixing a bug
discovered in testing, D is the cost of fixing a bug post-release and F is the cost per unit time of
testing, that includes both the testing costs as well as lost sales and market opportunity. In practice,
D should be considerably larger than C . Gamma distributions were used as priors with parametric
form p(θ) = αβ θβ−1e−αθ/Γ(β), with mean β/α and standard deviation

√
β/α. McDaid and Wilson

(2001) describe an elicitation process for these parameters based on these relationships. Here, we
assume that such elicitation process has led to specifying a gamma prior with parameters (α1, β1) for
θ1, and (α2, β2) for θ2. Given θ, N(a) and N̄(a) are Poisson distributed. Averaging out over the prior
on θ gives the expected values of N(a) and N̄(a)

E(N(a)) =
β1
α1

[
1−

(
α2

α2 + a

)β2

]
(20)

E(N̄ (a)) =
β1
α1

(
α2

α2 + a

)β2

. (21)

Hence the expected utility of testing to time a is:

ū(a) = B − C
β1
α1

[
1−

(
α2

α2 + a

)β2

]
−D

β1
α1

(
α2

α2 + a

)β2

− Fa,

and the optimal time a∗ to test, which maximizes this function is:

a∗ = α2

[(
β1β2(D − C)

α1α2F

)1/(β2+1)

− 1

]
; (22)
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Figure 3: Expected utility as a function of time (left) and optimal testing time as a function of post-
release bug cost D (right).

assuming that D > C . When D ≤ C , the optimal strategy is not to test and just repair all bugs
post-release.

Figure 3 illustrates the case where the prior mean on a is 100 (we expect about 100 bugs in the
code) and the prior mean on b is 0.01 (based on α1 = 0.01, β1 = 1, α2 = 100 and β2 = 1) and utility
parameters are B = 2000, C = 1, D = 20 and F = 0.5. The left plot shows the expected utility as a
function of a, and identifies a∗ = 516.4 for an expected utility of 1333.6. The right plot shows how
a∗ changes as a function of D, the cost of fixing a bug post-release; this shows how the testing time
should increase as the relative cost of fixing bugs after testing rises.

In this solution, release occurs regardless of the results of the testing and so there is no opportunity
to learn about the software’s reliability from the testing results. McDaid and Wilson (2001) discuss
other solutions that involve more than one stage of testing allowing for learning to take place, includ-
ing the Markov sequence of single stage tests. Singpurwalla (1991) consider the Bayesian solution for
a two-stage testing problem. Morali and Soyer (2003) discuss optimal stopping problem in software
testing and investigate the possibility of developing one stage ahead optimal stopping rules using
results from van Dorp et al. (1997).

2.4 Reliability demonstration test plans

The goal of reliability demonstration testing (RDT) is to accumulate enough evidence so that the
reliability of the product under consideration has achieved or not a given level. This is in contrast
to optimal testing in which the goal is to reach the optimal trade off between further testing and
release. Demonstration testing will typically form part of product development, although it may
also arise when a vendor wishes to convince a buyer or a regulator that its product meets reliability
requirements, in which case it has links to adversarial life testing as discussed in Section 4.2.

The formulation of a solution to RDT requires a reliability model, a definition of a reliability metric
and a pass/reject criterion. A pioneer Bayesian example was in Schafer and Singpurwalla (1970),
who assumed exponential failure times with mean θ, a conjugate inverse gamma prior on θ and
meeting a required mean time to failure θ1 as a reliability criterion. A sequence of items was tested
and failure times t1, t2, . . . were observed. After the failure of each item under test, the test stopped
if the posterior probability P (θ > θ1 | t1, . . . , tn) either exceeded 1 − α2, in which case the product
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was passed, or fell below 1 − α1, in which case the product was rejected, for specified threshold
probabilities 0 < α2 < α1 < 1.

Barnett (1972) advanced another important aspect of RDT by using a continuous pass/reject cri-
terion, rather than one that could only be evaluated after each failure of the items on test. A large
amount of subsequent work in the seventies extended this work in many ways, nicely reviewed in
Martz and Waller (1982). Higgins and Tsoskos (1976) showed that RDTs could be very sensitive to
the choice of prior on the reliability metric. Martz and Waller (1979) considered the case in which
tests show no failure, extending work to the case of highly reliable systems.

Bayesian reliability demonstration tests have largely followed this format of metric, reliability
model, prior specification and accept/reject criterion, either defined explicitly or based on a utility or
loss function. After a hiatus in work in the 1980s and the 1990s, there has been an increase of activity
in the past 15 years, and even Bayesian RDT has now been incorporated into official reliability testing
standards (Yates, 2008).

More recent work has had more of a focus on using decision theory in the determination of when
to stop testing and accept or reject, based on a loss function for a product with a given level of
reliability, as well as other decisions such as optimal testing strategies. For example, Rahrouth et al.
(2006) models a process of tests and decisions for a system with redundancy, taking into account the
costs of testing as well as adding extra redundancy versus the benefits of the increased reliability.
Jin and Matthews (2014) develop an approach to planning optimally the test, taking into account the
costs of testing and measuring reliability.

Sun and Berger (1994) is a good example of the Bayesian approach to RDT. They considered a
generalization of Schafer and Singpurwalla (1970) introducing an additional mature product goal
θ2 > θ1 such that the product is rejected when the posterior probability that θ < θ2 exceeds a thresh-
old. They also considered a reliability model more general than the exponential, and introduced a
loss function of the form:

l(θ) =

{
0, if θ1 < θ < θ2,

l, otherwise,

for some positive loss l > 0. In this case, a closed-form solution for the accept/reject rule that min-
imizes the expected loss can be derived. For example, in the exponential reliability model case, a
conjugate inverse-gamma prior on the mean time to failure θ with shape parameter a and scale pa-
rameter b, p(θ) = ba

Γ(a) θ
−(1+a)e−b/θ , can be defined. Then, the posterior distribution of θ after testing

N items to time t, of which n failed at times t1, . . . , tn, is also inverse gamma with shape parameter
b+ n and scale parameter a+ V (t), where V (t) is the total time on test to time t:

V (t) = (N − n)t+

n∑

i=1

ti.

Hence the accept/reject rule becomes:

If q∗(α1) > θ1 then stop testing and accept product;

If q∗(1− α2) ≤ θ2 then stop testing and reject product;

Otherwise continue testing,

where q∗(α) is the 100α% quantile of the posterior distribution. As the inverse gamma is related with
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Figure 4: Two examples of the reliability demonstration test of Sun and Berger (1994). Upper dashed
line is the accept threshold; lower dashed line, the reject threshold; solid line is V (t) + b.

the χ2 distribution, it can be shown that the rule can be written in terms of χ2 values:

If V (t) + b >
θ1
2
χ2(2(n + a), 1− α1) then stop testing and accept product;

If V (t) + b >
θ2
2
χ2(2(n + a), α2) then stop testing and reject product,

where χ2(m, p) is the 100p% quantile of the χ2 distribution with m degrees of freedom.
Figure 4 illustrates how this rule works in practice, with V (t)+ b and the accept and reject thresh-

olds, plotted as a function of time. It shows two examples with parameters a = 2, b = 1.5, θ1 = 0.5,
θ2 = 1.0, α1 = α2 = 0.05. Ten units are placed on test. On the left, all ten units fail without the
test stopping. On the right, the test reaches the accept boundary. Observe that the thresholds are
step functions, changing value when a failure is observed, while V (t) + b is strictly increasing, and
that testing continues until V (t) + b first hits one of the thresholds. Also note that V (0) = 0, hence
V (0)+b = b and so it is possible that the test is immediately passed or rejected at time 0 if b lies above
the initial accept or below the initial reject boundary, further backing up the assertion of Higgins and
Tsokos (1976) that the prior can play an important role in the outcome of an RDT.

3 Preventive Maintenance Policies

Since the seminal work of Barlow and Proschan (1965), preventive maintenance has become com-
mon practice for systems which are subject to deterioration as a result of usage and aging. The main
objective of preventive maintenance is to prevent system failures to avoid costly service disruptions.
Maintenance activities may take different forms including repairs, replacements as well as other prac-
tices that could prevent or delay system failure. The development of maintenance strategies have
attracted considerable attention in the OR/MS literature; see for example, the review papers by Cho
and Parlar (1991), Wang (2002) and Shafiee and Chukova (2013).

In this section we present the treatment of maintenance strategies from a Bayesian perspective.
We first discuss maintenance concepts and policies for repairable systems. This is followed by a
discussion of replacement policies, including replacement with minimal repair, where the Bayesian
framework for optimal replacement is introduced. Recent work on parametric and nonparametric
Bayesian replacement strategies is presented, including computational issues. Finally, sequential
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maintenance problems are considered and semi Markov decision processes are introduced to develop
Bayesian policies.

3.1 Policies for repairable systems

In reliability analysis, there is a major difference between repairable and non-repairable systems. The
latter are to be replaced upon failure; light bulbs, covers of smart phones and window glasses are
examples of non-repairable systems which lead to a sequence of lifetime distributions which, if i.i.d.,
give rise to a renewal process. Here we focus mostly on repairable systems which, in the event of a
failure, can be repaired, for example, by replacing a component, and returned to regular operation.
In some cases, the reliability of a system, after a “minimal” repair, returns to the same state as before
the failure. On the other hand, “perfect” repairs bring the system reliability back to the state at the
start of the operation. “Imperfect” repair is referred to the case in between these two; see Doyen and
Gaudoin (2004). Failures of repairable systems are often described by means of non-homogeneous
Poisson processes (NHPP). Whereas in Section 3.2 the focus will be on traditional decision-theoretic
approaches, here we consider Bayesian policies based on posterior predictive distributions and other
posterior estimates (which can also be justified from a decision-theoretic point of view).

Consider a NHPP N(t) with intensity function λ(t, θ) and mean value (or cumulative intensity)
function Λ(t, θ). Suppose we observe the system up to time τ and let n denote the observed number
of failures at times t1 < t2 . . . < tn < τ . Then, the likelihood function of θ is given by

L(θ;D) =
n∏

i=1

λ(ti, θ) exp{−Λ(τ, θ)}, (23)

where D = (t1, . . . , tn). For example for the intensity function λ(t, θ) = θt, with cumulative intensity.
Λ(t, θ) = θt2/2, the likelihood function (23) becomes

L(θ;D) = θn
n∏

i=1

ti exp{−θτ2/2}.

With a conjugate gamma priorGam(α, β) on θ, the posterior distribution p(θ|D) is given byGam(α+
n, β + τ2/2).

Consider now a new copy of the system for which the question is ”how long will it operate with
rare chances of failing?” In terms of the reliability function R(t), it means finding the largest T such

R(T |D) = Pr(N(T ) = 0|D) =

∫
Pr(N(T ) = 0|θ)p(θ|D)dθ =

{
β + τ2/2

β + τ2/2 + T 2/2

}α+n

> ǫ

where ǫ is the risk threshold. The optimal T is given by

T ∗ =
√

2(β + τ2/2)(ǫ−1/(α+n) − 1).

In this case, R(T |D) is seen as a posterior predictive probability. Similarly, we may consider the
reliability of the system after time τ and the expected number of failures in future intervals, either for
the current or a new copy of the system.

Pievatolo and Ruggeri (2004) considered forecasting gas escapes in the steel pipelines of a city
network. Historical data of 33 failures during the period 1978-1997 for a network of 275 km was used
to to infer the behavior of the network for the following 5 years. Decisions included the possible
replacement of pipelines with others less at risk and the size of the emergency and repair squads.
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The authors provided not only point estimates of the system reliability and the expected number
of gas escapes, but also their 95% credible intervals. The study predicted a limited number of gas
escapes which made replacement financially non viable.

Posterior predictive probabilities were used also by Pievatolo et al. (2003) and Pievatolo and
Ruggeri (2010) to assess if the reliability of underground train doors was compliant with the contract
signed by a manufacturer and a transportation company. The decision involved whether an action
was needed by the manufacturer to improve reliability to the contract level before warranty had
expired. The authors used different NHPPs to describe failure data which was available both in the
form of calendar time and kilometers run up to failure. Pievatolo et al. (2003) considered a univariate
intensity function (in time) where kilometers and time were related either by a Gaussian model or
a Gamma process, whereas Pievatolo and Ruggeri (2010) proposed a bivariate intensity function in
time and kilometers.

Another example of the use of predictive probabilities in determining the replacement of an item
is by Hermann and Ruggeri (2017) who consider data on the wear of cylinder liners in ships. Liners
are approximately 10 meters high and have a thickness of 100 millimeters (mm); they are supposed
to protect cylinders from breakage. If a cylinder breaks when the liner’s wear is less than 4 mm, then
the cost for the replacement of the cylinder is on the manufacturer of the liner; if it is more, the cost
is on the ship’s owner. Maintenance is very expensive because of the size of cylinders and the loss
of operational days by the ship. By considering the problem from the ship-owner’s point of view, a
stochastic differential equation model was proposed for the thickness of the liner (with a threshold at
96 mm, then) and forecasts were developed for its evolution over time. In particular, it was possible
to build 95% credible intervals for the thickness at future times which could be used for replacement
decisions.

Cagno et al. (2000) considered the problem of which pipelines of a city gas network were to be
replaced first to reduce the number of gas escapes. Eight subnetworks were determined by three
covariates (diameter, depth and location of the pipes) assuming two levels each. Gas escapes were
modeled by homogeneous Poisson processes and the decision was based on the largest parameter
among the eight subnetworks, as estimated by respective posterior means. More recently, Arias et al
(2015) considered the same problem by taking into account the uncertainty in modeling the prior dis-
tributions, which were originally obtained from qualitative assessment by company’s experts using
the Analytic Hierarchy Process and merging of opinions. The authors considered classes of priors
based on empirical quantiles from the distribution of expert opinions, and concentrated on non dom-
inated actions showing that a particular subnetwork was a posteriori the worst for all possible priors
in the class.

3.2 Optimal replacement

For most preventive maintenance strategies, a major issue is the determination of a planned replace-
ment (or maintenance) interval. This is performed in an optimal manner by considering the trade
off between in-service failure and planned replacements costs. Typically, the planned replacement is
less expensive than the in-service failure and subsequent service replacement. Two basic replacement
protocols are the block and the age replacement policies.

Under a block replacement policy, the system in question is replaced at times tB , 2tB , . . . , irre-
spective of the age of the system; it is also replaced at the time of a failure. Planned replacements are
specified in advance whereas the time of in-service replacement is unknown. If the cost of planned
replacement is given by cP , the cost of an in-service failure is cF , with typically cF > cP , and N(tB)
denotes the number of system failures for a time interval of length tB , the cost of replacement per
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unit time is given by

C(tB) =
cP + cFN(tB)

tB
. (24)

In (24), N(tB) is a renewal process. The optimal replacement interval t∗B is obtained by minimizing
the expected cost

E[C(tB)] =
cP + cFH(tB)

tB
, (25)

where H(tB) is the renewal function; see Cox (1962). Here it is assumed that after each failure the
system is replaced by a new one or the repair applied to the system is perfect. Thus, this is referred
to as the ”good as new” scenario.

An alternative block replacement strategy is considered in Barlow and Hunter (1960) where the
system is assumed to be minimally repaired upon failure, but replaced at times tB, 2tB , . . . irrespec-
tive of its age. In this case after each failure it is assumed that the system can be restored to the state
just prior to the failure. Thus, it is referred to as the ”bad as old” scenario. Block replacement with
minimal repair is applicable in those cases where replacement of the whole system is more costly,
due to disruption of service, than its minimal repair. One such example is the replacement of railroad
tracks where replacement of a track which is of miles in length is very costly compared to the repair;
see Merrick and Soyer (2017). If we denote the minimal repair (MR) cost by cR, then the cost per time
C(tB) is given by (24) where cF is replaced by cR < cP . In the MR case N(tB) is modeled by a NHPP.
Similar to the ”good as new” scenario, the optimal replacement interval is obtained by minimizing
the expected cost

E[C(tB)] =
cP + cRΛ(tB)

tB
, (26)

where Λ(tB) is the cumulative intensity (or mean value) function of the NHPP. Other extensions of
block replacement policies can be found in Sheu and Griffith (2002).

Under an age replacement policy, it is assumed that a planned replacement is performed when the
age of the system reaches a specified time tA or an in-service replacement is made when the system
fails. As in the block replacement policy under the ”good as new” scenario, the cost of in-service
failure is assumed to be larger than the planned replacement cost, that is, cF > cP . However, in this
case, unlike the block replacement policy, the length of the replacement cycle is random and is given
by min(tA, T ) where T is the life time of the system. For an age replacement interval tA, the cost per
unit time is given by

C(T, tA) =

{
cP /tA, if T ≥ tA

cF /T, if T < tA.
(27)

If F (t) denotes the distribution function for T with failure density f(t) and F (t) = 1 − F (t) is the
reliability (or the survival) function, then the expected cost per unit time can be obtained as

E[C(T, tA)] =

∫ tA

0

cF
t
f(t)dt+

cP
tA
F (t), (28)

and the optimal interval is obtained by minimizing (28) with respect to tA. Alternatively, the optimal
age replacement interval can be obtained by minimizing the long-run average cost given by

C(tA) =
cPF (tA) + cFF (tA)

tAF (tA) +
∫ tA
0 tf(t)dt

. (29)

Note that in (29), the numerator represents the expected cost for the replacement cycle and the de-
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nominator is the expected cycle length. Extensions of the basic age replacement policy can be found
in Chien (2008).

3.2.1 Bayesian replacement strategies

As noted in Mazzuchi and Soyer (1996a), most implementations of replacement policies in the lit-
erature are based on the assumption that the failure characteristics of the system are specified. For
example, in the block replacement with MR scenario, for the cumulative intensity function Λ(tB) in
(26) a parametric form Λ(tB, θ) is specified and the parameter θ is assumed to be known. A commonly
used model is the power law with cumulative intensity function

Λ(t, θ) = αtβ, (30)

where θ = (α, β) and both parameters are positive. The intensity function is given by λ(t, θ) =
dΛ(t, θ)/dt = αβtβ−1, where β > 1 implies deterioration over time. Assuming that α and β are given,
the optimal replacement interval t∗B is

t∗B =
( cP
cRα(β − 1)

)1/β
.

The Bayesian decision theoretic approach requires that the uncertainty about θ to be specified
probabilistically via a prior distribution p(θ) and the associated expected cost function to be mini-
mized, where the expectation is taken with respect to all unknown quantities including the unknown
parameters θ. This involves the minimization of

E[C(tB)] =
cP + cREθ[Λ(tB , θ)]

tB
, (31)

with respect to tB in the block replacement with MR case and the minimization of

E[C(T, tA)] =

∫ tA

0

cF
t
f(t|θ)p(θ)dθdt+

∫

θ

cP
tA
F (t|θ)p(θ)dθ. (32)

with respect to tA, in the age replacement case where a parametric form F (t|θ) is specified for the
system life distribution. When data D is available from previous replacement cycles, the uncertainty
about θ is revised to obtain the posterior distribution p(θ|D) which replaces p(θ) in (31) and (32)
to obtain the associated optimal intervals. Similarly, one can develop Bayesian block replacement
strategies under the ”good as new” case by making inference on the renewal function H(t, θ).

One of the earliest Bayesian approaches to replacement is due to Fox (1967), who considered age
replacement policies when the failure model is Weibull. Its shape parameter was assumed to be
known and adaptive optimal policies were developed by updating its scale parameter and minimiz-
ing the expected discounted cost over time. The author obtained asymptotic results for an infinite
planning horizon. Sathe and Hancock (1973) developed Bayesian policies using a Weibull model
where both the shape and scale parameters were treated as unknown quantities. The authors min-
imized the expected long-run average cost (29). An earlier attempt for developing Bayesian block
replacement policies is by Bassin (1973) who used Bayesian point estimates in the MR scenario by
using a power law model.

Mazzuchi and Soyer (1996a) developed Bayesian block and age replacement policies minimizing
(31) and (32). A power law model (30) was used for the intensity function and an adaptive policy was
developed by revising uncertainty about the parameters θ = (α, β) as well as the optimal replacement
interval after each cycle. In doing so, for a block replacement cycle of length tB, where n minimal
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repairs are performed at times t1 < t2 < . . . < tn < tB the distribution of (α, β) was revised based on
the likelihood function

L(α, β;D) =
n∏

i=1

λ(ti, θ)Λ(tB , θ), (33)

where λ(ti, θ) is the intensity function of the power law model evaluated at ti and D = (t1, . . . , tn),
see Pievatolo and Ruggeri (2004).

For the age replacement protocol, Mazzuchi and Soyer (1996a) assumed a Weibull failure model

F (t|α, β) = e−αtβ (34)

and developed adaptive age replacement policies by revising uncertainty about the shape and scale
parameters, α and β, respectively, after each cycle. During each age replacement cycle of tA, uncer-
tainty about α and β was revised based on the likelihood function

L(α, β; t) = f(t|α, β)I{t < tA}+ F (tA|α, β)I{t > tA}, (35)

where F (tA|α, β) is given by the Weibull reliability function (34), f(t|α, β) is the corresponding den-
sity, and I{·} is the indicator function. Numerical integration methods were used to evaluate the
expected cost (32).

Block replacement under the ”good as new” scenario was considered by Mazzuchi and Soyer
(1996b). The renewal function used was

H(t; θ) = E[N(t|θ)] =
∞∑

n=1

F (n)(t|θ), (36)

where F (n)(t|θ) is the n-fold convolution of the failure model F (t|θ). A Weibull model was used
as failure model and the renewal function (36) was approximated using the numerical approach
proposed in Smeitink and Dekker (1990). A Monte Carlo (MC) approach was used to evaluate the
expected cost (25) and determine the optimal replacement interval. An adaptive strategy was applied
by updating uncertainty about the parameters after each cycle and obtaining the optimal interval ac-
cordingly. Revision of the the parameters of the Weibull failure model (34), after a given replacement
cycle of tB, was based on the likelihood function

L(α, β;D) =
( n∏

i=1

f(ti − ti−1|α, β)
)( n∏

i=1

F (tB − tn|α, β)
)

(37)

where t1 < · · · < tn are the failure times (collectively designated as D).
The above adaptive replacement strategies of Mazzuchi and Soyer (1996a, 1996b) have been gen-

eralized to other replacement scenarios. Sheu et al. (1999) considered age replacement strategies with
MR. Dayanik and Gurler (2002) developed strategies for more general MR protocols considered by
Bechtel (1993) and a related adaptive preventive maintenance approach was discussed in Juang and
Anderson (2004). Bayesian group replacement policies were studied by Wilson and Benmerzouga
(1995) and Popova (2004).

Advances in computational Bayesian methods and particularly in MCMC approaches after 1990
have greatly enhanced the Bayesian analysis of repairable systems as well as the development of
maintenance strategies. As an example, the effect of grinding on reliability of rail tracks was studied
in Merrick et al. (2005) through modulated Poisson process models and block replacement strategies.
In rail tracks, usage is measured in millions of gross tons (MGT) traversing on the rail. In order to
prevent derailments caused by rail fractures that develop with heavy usage, ”the cracked rail can
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be either ground down, removing the metal surrounding the crack and leaving only solid metal, or
welded, fusing the crack”. As long as the initial crack does not lead to a complete fracture of the
rail, the resulting repair is considered as minimal. A modulated Poisson process model (MPPM) is
considered in Merrick et al. (2015) to describe the repair process. This is achieved by modulating
the cumulative intensity function of a NHPP with a vector of covariates as suggested in Cox (1972a).
More specifically, for a rail track i, the authors considered a cumulative intensity function

Λi(t, θ, β, Zi) = Λ0(t, θ)e
−Z′

iβ, (38)

where Zi is a vector of covariates and β is a regression parameter associated with Zi. For the MPPM,
the baseline cumulative intensity function Λ0(t, θ) is modulated by the covariate vectorZi. In Merrick
et al. (2005), a power law model as in (30) was considered for the baseline cumulative intensity
function and the covariate vector was assumed to be independent of usage. In their set up, the
authors used grinding level as one of the rail specific covariates. Bayesian inference for the model
was developed using a Gibbs sampler with adaptive rejection sampling steps, Dellaportas and Smith
(1993).

More recent work in Bayesian replacement policies is in Belyi et al. (2017) who considered bathtub
failure rates.

3.2.2 Nonparametric replacement policies

Relaxations of the parametric assumptions in replacement models have been considered in the opti-
mal maintenance literature. One of the earliest works is by Arunkumar (1972) who considered non-
parametric age replacement strategies. Adaptive versions of nonparametric age replacement policies
were developed in Frees and Ruppert (1985).

The nonparametric Bayesian framework has been proposed in the reliability literature to provide
more flexibility in modeling uncertainty about the failure model F (t|θ) or the failure rate (or intensity
rate) λ(t, θ). This is achieved by introducing a prior distribution over the class of failure models or the
class of failure rate functions. Although the seminal work by Ferguson (1973), on Dirichlet process
priors, and Antoniak (1974), on mixtures of Dirichlet processes, have contributed significantly to the
development of Bayesian nonparametrics, as pointed out by Singpurwalla (2006, p. 244), the origins
of Bayesian nonparametrics can be traced back to the works of Ramsey (1972) and Kraft and van
Eeden (1964) on potency curve estimation in bioassay.

Earlier use of nonparametric methods in reliability modeling and survival analysis is presented
in Kalbfleisch (1978) who assumed a gamma process prior to describe the cumulative failure rate;
Dykstra and Laud (1981), who considered extended gamma processes for modeling nondecreasing
failure rates; and Mazzuchi and Singpurwalla (1985), who proposed using an ordered Dirichlet prior
for monotone failure rates. Although Bayesian nonparametric approaches have been used in statis-
tical decision problems, as reviewed in Gutierrez-Pena and Walker (2005), their implementation in
reliability decision problems have started only during the last fifteen years. This is mostly due to
the advances in Bayesian computing and the associated MCMC methods which allow for simula-
tion from posterior processes such as mixtures of Dirichlet processes, for example Escobar and West
(1995), and failure rate processes, for example Laud et al. (1996).

One of the earliest development of nonparametric Bayesian replacement policies is by Merrick
et al. (2003) who consider age and block replacement of machine tools consisting of multiple non-
repairable components. The authors extend the proportional hazards model (PHM)for machine tool
reliability assessment in Mazzuchi and Soyer (1989) by relaxing the parametric base line failure rate
assumption. More specifically, under the parametric PHM of Cox (1972b) for Ti, the lifelength of
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machine tool i, the failure rate function of the distribution of Ti is given by

λi(t, θ, β, Zi) = λ0(t, θ)e
−Z′

iβ (39)

where λ0(t, θ) is the baseline failure rate and Zi is a vector of covariates as in (38). This vector
describes the operational environment of the machine tools including components such as cutting
speed, feed rate or depth of cut. A strategy to relax the parametric assumptions in (39) is to assume
a prior for the baseline failure rate function λ0(t, θ) while treating β with a parametric prior. This
yields a semiparametric Bayesian model for the failure rate. As noted by Merrick et al. (2003), the
covariate vector Zi does not capture potential variation in the individual characteristics of machine
tools. To account for such heterogeneity, the authors consider a machine tool specific baseline failure
rate λ0(t, θi) where θi is the vector of unknown parameters associated with machine tool i and de-
scribe uncertainty about the θi’s through a prior distribution G whose form is treated as unknown.
Indeed, a Dirichlet process prior is assumed as

G ∼ DP (G0,M), (40)

where G0 is a best guess baseline prior for G and M is the strength of belief, or precision parameter as
in Ferguson (1973). Specifying λ0(t, θi) conditional on θi gives a conditional parametric model for Ti
with density f(ti|θi, β, Zi). The semiparametric Bayes model specification is completed by a para-
metric prior p(β) for β. Merrick et al. (2003) point out that the distribution of Ti can be represented
as an unknown mixture given by

f(ti|G,β,Zi) =

∫
f(ti|θi, β, Zi)dG(θi) (41)

which provides the nonparametric structure of the model. Since G follows a Dirichlet process,
this is referred to as a Dirichlet process mixed model. Given failure time and covariate data D =
(t1, . . . , tn, Z1, . . . , Zn) from n machine tools, the likelihood function of G and β is obtained as a prod-
uct of the density functions in (41), that is, L(G,β;D) =

∏n
i=1 f(ti|G,β,Zi). The posterior analysis

of the model requires a Gibbs sampler with a Metropolis step to draw posterior samples from β.
Since it is difficult to draw from the posterior full conditional distribution p(G|β,D) directly, the
Gibbs sampler proposed by Escobar and West (1995) is used to sample from the full conditionals of
θ(n) = (θ1, . . . , θn) and β. Once posterior samples are drawn from p(θ(n), β|D), the expected posterior
cost for the age replacement interval tA can be approximated by the Monte Carlo average

E[C(T, tA)|D,Zi] =
1

S

S∑

s=1

∫ tA

0

cF
t
f(t|θsi , βs, Zi)dt+

cP
tA
F (tA|θsi , βs, Zi) (42)

for machine tool i, where (θsi , β
s) are the posterior samples. The optimal age replacement interval t∗A

is then obtained by minimizing (42) with respect to tA.
Following Mazzuchi and Soyer (1989), a Weibull baseline failure rate λ0(t, θi) = αiγt

γ−1, where
θi = (αi, γ), was used by Merrick et al. (2003) in the semiparametric PHM. The authors show that the
semiparametric PHM fit the failure data better than the parametric model based on different model
comparison criteria. Optimal age replacement intervals were obtained for different machine tools
under the parametric and semiparametric models and significant differences were found between
both approaches, with semiparametric policies providing more conservative results in most cases.

Nonparametric block replacement policies were also considered in Merrick et al. (2003) for a
group of m machine tools. The authors used a Weibull failure model for machine tools as in the age
replacement protocol. In this case, the cost under the common block replacement interval tB for m

20



tools is defined through

C(tB) =

m∑

j=1

cP + cFNj(tB |θj , β, Zj)

tB
, (43)

where the Nj(tB |θj, β, Zj)’s are (conditionally) independent renewal processes with respective re-
newal function Hj(tB |θj, β, Zj), j = 1, . . . ,m. The determination of the optimal block replacement
interval t∗B requires evaluating the expected cost

E[C(tB)|D,Z(m)] =

∫ m∑

j=1

cP + cFHj(tB |θj, β, Zj)

tB
p(θ(m), β|D)dθ(m) dβ. (44)

The multi-dimensional integral in (44) can be approximated using an MC average as in (42) using
draws from the posterior distribution p(θ(m), β|D). Note that the MC average involves evaluation
of the renewal functions Hj(tB |θj , β, Zj), j = 1, . . . ,m, for each posterior draw (θs1, . . . , θ

s
m, β

s). In
Merrick et al. (2003), the renewal functions were estimated by simulating from the (conditionally)
independent renewal processes and the optimal nonparametric Bayesian block replacement interval
was obtained by minimizing the MC approximation to (44).

A similar nonparametric approach was considered in Merrick et al. (2005) to relax parametric
assumptions in the MPPM (38) and model heterogeneity in rail tracks for developing replacement
policies. More specifically, the authors specified a baseline cumulative intensity Λ0(t, θi) in (38). The
unknown distributionG of the θi’s is assumed to follow a Dirichlet process as in (40) while β is treated
parametrically. The resulting semiparametric MPPM was used to develop nonparametric Bayesian
block replacement policies with MR. In their development, Merrick et al. (2005) assumed a power law
for Λ0(t, θi), but the proposed approach can be implemented for other baseline cumulative intensity
functions.

More recently, Merrick and Soyer (2017) considered an alternative semiparametric MPPM where
the cumulative baseline intensity function Λ0(t) in (38) follows a gamma process prior

Λ0(t) ∼ G(cΛ∗
0(t), c), (45)

where Λ∗
0(t) is the mean function of the process and c is the precision parameter; see Kuo and Ghosh

(2001). The nonparametric Bayesian analysis in their application was complicated by the fact that
the available rail track failure data were interval censored. This implies that the posterior for Λ0(t) is
not a gamma process and updating is not straightforward. Therefore, the authors developed a Gibbs
sampler with a data augmentation step to be able to draw samples from the posterior distribution of
Λ0(t) and obtained optimal block replacement intervals under the assumption of MR.

Damien et al. (2007) proposed a semiparametric Bayesian approach for developing optimal main-
tenance strategies for nuclear power plants. An important aspect of their development is the consid-
eration of both preventive (replacement) and corrective (repair) maintenance. They also take into
account down time costs. The maintenance policy involves replacing the item every T units of time
and minimally repairing it upon failure at a cost cm or cd (cd > cm) depending on whether the fail-
ure causes disruption of power generation. The authors use a Bayesian semiparametric accelerated
failure time (AFT) model assuming a mixtures of Polya tree prior for the baseline reliability function
F (t). The posterior Bayesian analysis is developed using MCMC methods and optimal replacement
intervals are obtained. An alternative approach to nonparametric Bayesian failure rate modeling for
nuclear power plants is introduced in Belyi et al. (2017) who considered the use of extended gamma
processes for the failure rate functions.
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3.3 Preventive maintenance via semi-Markov decision processes

Continuous Time Homogeneous semi-Markov Processes (CTHSMP or, simply, SMP) have been ex-
tensively used to model many real and theoretical cases, as outlined in Cinlar (1975) or Howard
(2007). Their flexibility and reasonably tractable mathematical properties allow for their use in a
wide range of applications as a powerful modeling tool. A particularly important applied area refers
to maintenance decisions for HW systems, which has been pervaded by Continuous Time Markov
Chain (CTMC) models, see Cano et al. (2010). SMPs provide additional flexibility due to more real-
istic modeling assumptions yet requiring a reasonable computational effort. However, contributions
to SMPs tend to focus on probabilistic aspects, with relatively few references devoted to inferential
issues, see Bhat and Miller (2002) for a description. Moreover, such inferential work tends to fo-
cus on classical approaches, with comparatively little attention paid to Bayesian methods, which,
incidentally, have addressed mainly long-term equilibrium properties, see e.g. Marin et al. (2005).
Flowgraph models have proved to be an important tool to deal with SMPs, see Huzurbazar (2005).

We focus on the use of Markov and, specially, semi-Markov decision processes (SMDP) in relia-
bility and maintenance. White (1993) provides a review of MDP applications mentioning numerous
ones in maintenance. More recent examples are in Chen and Trivedi (2005) and Huang and Guo
(2011) referring to SMDPs. We place special emphasis on the propagation of uncertainty of the in-
volved parameters, and how it affects the computation of various quantities relevant for decision
making purposes.

We assume that the system evolves according to a SMP {Xt}t∈T with discrete state space {1, . . . ,m},
with {1, . . . , l} corresponding to ON states and {l + 1, . . . ,m} to OFF states. The parameters of the
SMP are (ν, P ) where ν = (ν1, . . . , νm)T are the parameters of the sojourn times Ti, i = 1, ...,m
and P = (pij), i, j = 1, . . . ,m, where pij is the transition probability from state i to state j with∑m

j=1 pij = 1, and pii = 0, ∀i. Inference in SMPs has frequently been dealt from a classical per-
spective, neglecting the relevance of prior knowledge, and/or the uncertainty in parameters, and
consequently, in predictions. Besides, SMPs have been often restricted to provide long-term results,
as the transient period of the process typically entails additional computational complexity depend-
ing on the precision of the posterior distributions of the system parameters. Rios Insua et al. (2012)
provide various alternative computational strategies.

We outline here decision making with SMPs under a Bayesian perspective. We focus the dis-
cussion on complex maintenance cases where we need to go beyond comparing several alternatives
through discrete event simulation and pairwise comparison or ranking and selection methods, see
Henderson et al. (2006) or Rios Insua et al. (2012). Assume that when entering state i, a decision
maker (DM) will choose a maintenance action a from a (finite) space Ai of alternatives, which may
depend on state i. The system remains there for a sojourn time Tia, with parameter νia, which de-
pends on the state and the decision a made. Upon leaving the state, the system will move to state j
with probability pija ≥ 0, with

∑m
j=1 pija = 1 and piia = 0. We assume that we have a prior distribu-

tion on the parameters νa = (νia) and Pa = (pija), for each action a, leading to a posterior p(νa, Pa|D)
over the parameters given the observed data D. For each maintenance decision made, we get a (pos-
sibly multi-objective) consequence c(i, a, tia) which depends on the time tia spent at state i and the
action a. We evaluate the consequences with a utility function u(c(i, a, tia)), which might account for
time effects such as discounting.

Consider the problem in which we manage the system until a time T has elapsed. Let a =
(a1, . . . , aM ) be the policy or sequence of maintenance actions that the DM adopts until time T ;
τ = (t1, . . . , tM ), the sequence of times spent at various states visited; x = (x1, . . . , xM ), the se-

quence of states visited, and TM−1 =
∑M−1

i=1 ti. The utility globally obtained will be u(x,a, τ ). The
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evolution of the system is described through

pa(τ ,x|νa, Pa) =

[
M∏

i=1

pxixi+1ai

]
×
[
M−1∏

i=1

f(txi
|νxiai)

]
× [1− F (T − TM−1|νxMaM )].

The standard SMDP formulation would fix the (ν, P ) parameters at certain estimates (ν̂, P̂ ) and find
the decisions a providing maximum expected utility through

max
a

∫∫
∑

ti=T
u(x,a, τ )pa(τ ,x|ν̂a, P̂a)dxdτ .

Usually, it is assumed that the utility function is separable, that is, u(x,a, τ ) =
∑M

i=1 u(xi, ai, ti).
Under such conditions, the solution to SMDPs with fixed parameters typically proceeds through
some variant of dynamic programming, see Howard (2007), French and Rios Insua ((2000) or Ross
(1992). For different approaches based on Q-learning, see Polson and Sorensen (2011) and references
therein.

We actually do not require separability. For technical reasons, without loss of generality, assume
that the utility function is positive. Then we should aim at solving

max
a

∫∫∫∫
∑

ti=T
u(x,a, τ )pa(τ ,x|νa, Pa)p(νa|data)p(Pa|data)dxdτ dνa dPa. (46)

To evaluate the integral in (46) we may use APS as in the optimal design problem of Section 2.2.1 and
define an auxiliary distribution with density

g(x,a, τ ,νa, Pa) ∝ u(x,a, τ )pa(τ ,x|νa, Pa)p(νa|D)p(Pa|D)

by treating the decision variable a (the maintenance plan) as a random quantity. As previously dis-
cussed in Section 2.2.1, the optimal solution a

∗ of (46) can be described as the mode of the marginal
distribution of a implied by the auxiliary distribution g(x,a, τ ,νa, Pa). Therefore, we could imple-
ment the approach described in Algorithm 1, with h = (x,a, τ ), to approximate the mode of the
marginal in a and, consequently, the optimal policy.

When posteriors for (ν, P ) are precise, as in the standard SMDP approach, we could suppress

steps 2.2 and 2.3 and substitute them by ν̂, P̂ throughout. Step 3 collects the sampled decision after
convergence is detected, possibly with procedures such as thinning to mitigate serial correlation. Step
4 finds the modes on the marginal distribution on decisions. Its structure will depend on problem
specificities, typically requiring a discretization of policies over time.

Moreno et al. (2003) provide a related approach when (ν, P ) are fixed. Hoffman et al. (2009)
provide an APS approach for Markov decision processes. The convergence of Algorithm 1 follows
arguments similar to those in Bielza et al. (1999). An alternative approach may be based on using a
discrete event simulation, combined with an optimization algorithm.

4 Adversarial Settings

As discussed in previous sections, reliability analysis deals with predicting how long a system will
be functioning under given operational conditions and involves making decisions in relation with
the maintenance, replacement, performance, design or redesign of such system. Many reliability
problems, as those presented earlier, involve a single decision maker and may be appropriately dealt
with at large through decision theoretic methods. However, there are reliability issues that may
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Algorithm 1 Decision making with SMDP

1. Start from arbitrary values (x0,a0, τ 0,ν0
a , P

0
a ) = (h0,ν0

a , P
0
a ).

Set i = 0.

Compute u(h0).

2. Until convergence, iterate through

2.1. Generate a history h
c from distribution q1(·|h

i)

Compute

γ1 = min

{

1,
u(xc,ac, τ c)pac(τ c,xc|νi

a, P
i
a)q1(h

c|hi)

u(xi,ai, τ i)p
a
i(τ i,xi|νi

a, P
i
a)q1(hi|hc)

}

.

Do

h
i+1 =

{

h
c, with probability γ1,

h
i, with probability (1− γ1).

2.2. Generate P c
a from distribution q2(·|P

i
a)

Compute

γ2 = min

{

1,
p
a
i+1(τ i+1,xi+1|νi

a, P
i
a)p(P

c
a |data)q2(P

c
a |P

i
a)

p
a
i+1(τ i+1,xi+1|νi

a, P
i
a)p(P i

a|data)q2(P i
a|P c

a )

}

.

Do

P
i+1
a =

{

P c
a , with probability γ2,

P i
a, with probability (1− γ2).

2.3. Generate ν
c
a from distribution q3(·|ν

i
a)

Compute

γ3 = min

{

1,
p
a
i+1(τ i+1,xi+1|νc

a, P
i+1
a )p(νc

a|data)q3(ν
c
a|ν

i
a)

p
a
i+1(τ i+1,xi+1|νi

a, P
i
a)p(νi

a|data)q3(νi
a|νc

a)

}

.

Do

ν
i+1
a =

{

ν
c
a, with probability γ3,

ν
i
a, with probability (1− γ3).

3. Once convergence is detected (say after iteration k), collect the next n sampled decisions (ak+1, . . . ,ak+n).

4. Use the sample {ak+1, . . . ,ak+n} to approximate the mode of the marginal distribution on decisions.

involve two or more actors with competing interests. Examples of adversarial situations in this field
can be found in areas such as acceptance sampling (Lindley and Singpurwalla, 1991), life testing
(Lindley and Singpurwalla, 1993), reliability demonstration (Rufo et al., 2014) and warranty analysis
(Singpurwalla and Wilson, 1993).

These problems with adversarial components can be set up as games and are typically solved us-
ing game theory methods; see for example Gibbons (1992). A main drawback of such methodology
in this application area is its underlying common knowledge assumption, assessed in e.g. Raiffa et
al.(2002) or Lippman and McCardle (2012). Therefore, we shall also illustrate alternative approaches
based on the recent framework of adversarial risk analysis (ARA), see Banks et al.(2015). We first
present adversarial issues around warranty policies and then analyse comparatively the game theo-
retic and ARA approaches in relation with acceptance sampling.

4.1 Warranty policies

A warranty is an agreement made between the buyer and the seller of a good or service. In the case
of a product, the seller agrees to rectify any fault through repair or replacement. This is for a certain
amount of time, or usage, or both time and usage, after purchase. In the case of a service, a service
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level agreement may be signed and the warranty compensates the buyer if the agreed level has not
been maintained; this is again typically for a defined amount of time or other measure of use from
purchase.

Aside from the legal aspects (Priest, 1981), from the consumer’s perspective, a warranty acts as
a guarantee of quality. From the seller’s perspective, it is an important tool to attract and retain
customers. The decision and game theory aspects of this problem are usually explored from the
point of view of the seller, who is faced with determining the best type of warranty for the product,
given knowledge about its reliability, the costs of repair, the relationship between sales and warranty
size and the actions of its competitors.

Early reviews on warranties from a mathematical perspective are in Blischke (1990), Murthy
(1990) and Blischke and Murthy (1991). The latter also looked at variants of the standard warranty,
such as limited warranties, where repair costs are shared between buyer and seller, and extended
warranties, where the consumer can pay to prolong the warranty period. Singpurwalla and Wilson
(1994) looked at several game and decision-theoretic aspects, including warranties based on both
time and usage.

The time-limited warranty, where the warranty is valid for a time t after purchase with no limit
on usage, has received most of the attention in the literature. A decision-theoretic approach to the
seller’s warranty problem attempts to find the optimal warranty time t∗. The seller has a model for
the number N(t) of claims that will be made against a product by time t, quantified by a probability
model pt(n | θ) = P (N(t) = n | θ). Typical models are point processes, such as the Poisson process,
or a reliability model for time to failure can be defined, and then the number of failures is the corre-
sponding renewal process if independent and identically distributed failure times are assumed (Ross,
1995). A prior distribution for the seller’s uncertainty about θ may be assessed, which then can be up-
dated with warranty claim data. As regards the utility, Blischke (1990) suggested a cost model for the
seller for a single unit of a product with a warranty to time t from purchase of the form S(1+N(t)), if
the item is non-repairable (and so must be replaced if it fails), or S + CN(t), if the item is repairable,
where S is the cost of making and delivering the product to the customer and C is the average repair
cost. A more comprehensive cost model would take into account the attractiveness to the consumer
of a product at a price p with warranty length t. Written as a utility, this could then be of the form

u(N(t), θ, (p, t)) = π(p, t)


p− S −

N(t;θ)∑

i=1

Ci


 , (47)

where π(p, t) measures the probability that a consumer buys the product at a price p and warranty
length t (a non-decreasing function of t) and Ci is the cost of resolving the ith claim (either a repair
or replacement cost). The expected utility, assuming uncertainty over θ as well as N(t), is then:

u(t) = π(p, t)

(
p− S −

∑

n

(
n∑

i=1

Ci

)∫

θ
pt(n | θ) p(θ) dθ

)
,

and then we look for t∗ = argmaxt u(t). Simultaneous maximization over p and t is also possible. If
the claim costs are identically distributed, then one can take the expectation over the claim costs to
arrive at a simplified expression

u(t) = π(p, t)

(
p− S −

∑

n

nE(C)

∫

θ
pt(n |θ) p(θ) dθ

)
= π(p, t) (p− S − E(C)E(N(t))) .

The analysis of warranty costs has been well documented in the literature, e.g. the recent work
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by Liu et al. (2015) or the review by Wu (2012), and so typically the seller has good information on
the distribution of the Ci’s. The consumer response to the warranty size, appearing as the function
f(t) in (47), is more difficult to quantify. Jindal (2015) looked at what drives the purchase of extended
warranties and derives a utility from the consumer’s perspective. Chu and Chintagunta (2009) is
more useful as it looks at a demand model for warranties from the seller’s point of view.

Figure 5 illustrates the approach with a simple example, using the utility function in (47) with
p = 2, S = 1 and E(C) = 0.1. A logistic function is used for the probability of purchase, π(p, t) =
0.5 exp(−0.01p + (t− 2))/(1 + exp(−0.01p + (t− 2)), so that the maximum chance of purchase is 0.5,
andN(t) is modelled as a Poisson process with mean value functionE(N(t)) = (1+ t)θ−1. Note that
θ = 1 corresponds to the homogeneous Poisson process, and so the times between successive claims
have the same distribution, as might be expected if the claim was resolved by a replacement product
or a repair that returns the product to an as-new state. If θ > 1, there is an increasing rate of claims
as the product ages, corresponding to a situation where a claim is resolved by an imperfect repair
and there is an increasing rate of claims with time. The figure shows the optimal warranty period for
fixed θ, which shortens as θ increases, reflecting the fact that the seller wishes to avoid the increasing
claim rate that is implied by θ > 1.

Two-dimensional warranties, where the warranty period covers up to a time t and usage m are
common in some markets e.g. automobiles. The optimal warranty specification now looks to define
the optimal pair (t∗,m∗). One approach is to map (t,m) to a single index and optimise with respect
to it; Oakes (1995) or Gertsbakh and Kordonsky (1998) provide examples. Alternatively, a bivariate
model for time and usage can be defined. Mercer (1961) was an early attempt to do this. Eliashberg et
al. (1997) modelled usage as a logistic function of time, while Singpurwalla and Wilson (1998) defined
a model where usage was a stochastic process indexed by time. In the latter, the model was applied
to the optimal two-dimensional warranty problem. More recently, Su and Wang (2016) proposed a
bivariate Weibull model for time and usage to failure with survival function

R(t,m) = exp


−

{(
t

αT

)βT /δ

+

(
m

αM

)βM/δ
}δ

 ,

where δ models their dependence. Two-dimensional renewal theory can be used to derive a distri-
bution for N(t,m), the number of claims by time t and usage m (Hunter, 1974). Singpurwalla and
Wilson (1994) suggested a seller’s utility function for a two-dimensional warranty that is an exten-
sion of (47) but where now the probability of purchase and number of claims depend on both time
and usage,

u(N(t,m), θ, (t,m)) = π(p, t,m)


p− S −

N(t,m;θ)∑

i=1

Ci


 .

Then (t∗,m∗) are found by taking the expected utility with respect toN(t,m) and θ, then maximising
with respect to t and m.

Game theoretic aspects of warranties have also been explored. Emons (1988) looked at the moral
hazard problem, where buyers take less care of a product if it has a warranty, leading to an adversarial
interaction between the buyer and seller. The seller must assess the reduction in reliability due to the
buyer’s actions. Singpurwalla and Wilson (1994) discuss the interaction between a consumer and a
producer by making the probability π(p, t,m) of (47) depend on the buyer’s utility for purchasing
the product. All these require common knowledge assumptions that are then used to compute Nash
equilibria and related refinements. We explore this and alternative approaches in the related problem
of adversarial acceptance sampling.
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Figure 5: Optimizing warranty length using the utility function of (47). Clockwise from top left:
expected number of claims as a function of θ, probability of purchase, expected utility as a function
of time for 4 values of θ, the optimal warranty length as a function of θ.

4.2 Adversarial acceptance sampling problems

We first formulate the general adversarial problem for acceptance sampling as in Lindley and Singpur-
walla (1991) who deal with it from a game-theoretic perspective. As a motivation, consider a case
with a manufacturer M (she) and a consumer C (he). In order to convince the consumer, the manu-
facturer offers sample products to the consumer who, based on the perceived quality, places an order
or not. Thus, M needs to decide about n, the sample size that will be offered to the consumer. The
outcome of the inspection is described through the data D, which depends on a parameter θ char-
acterising the product quality, say the failure rate in a life testing context. The decision of C refers
to accept (A) or reject (R) the batch, which will be based on the observed sample data D, eventually
used by C to revise his uncertainty about θ. The utility function of C depends on his decision and
the quality parameter θ. The utility function of M depends on her decision, the consumer’s decision
and the quality parameter θ. The problem may be described through a bi-agent influence diagram
(BAID), Koller and Milch (2003) or Banks et al. (2015), represented in Figure 6, where round nodes
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refer to random events, square nodes refer to decisions and exagonal nodes refer to evaluations.
White nodes belong to M , grey nodes to C and striped nodes are shared by both agents. Arrows are
interpreted as in standard influence diagrams.

ΘUM UC

M C

D

Figure 6: Acceptance sampling. A Bi-Agent Influence Diagram.

We assume we are supporting the manufacturer. We illustrate first the game theoretic approach
and then the ARA perspective.

For the game theoretic solution, due to the sequentiality of the decisions, the consumer sees the
manufacturer decision and she does not need his judgements. But the manufacturer needs to know
the consumer beliefs and preferences, which is the common knowledge condition in this problem.
Then, the consumer should have available (and these should be available to the manufacturer) pC(θ),
which describes his beliefs about the product quality θ; pC(d|θ, n), which describes his beliefs about
the experiment results d given the quality θ and the decision n of M ; and his utility function, uC(c, θ).
If so, he proceeds, for each d and n, by:

1. Inverting the arc θ-D and computing, by Bayes’ formula,

pC(θ|d, n) ∝ pC(θ)pC(d|θ, n). (48)

2. Computing the expected utilities,

ψC(n, d, c) =

∫
uC(c, θ)pC(θ|d, n)dθ.

3. Computing the optimal decision c, given d and n,

c∗(d, n) = argmax
c∈{A,R}

ψC(d, n, c).

The manufacturer knows this and, consequently, solves her problem. For this, she should have avail-
able pM(θ), describing her beliefs about the quality θ; pM (d|θ, n), reflecting her beliefs about the
experiment results given the quality θ and his decision n; and her utility function uM (c, n, θ). In this
case, the manufacturer proceeds by:

1. Assessing the utilities of the attained results (the consumer decision)

ψM (n, d, θ) = uM (c∗(d, n), n, θ).

2. Computing the expected utilities,

ψM (n, θ) =

∫
ψM (n, d, θ)pM (d|θ, n) dd.
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3. Computing the expected utilities,

ψM (n) =

∫
ψM (n, θ)pM (θ) dθ.

4. Finally, computing her optimal decision through

n∗ = argmaxψM (n).

Then n∗ and {c∗(d, n∗)}d is a subgame perfect equilibrium, Gibbons (1992).
We move now to the ARA approach, avoiding common knowledge assumptions. Basically, we

run a decision analysis problem for the manufacturer, which requires input coming from a simula-
tion over the consumer’s problem. We thus consider first the manufacturer’s decision problem. To
solve the problem, M should have available, as before, pM (θ), pM (d|θ, n) and uM (c, n, θ), but also
pM (c|d, n), which describes her beliefs about the customer decision c (accept, reject) given the exper-
iment results d and her decision n. Then, the manufacturer proceeds by:

1. Computing the expected utilities,

ψM (n, d, θ) =
∑

c∈{A,R}

uM (c, n, θ)pM (c|d, n).

2. Computing the expected utilities,

ψM (n, θ) =

∫
ψM (n, d, θ)pM (d|θ, n) dd.

3. Computing the expected utilities, to reduce node Θ,

ψM (n) =

∫
ψM (n, θ)pM (θ) dθ.

4. Finally, computing her optimal decision through

n∗ = argmaxψM (n).

However, in the above, pM (c|d, n) is nonstandard, since it entails strategic elements about the behav-
ior of the consumer. To facilitate its assessment, we may actually consider his problem and simulate
from it.

The consumer problem is shown in Figure 7. To solve it, the consumer should have available, as

Θ UC

M C

D

Figure 7: Acceptance sampling. Consumer vision.
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stated above, pC(θ), pC(d|θ, n), and uC(c, θ). He does not need pC(n), since his decision is contingent
upon seeing the manufacturer decision n at M . In this case, the consumer proceeds, for each d and n,
as above, not being necessary to remove nodesD andM from the consumer ID. However, since we do
not assume the common knowledge condition, we do not have the required elements uC(c, θ), pC(θ),
pC(d|θ, n). We may model our uncertainty around them, through random utilities and probabilities,
which we designate by F = (UC(c, θ), PC(θ), PC(d|θ, n)). Since we do not need the denominator in
Bayes’ formula (48) for optimisation purposes, we may actually proceed, for each d and n, by

2’ Computing the random functional

Ψ∗
C(n, d, c) =

∫
UC(c, θ)PC(θ)PC(d|θ, n)dθ.

3’ Computing the random optimal alternative, given d and n,

C∗(d, n) = argmax
c∈{A,R}

Ψ∗
C(d, n, c).

We, then, set pM (c|d, n) = Pr(C∗(d, n) = c) which feed into the manufacturer’s problem.
Estimation of C∗(d, n) would typically proceed by MC simulation, by sampling from the random

utilities and probabilities, computing the corresponding optimal decisions, and then estimating by
the MC frequencies. In general, PC(θ), PC(d|θ, n) could be based on pM (θ), pM (d|θ, n) with some
uncertainty around them. In discrete cases, these could be Dirichlet distributions, whereas, in con-
tinuous cases, these could be Dirichlet processes. With regards to UC(c, θ), we may have information
about the consumer interests and use a parametric form for the utility function. Finally, we derive a
distribution over the parameters. Banks et al. (2015) provide details on such assessments. Rios Insua
et al.(2018) provide examples in Bernoulli acceptance sampling and exponential life testing.

5 Concluding Remarks

This article provides a review of Bayesian methods for making decisions in reliability. Decision mak-
ing is a major aspect of reliability analysis which is frequently neglected by statisticians and applied
probabilists whose main focus is often on modeling and inference. It is desirable to integrate deci-
sion making and statistics in many reliability problems and the Bayesian paradigm provides a coher-
ent framework to do this. The primary objective of this review was to illustrate how the Bayesian
decision-theoretic approach is applied in a variety of problems such as life testing, design of exper-
iments, reliability certification, preventive maintenance, warranties and acceptance sampling and
discuss recent advances in these areas.

Section 2 has presented Bayesian design of life tests including accelerated tests, stopping rules
and reliability demonstration. Due to space limitations, design of burn-in tests is excluded. In relia-
bility, burn-in testing is used to distinguish between ”weak” and ”strong” items so that weak items
are eliminated and not released to consumers. One of the earlier Bayesian papers in burn-in testing
design is by Clarotti and Spizzichino (1990). A more recent work is by Perlstein et al. (2001). Relia-
bility based optimal design is another area which is not discussed since most of this work appear in
engineering journals and the Bayesian approach has been considered in comparatively few articles,
such as Gunawan and Papalambros (2006). Our discussion of preventive maintenance in Section 3
has not included condition-based maintenance policies which is an area also with limited Bayesian
work; see for example, the recent review paper by Olde-Keizer et al. (2017). Another area where the
development of Bayesian maintenance policies has not been considered is the virtual age or imperfect
repair models of Zhang et al. (2015).
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Besides its focus on Bayesian decision making, this article differs from the other reviews in re-
liability due to its consideration of adversarial issues in reliability discussed in Section 4. As noted
by Rios-Insua et al. (2018), the ARA approach discussed here can be extended to other areas such as
warranty policies and software testing which include more than two adversaries. Another potential
area for extension is adversarial life testing with multiple stages. Solution of such sequential testing
is challenging and will require the development of new computational methods. Last, but not least,
it would be relevant to consider security issues in relation with reliability when adversaries attempt
to reduce the reliability of our managed systems.
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